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Abstract

Background: mRNA profiling has become an important tool for developing and validating
prognostic assays predictive of disease treatment response and outcome. Archives of annotated
formalin-fixed paraffin-embedded tissues (FFPET) are available as a potential source for
retrospective studies. Methods are needed to profile these FFPET samples that are linked to clinical
outcomes to generate hypotheses that could lead to classifiers for clinical applications.

Methods: We developed a two-color microarray-based profiling platform by optimizing target
amplification, experimental design, quality control, and microarray content and applied it to the
profiling of FFPET samples. We profiled a set of 50 fresh frozen (FF) breast cancer samples and
assigned class labels according to the signature and method by van 't Veer et al [1] and then profiled
50 matched FFPET samples to test how well the FFPET data predicted the class labels. We also
compared the sorting power of classifiers derived from FFPET sample data with classifiers derived
from data from matched FF samples.

Results: When a classifier developed with matched FF samples was applied to FFPET data to assign
samples to either "good" or "poor" outcome class labels, the classifier was able to assign the FFPET
samples to the correct class label with an average error rate = 12% to 16%, respectively, with an
Odds Ratio = 36.4 to 60.4, respectively. A classifier derived from FFPET data was able to predict
the class label in FFPET samples (leave-one-out cross validation) with an error rate of ~14% (p-
value = 3.7 x 107). When applied to the matched FF samples, the FFPET-derived classifier was able
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to assign FF samples to the correct class labels with 96% accuracy. The single misclassification was
attributed to poor sample quality, as measured by qPCR on total RNA, which emphasizes the need

for sample quality control before profiling.

Conclusion: We have optimized a platform for expression analyses and have shown that our
profiling platform is able to accurately sort FFPET samples into class labels derived from FF
classifiers. Furthermore, using this platform, a classifier derived from FFPET samples can reliably
provide the same sorting power as a classifier derived from matched FF samples. We anticipate that
these techniques could be used to generate hypotheses from archives of FFPET samples, and thus
may lead to prognostic and predictive classifiers that could be used, for example, to segregate
patients for clinical trial enrollment or to guide patient treatment.

Background

While genome-wide mRNA profiling with microarrays
has been widely used with fresh frozen (FF) total RNA,
few discovery platforms have reliably been applied to for-
malin-fixed paraffin-embedded tissue (FFPET) samples.
Some approaches that assay fewer transcripts (e.g., DASL
[Mlumina, San Diego, CA] or HTG [Tucson, AZ]) are
promising, but do not allow for unbiased discovery of
diagnostic signatures, which requires a genome-wide pro-
filing method [2,3]. For example, the DASL assay has been
modified to accommodate several thousand genes and
was used to derive an expression signature correlated with
survival in hepatocellular carcinoma patients [4]. While
such sub-genomic platforms may be useful when the tar-
get genes are known, applications such as the discovery of
biomarkers and the development of de novo classifiers spe-
cifically benefit from a more comprehensive genomic pro-
file. Standard extraction and amplification microarray
protocols (e.g., the Arcturus Paradise Reagent System [5]
and NuGEN's Ovation FFPE method [6]) and array plat-
forms (Affymetrix Human X3P arrays [7,8]) have been
adapted to handle FFPET samples, but typically generate
detectable present call rates only on the order of 30% [7-
9], and if the block is more than 5 years old, present call
rates can drop below 20% [10]. While successful whole-
genome profiling from FFPE has recently been shown
with one color Affymetrix arrays [11], similar approaches
for two-color arrays have not yet been developed.

The importance of expression-based classification of
human tumors to predict treatment response or disease
outcome is highlighted by recent publications [9,12].
van't Veer et al [1] were one of the first to apply microarray
methods for profiling a group of young, lymph node neg-
ative patients with primary invasive breast carcinoma with
known treatment outcome. Using the initial profiling data
as training and test sets [1,13], a 70-gene prognostic signa-
ture was identified to predict disease progression for early-
stage estrogen receptor-positive and negative tumor
patients. The test was subsequently developed into the
first DNA microarray-based expression in vitro diagnostic
test (MammaPrint™) cleared by the FDA for actionable

decisions in the risk-management of disease. However,
these landmark analyses and the subsequent tests have
two disadvantages - they require as much as 5 pg total
RNA and they require FF tumor samples [14].

