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Human T cells express CD25 and Foxp3 upon activation and exhibit 
effector/memory phenotypes without any regulatory/suppressor 
function
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Abstract
Background: Foxp3 has been suggested to be a standard marker for murine Tregs whereas its
role as marker for human Tregs is controversial. While some reports have shown that human
Foxp3+ T cells had no regulatory function others have shown their role in the inhibition of T cell
proliferation.

Methods: T cell activation was performed by means of brayostatin-1/ionomycin (B/I), mixed
lymphocyte reaction (MLR), and CD3/CD28 activation. T cell proliferation was performed using
BrdU and CFSE staining. Flow cytometry was performed to determine Foxp3 expression, cell
proliferation, viabilities and phenotype analyses of T cells.

Results: Both CD4+ and CD8+ T cells expressed Foxp3 upon activation in vitro. Expression of
Foxp3 remained more stable in CD4+CD25+ T cells compared to that in CD8+CD25+ T cells.
The CD4+CD25+Foxp3+ T cells expressed CD44 and CD62L, showing their effector and memory
phenotypes. Both FoxP3- responder T cells and CD4+FoxP3+ T cells underwent proliferation
upon CD3/CD28 activation.

Conclusion: Expression of Foxp3 does not necessarily convey regulatory function in human
CD4+CD25+ T cells. Increased FoxP3 on CD44+ effector and CD44+CD62L+ memory T cells
upon stimulation suggest the activation-induced regulation of FoxP3 expression.

Background
In mice, scurfy mutation in forkhead/winged helix tran-
scription factor gene Foxp3 causes autoimmune lesions

including massive lymphoproliferation, diabetes, exfolia-
tive dermatitis, thyroiditis and enteropathy. Such autoim-
munity can be cured by a transgene encoding a wild-type
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Foxp3 allele [1]. The expression of Foxp3 in CD4+CD25+
T cells in wild-type mice and the diminished numbers of
these T cells in scurfy and Foxp3-knockout (Foxp3-) mice
suggested a role for Foxp3 in the development of regula-
tory T cells (Tregs) [2]. In addition, Foxp3 has been shown
to be a specific marker for murine CD4+ Tregs because
activation of non-T regs did not induce Foxp3 expression
[2]. Ectopic expression of Foxp3 was shown to be suffi-
cient to activate a program of suppressor function in
peripheral murine CD4+ T cells [2].

In humans, the gene encoding Foxp3 was discovered dur-
ing efforts to understand the genetic basis for a rare X-
linked fatal autoimmune disease known as IPEX
(immune dysregulation, polyendocrinopathy, enteropa-
thy, X-linked) syndrome [3,4]. However, the role of Foxp3
as a key marker for Tregs in humans remains controver-
sial. Unlike mice, activation of human CD4+ T cells by T-
cell receptor (TcR) stimulation resulted in the expression
of Foxp3 [5-12]. Most of these studies showed that induc-
tion of Foxp3, even in the presence of TGF-, did not cor-
relate with suppressive function of CD4+ T cells [6,10-12].
Although it was suggested that lack of suppression during
the activation-induced expression of Foxp3 in human
CD4+ T cells was because of transient expression of
Foxp3, the observation still argues against a role for Foxp3
as key regulator of suppression in human CD4+ T cells
upon expression. Regardless of the status of Foxp3, many
studies considered CD4+CD25high as Tregs in humans
without being able to show their regulatory functions in
vivo [13-15]. Most recently, it was reported that maternal
alloantigens promoted development of Tregs in the
human fetus that could suppress fetal antimaternal
immunity. The authors considered CD4+CD25+Foxp3+ T
cells as Tregs because of their partial suppressive function
in a mixed lymphocyte reaction (MLR) in vitro [16]. These
controversial reports prompted us to determine whether
induction of Foxp3 expression in human T cells during
activation and during MLR may confer regulatory func-
tions. Our studies showed that activation-induced expres-
sion of Foxp3 was transient in CD8+CD25+ T cells but it
was more stable in CD4+CD25+ T cells. These Foxp3+ T
cells were mainly of effector and memory phenotypes.

Methods
Blood samples
PBMC were collected from two healthy donors, and dupli-
cate experiments were performed.