In the clinical diagnosis of patients with cancer, it is rou-
tine to obtain a FFPET sample, but generally rare to obtain
a FF sample. Consequently, the requirement of FF samples
has limited expression profiling to patients treated at spe-
cialized research centers. The ability to use FFPET samples
would make this technology available for virtually all can-
cer patients both in the context of retrospective analyses of
banked samples and clinical trials seeking to identify
molecular tumor characteristics associated with patient
outcomes to treatment. Being able to do such analyses
from FFPET samples would simplify sample biopsy collec-
tion requirements and enable retrospective studies to
develop and test hypotheses for prognostic classifiers for
other cancers. As additional tests are developed and as
molecular profiling methods mature, health-care provid-
ers will come to rely more on such classifiers in the risk-
management of disease.

In this report, our primary focus was to develop sample
processing and classification methods with archived
FFPET samples for hypothesis generation. To this end, we
optimized a microarray platform and applied it to the pro-
filing of FFPET samples. We demonstrated that FFPET
samples can be accurately assigned to class labels using a
classifier developed from fresh frozen samples, and we
show that a classifier derived from FFPET samples that
performs well in classifying FF samples can be developed.

Methods

Human tissue samples and reagents

Matched pairs of Fresh Frozen and Formalin-Fixed Paraf-
fin-Embedded breast cancer samples were obtained from
Genomics Collaborative (Bioserve, Beltsville, MD) and
Cytomyx (Lexington, MA). Colon carcinoma tissues were
also from Cytomyx. RNA extraction reagents for FFPET
samples were obtained from Epicentre Biotechnologies
(Madison, WI). Jurkat total RNA and amplification rea-
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gents used in this study were from Ambion (Austin, TX).
Matched FF and FFPET liver and muscle RNAs were
obtained from MPI Research (Mattawan, MI). The Univer-
sal Human Reference (UHR) total RNA was obtained
from Stratagene (La Jolla, CA). Cy-dye reagents were from
GE Health sciences (Piscataway, NJ). Quantitative PCR
reagents were purchased from Applied Biosystems (now
Life Technologies, Foster City, CA). Microarrays were
designed at Rosetta and manufactured by Agilent Technol-
ogies (Santa Clara, CA).

RNA extraction from matched FF and FFPET samples

Total RNA from FF samples was extracted by the vendor
(Bioserve, Beltsville, MD) immediately prior to shipment.
For FFPET samples, the extraction protocol is adopted
from MasterPure RNA Purification kit (Epicentre Biotech-
nologies, Madison, WI). Briefly, three 10 pm sections were
subjected to paraffin solubilization with xylene. Tissue
was pelleted from solution by centrifugation and residual
xylene was removed by two ethanol rinses. The tissue pel-
lets were then air dried and digested overnight in a lysis
buffer with Proteinase K. Digested protein and other cel-
lular components were removed by ammonium acetate
precipitation and centrifugation followed by a DNase I
treatment of the resulting supernatant. A second ammo-
nium acetate precipitation to remove any residual protein
was then performed prior to ethanol precipitation and
nuclease-free water rehydration of the purified total RNA.

Quantitative PCR for Total RNA and cRNA QC

For measuring the relative quality of total RNA from
FFPET samples, primer pairs for two house-keeping genes,
GAPDH and ribosomal protein L13a, were used to esti-
mate the integrity of the total RNA (Table 1). For measur-
ing the relative abundance of transcripts in the amplified
cRNA, the primer pair for gene amyloid beta precursor
protein binding protein 1 (APPBP1) was used. Total RNA
or cRNA (100 ng or 50 ng per reaction, respectively) from
FF Jurkat were used as a control for the corresponding

Table I: List of qPCR primers
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qPCR experiments. Besides the specific primers, all rea-
gents for qPCR assay were obtained from Invitrogen
(Carlsbad, CA). The qPCR experiments were conducted
with the ABI 7900HT according to the recommended pro-
tocol for the SYBR green detection. The experimental con-
dition for each primer pair is optimized with good quality
FF samples before applying to FFPET samples. Following
the reverse transcription reaction, each cDNA sample was
split into 4 wells for performing PCR reaction and meas-
urement. The qPCR result was processed with the associ-
ated SDS software and the data was reported as raw Ct for
each sample.

RNA target preparation (cRNA amplification)

The RNA target was amplified by modifying an industry-
standard amplification protocol (Ambion, Austin, TX).
The original protocol employs oligo-dT priming for first
strand ¢cDNA synthesis, in which an oligo-dT primer
incorporates a T7 RNA polymerase promoter, necessary
for subsequent in vitro transcription of RNA (Supplemen-
tary Figure 1). Besides the modification of the procedure
for a semi-automated operation, the initial total RNA
input for the first round amplification was optimized at
100 ng for both fresh frozen and FFPET RNA samples; the
input of the second round amplification was normalized
to 500 ng of the first round cRNA product per reaction. We
found it necessary to keep reaction conditions for the sec-
ond round amplification identical for all samples: 500 ng
of each cRNA product from the first round was dried
down and resuspended in a uniform volume. To ensure
the effective synthesis of the second strand cDNA synthe-
sis in the second round of amplification, RNase H was
added into the reaction mixture to degrade cRNA in the
RNA-DNA hybrid before the addition of the oligo-dT T7
RNA polymerase primer. The cDNA and cRNA purifica-
tion were performed with the Agencourt RNAClean sys-
tem (Agencourt, Beverly, MA,) and RNeasy (Qiagen,
Valencia, CA) methods. The cRNA and cDNA concentra-
tion were measured by the standard UV absorption

Gene Name Primer Description Sequence

Ribosomal protein L13a RPL13a Forward CACTTGGGGACAGCATGAG
RPL13a Reverse GTAACCCCTTGGTTGTGCAT

Glyceraldehyde-3 Phosphate Dehydrogenase GAPDH Forward AGTCCCTGCCACACTCAGTC
GAPDH Reverse CTGTGAGGAGGGGAGATTCA

Amyloid beta precursor protein binding protein |

APPBP| Forward

TCTTCGAGTGGTAAGATGTCGATCC

APPBPI Reverse

ACCCGAAGGCAATTACAGTTTCAAT
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a) Dose response curve showing cRNA yield from the first round RT-IVT amplification as a function of total
RNA input for Jurkat total RNA sample from FF or for a colon carcinoma RNA derived from FFPET. b) Plot
showing the distribution of cRNA yield from the first and second round RT-IVT amplifications from a representative set of
FFPET samples. First round and second round yields are shown as black diamonds and blue squares, respectively. The first
round RT input is 100 ng and second round RT input is 500 ng. c) One-dimensional heatmap of hybridization experiments
starting with the same total RNA but with different mass input, showing that both the first and second round can tolerate
more than 2-fold of sample mass imbalance. The left panel bar graph shows the number of significant signatures, and the right

panel heatmap shows total number of genes selected for these analysis.
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method with a microplate reader (SpectraMax 190,
Molecular Devices, Sunnyvale, California).

Target cRNA labelling and hybridization

Five micrograms of cRNA from each experimental sample
were dried down and labelled with Cy3 dyes (Invitrogen),
and co-purified with the same mass of cRNA from the
UHR pool labelled with Cy5. Hybridizations were done in
fluor-reversed pairs as described [15]. Labeling, microar-
ray hybridizations, scanning of the slides, and image
processing were described in Marton et al [15].

Re-ratio method

Since we are mostly interested in ratio profiles between
FFPET samples, we developed methods to recover such
information by re-ratioing the ratio profiles derived from
each array experiment between the FFPET samples and the
corresponding hybridizations with UHR as the reference.
Re-ratio of the ratio profiles effectively cancels out the
UHR profile while accounting for dye labelling biases and
leaving only the FFPET profiles of interest. In other words,
given a typical configuration in which the common refer-
ence (C) exists in two array-based ratio profiles, if hybrid-
ization 1 consists of the ratio C versus A (A/C), and
hybridization 2 consists of the ratio C versus B (B/C), re-
ratioing of A/C and B/C creates a new ratio experiment B
versus A (A/B).

Clustering, statistical analysis and classification methods

Gene clustering was performed independently by using an
agglomerative hierarchical algorithm [16]. Pairwise simi-
larity metrics among genes are calculated on the basis of
expression ratio measurements across all experimental
samples. A detailed procedure and calculation was
described in van 't Veer et al [1]. We defined the Odds
Ratio (OR) for this study as the ratio of odds of develop-
ing distant metastases within 5 years for a patient in the
referenced study with a tumor characterized by a poor
prognosis signature to the odds of developing metastases
without this signature (2 x 2 Table). The development of
the FFPET-based classifier using supervised classification
was performed with following three steps: 1) selection of
discriminating candidate genes by their correlation with
the category; 2) determination of the optimal set of

Table 2: Probe content for FFPET 44 k v1.0 development array
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reporter genes using a leaving-one-out cross validation
procedure; 3) prediction of class label (or prognosis or
diagnostic) based on the gene expression of the optimal
set of reporter genes. The significance of the classifier was
estimated by the OR and the 95% confidence interval. The
p-value associated with the OR was calculated by Fisher's
exact test. More detailed of statistical analysis and classifi-
cation were reported by van 't Veer et al [1].