Flow cytometry
Three-color staining and FACS analyses were performed as
previously described by our group [17]. Extracellular
staining were performed using anti-human antibodies
from Biolegend: PE- and FITC-CD25 (clone BC96), PE-
and FITC-CD44 (clone IM7), FITC-CD62L (clone DREG-

56), PE/Cy5-CD4 (clone OKT4) and PE/Cy5-CD8 (clone
RPA-T8). Appropriate isotype control antibodies were
used to exclude nonspecific binding. Foxp3 intracellular
staining was done with PE anti-human Foxp3 Flow Kit
(Biolegend, clone 206D) according to the manufacturer's
protocol. Apoptosis was determined by staining of cells
with Annexin V (BD Pharmingen).

Proliferation assay
FITC BrdU Flow Kit (BD Pharmingen) was used in prolif-
eration assays. T cells were also labeled with CFSE by incu-
bation at 5 × 107 cells/mL in 5 M CFSE/HBSS for 5 min
at room temperature. Cells were then added with an equal
volume of FBS, followed by three washes in FBS-contain-
ing HBSS.

Mixed lymphocyte reaction (MLR)
Blood samples were diluted two-fold with PBS and lay-
ered onto Ficoll-Hypaque. Each tube was centrifuged at
400 g for 30 min and the lymphocytes at the interface
were collected. These cells were washed once with RPMI
1640 medium containing 100 U/ml penicillin, 100 g/ml
streptomycin, and 2 mM L-glutamine. They were then
resuspended at l07 cells/ml in the same medium contain-
ing 10% heat inactivated FBS. Allogeneic stimulating cells
were irradiated in a cesium irradiator to a total dose of
5,000 rad, to abolish their capacity to proliferate. Cultures
were set up in flat-bottomed 24-well plates and 3 × 106

responder cells were mixed with 2 × 106 irradiated stimu-
lators in 2 mL. Cultures, set up in triplicates, were incu-
bated for 8 days at 37°C. Control cells cultured with
medium containing low dose IL-2 (20 U/mL) in order to
maintain T cell viability during a 3-day culture. No IL-2 or
anti-CD3 Ab was used in MLR samples. Some cultures
were pulsed with 10 M BrdU (BD Pharmingen).

Statistical analysis
Statistical comparisons between groups were made using
the Student t test with P < 0.0.5 being statistically signifi-
cant.

Results and discussion
Activation of T cells induces expression of CD25 and Foxp3 
associated with effector and memory phenotype 
differentiation
PBMC were stimulated with bryostatin-1 (5 nM) and ion-
omycin (1 M) (B/I) in the presence of 80 U/mL of IL-2
(Peprotech) for 16 h. B/I activation mimic intracellular
signals that result in T cell activation by increasing protein
kinase C activity and intracellular calcium, respectively
[18-20]. Cells were washed three times and cultured at 106

cells/mL in complete medium with 40 U/mL IL-2 (Pepro-
tech) for 3 days and expression of Foxp3 was determined
using flow cytometry analysis. Expression of FoxP3 was
also determined on freshly isolated T cells on day 0. As
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shown in Fig. 1A (top panel), presence of IL-2 alone for 3
days did not markedly increase expression of Foxp3 or
CD25 above baseline levels on day 0 (Fig. 1C). The B/I
activation, however, induced Foxp3 and CD25 expression
in CD4+ and CD8+ T cells (Fig. 1A, middle panel). Upon
B/I activation, CD4+CD25+Foxp3+ T cells were increased
from 1% to 23% (P = 0.016) and CD8+CD25+Foxp3+ T
cells were increased from 0.6% to 9% (P = 0.013). Exten-
sion of culture in the presence of IL-2 for 6 days without
any further stimulation retained CD4+CD25+Foxp3+ T
cells above the baseline levels in unactivated T cells (1%
vs. 7%; P = 0.031) whereas CD8+CD25+Foxp3+ T cells
dropped to baseline levels (0.6%). These results suggest
that activation-induced expression of Foxp3 in
CD4+CD25+ T cells is more stable than that in

CD8+CD25+ T cells. Absolute number of T cells increased
3 and 6 days after the B/I stimulation and expansion in
the presence of IL-2 (Fig. 1B). Activation of T cells by
means of anti-CD3/CD28 Abs for 3 days produced similar
results as for B/I activation by increasing
CD4+CD25+FoxP3+ T cells from 0.4% to 8.7% (Fig. 1C).
Phenotype analyses of T cells revealed CD44+ effector and
CD44+CD62L+ memory phenotypes prior to and 6 days
after the B/I activation (Fig. 1D, top panel). While effector
CD4+ and CD8+ T cells were reduced after activation
(18% to 9% and 21% to 13%, respectively), memory
CD4+ and CD8+ T cells were increased (82% to 91% and
79% to 87%, respectively). Upon B/I activation, CD4+ T
cells showed a 6-fold increases of FoxP3 expression in
CD44+, CD62L+ phenotypes (CD44+: 2.6% to 15%;

Foxp3 expression following T cell activationFigure 1
Foxp3 expression following T cell activation. T cells were isolated from healthy volunteers and split into two groups. 
Control group remained unactivated and cultured in the presence of IL-2 for 3 days (A; top panel) and another group was acti-
vated with B/I for 16 h and cultured in the presence of IL-2 for 3 days (A; middle panel) or 6 days (A; bottom panel). Absolute 
numbers of CD4+ and CD8+ T cells on pooled samples were determined on days 0, 3, and 6 post-culture by flow cytometry 
analysis (B). Expression of FoxP3 and CD25 were determined in freshly isolated CD4+ T cells (day 0) and after a 3-day stimu-
lation with anti-CD3/CD28 Abs (C). Freshly isolated and B/I-activated T cells were subjected to flow cytometry to determine 
T cell phenotypes (D; top panel); Foxp3+ effector and memory T cells were determined in gated CD4+Foxp3+ cells or gated 
CD8+Foxp3+ cells (D; bottom panel). Representative data are shown from two donors in duplicate experiments.
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CD62L+: 2% to 12%). In addition, both CD4+ and CD8+
T cells showed FoxP3high expression following activation
compared to FoxP3low expression on day 0 (Fig. 1D, mid-
dle and bottom panels). All CD4+Foxp3+ T cells
expressed CD44 among which 80% also expressed CD62L
(Fig. 1D, middle panel, far right). These data show that
20% of CD4+Foxp3+ T cells are effector and 80% are
memory phenotypes. A similar phenotypic trend was
detected for CD8+Foxp3+ T cells, showing 100% CD44+
of which 67% were CD62L+ T cells (Fig. 1D, bottom
panel, far right). These results show that 33% of
CD8+Foxp3+ T cells are effector and 67% are memory
phenotypes. Data presented in Figs. 1A-D suggest that
increased expression of FoxP3high in effector T cells was
due to the cell differentiation rather than cell prolifera-
tion, because relative percent of CD44+CD62L- effector T
cells decreased after B/I activation. Similar mechanism
may exist in memory T cells because of the expression of
FoxP3high after activation compared to FoxP3low on day 0.

Activation-induced FoxP3 expression in CD4+ T cells fails 
to convey regulatory function in vitro
T cells were labeled with CFSE and stimulated with anti-
CD3 (1 ug/ml) and anti-CD28 (1 ug/ml) Abs in the pres-
ence or absence of the B/I-activated CD4+CD25+FoxP3+
T cells (2:1 and 20:1 responder:suppressor ratios) for 3
days. Flow cytometry analysis showed similar rates of pro-
liferation of gated CD8+ T cells in the absence or presence
of inducible FoxP3+ T cells (Fig. 2A, 60% vs. 61% and
65%). The CD3/CD28 activation also induced FoxP3
expression in responder CD4+ T cells. Gated
CD4+FpxP3+ T cells also showed 70-75% proliferation
upon activation (Fig. 2A). Analysis of T cell apoptosis
revealed similar rates of apoptosis in responder T cells in
the absence or presence of CD4+FoxP3+ T cells (Fig. 2B,
57% vs. 57 and 59%). Majority of the B/I-activated
CD4+FoxP3+ T cells (74-76%) were found to be apoptotic
during anti-CD3/CD28 activation in co-culture with
responder T cells.

Figure 2

T cell proliferation in the presence of inducible CD4+FoxP3+ T cellsFigure 2
T cell proliferation in the presence of inducible 
CD4+FoxP3+ T cells. To perform a co-culture suppres-
sion assay, responder T cells were labeled with CFSE and cul-
tured in the absence or presence of different ratios of 
inducible FoxP3+ T cells (20:1 and 2:1) for 3 days in the pres-
ence of anti-CD3/CD28 Abs. Gated CD8+ T cells showed 
CFSE dilution (A, left panel). Responder CD4+ T cells that 
expressed FoxP3 due to a 3-day activation were also gated 
and analyzed for CFSE dilution (A, right panel). Cells 
obtained from a co-culture suppression assay (A, left panel) 
were also stained for Annexin V in order to determine apop-
tosis in responder CD8+ T cells (B, left panel) and the B/I-
activated CD4+FoxP3+ T cells (B, right panel).
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Allogeneic activation of T cells during MLR induces Foxp3 
expression in CD4+CD25+ T cells associated with effector/
memory phenotype
We performed an 8-day allogenic MLR to determine
whether induction of Foxp3 expression in T cells was sta-
ble during MLR and whether such an induced Foxp3+
expression might inhibit T cell proliferation. Responder
and stimulator cells were obtained from different healthy
donors. Stimulator cells were irradiated (5000 rad) and
cultured with responder cells for 8 days in the presence of
10 M BrdU (BD Pharmingen). Cells were then stained
with relevant Abs and subjected to flow cytometry analy-
sis. As shown in Fig. 3A (top panel) 86% of CD4+CD25+

T cells and 93% of CD8+CD25+ T cells showed BrdU
incorporation as a result of cell proliferation. No prolifer-
ation was detected in the responder or stimulator cells
alone (data not shown). Such allogenic proliferation took
place in the presence of an activation-induced Foxp3
expression in CD4+ T cells such that 8% of CD4+ T cells
were CD25+Foxp3+ (Fig. 3A, bottom panel).
CD8+CD25+ T cells, on the other hand, did not show sta-
ble expression of Foxp3. These results are consistent with
our observation in Fig. 1 showing that expression of
Foxp3 in CD4+ T cells is more stable than that in CD8+ T
cells 6-8 days following T cell activation. In previous
reports, suppressive assays in vitro were conducted in the

Foxp3 expression following allogeneic MLRFigure 3
Foxp3 expression following allogeneic MLR. Cells were analyzed by flow cytometry after an 8-day MLR. BrdU incorpora-
tion was determined on gated CD4+CD25+ or CD8+CD25+ T cells (A; top panel). Gated CD4+ or CD8+ T cells were ana-
lyzed for the detection of CD25+Foxp3+ cells (A; bottom panel). Gated CD4+ T cells (B; top panel) or CD8+ T cells (B; 
bottom panel) were analyzed for the expression of CD44, CD62L, Foxp3. The CD44+ and CD62L+ T cells were determined 
by gating on CD4+Foxp3+ or CD8+Foxp3+ T cells. Representative data are shown from two donors in duplicate experiments.
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presence of high ratios of CD4+CD25+ T cells (Tregs) to
responder cells, to determine the suppressive function on
T cell activation and proliferation. Such artificial increases
in the ratio of CD4+CD25+ T cells to responder cells
would reduce in vivo validity of the observation. The fre-
quency of CD4+CD25+Foxp3+ T cells induced during
MLR was 8% which is considered to be within the physi-
ologically relevant range as reported by other groups [21-
24]. Frequency of naturally occurring Tregs in mouse is
also around this range, yet having regulatory effects for the
inhibition of autoimmunity. If Foxp3 expressing CD4+ T
cells had any regulatory function, it should have inhibited
cell proliferation during the culture in vitro. Similar to B/I-
induced T cell activation, T cell phenotypes in a MLR
included CD44+ effector (16%) and CD44+CD62L+
memory T cells (84%) (Fig. 3B). Again, all CD4+Foxp3+ T
cells expressed CD44 among which 90% also expressed
CD62L (Fig. 2B). These data show that 10% of
CD4+Foxp3+ T cells are effector and 90% are memory
phenotypes. A similar phenotypic trend was detected for
CD8+Foxp3+ T cells, showing 100% CD44+ of which
76% were CD62L+ T cells. These results show that 24% of
CD8+Foxp3+ T cells are effector and 76% are memory
phenotypes. Lack of regulatory function in these Foxp3+ T
cells may be because of their effector/memory phenotype
since it has been reported that expression of Foxp3 in
human memory T cells resulted in diminished suppressor
activity [25]. In addition, Treg type 1 (Tr1) cells confer
suppressor function in the absence of FoxP3 expression
[26]. Given the role of Foxp3 as master regulator of Treg
lineage commitment and maintenance in mouse [27], it
does not seem to have such bona fide regulatory function
for Treg lineage commitment in human T cells.

Conclusion
In conclusion, the present study shows that Foxp3 expres-
sion is not a reliable marker for human Tregs. T cell acti-
vation, CD4+ T cells in particular, is associated with the
expression of Foxp3 in effector/memory T cells without
detectable regulatory function when present at physiolog-
ically relevant ratios.
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