Novel DNA microarray probe design

Human 44 k v1.1 array http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GPL4372 and the HumFFPET 44 k
v2.0 array were the default arrays for profiling FF samples
and FFPET samples, respectively. The design of the
HumFFPET 44 kv2.0 array involved a development array,
HumFFPET 44 k v1.0, which itself was based on the
Human 44 kv1.1 array. The development array (HumFF-
PET 44 k v1.0) was initially designed to evaluate several
oligonucleotide selection criteria rule sets (see Table 2)
and 3' distance as potential factors for modifying the
probe design to improve FFPET profiling. The final oligo-
nucleotide selection criteria parameters for the HumFF-
PET 44 k v2.0 array were derived from hybridization data
on the HumFFPET 44 k v1.0 development array. The
unique oligonucleotide selection criteria for the HumFF-
PET 44 k v2.0 array include modifications to the oligonu-
cleotide set design (OSD) for probe 3' distance, base
composition, and increased leniency with the cross
hybridization filter.

For each probe, the potential to cross-hybridize was calcu-
lated by comparing the probe sequence against the
human transcriptome using sequence similarity and the
'BLAST' algorithm. The binding affinities between the
probe and the transcript sequences identified by BLAST
were computed in terms of dG (delta G). The cross-
hybridization score reflects the smallest difference
between the dG value of self binding and the largest dG
value of the probe binding to any other molecular species.
However, despite making the cross hybridization filters
more lenient, we noticed that the cross hybridization can
only be minimized since certain probes still contain rela-
tively higher GC content compared to the majority of
probes on the array in order to meet the 3' distance

OSD Name # of Probes OSD Parameter

OSD 0 3,996 Current default OSD

OsD | 3,938 Current default OSD with increased weighting towards 3' end
OosD 2 4,003 Current default OSD weighted towards 100 nt from 3' end
OSD 3* 29,931 Tile at 30 nt up to 400 nt from 3' end

OsD 4 4,003 Tiled house keeping probes to 1000 nt from 3' end

Array represents approximately 4,000 unique genes with probes for OSD0 — OSD3. *OSD 3 was tiled, but any probes obviously failing standard
oligonucleotide selection criteria for repeat sequences, bad base composition, and cross-hybridization were removed.
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requirement. Selection of the genes for the HumFFPET 44
k v2.0 array was kept as close as possible to those on the
current default Human 44 k v1.1 array. The human 44 k
v1.1 and HumFFPET v2.0 array share 20,327 probes in
common while the HumFFPET v2.0 array has 19,231
unique probes that are specifically designed for FFPET
samples. Documentation for the HumFFPET 44 k v2.0
array will be available in the Gene Expression Omnibus
(GEO) website in support of this publication, and the
HumFFPET 44 k v2.0 array pattern will be publicly avail-
able through the Agilent eArray ordering system.

Results and Discussion

Formalin-preserved samples present multiple challenges
to whole-genome RNA profiling methodologies. To over-
come the extensive degradation, contaminants from the
formalin treatment and limited RNA mass availability, we
sought to improve 1) robustness of the amplification pro-
tocol, 2) quality control assessment of FFPET samples, 3)
microarray performance through probe selection and 4)
experimental design by validating the use of UHR as the
reference channel in two-color hybridization experi-
ments.

Improvement of the robustness of the RT-IVT
amplification protocol

Linear dose-response

We started with a commercially available two-round RT-
IVT protocol for the target cRNA preparation for non-
FFPET samples (Additional file 1) but observed it was not
sufficiently robust in our hands to be adopted as a high-
throughput, automated protocol. We reasoned it was
essential that the protocol have properties such as a linear
input-dose response curve and be robust to mass imbal-
ances and that these properties may be dependent on
sample mass input. We determined the optimal mass
input amounts in both the first and second round RT reac-
tions that provided both a linear dose-response and insen-
sitivity to mass input imbalances. The relationship
between the input amount and yield for both FF (Jurkat
cell line) and FFPET samples (colon carcinoma) is shown
in Figure 1a. The cRNA yields for FF and FFPET are directly
proportional to the corresponding total RNA input with a
good linear dose-dependence curve; we note that the
cRNA yield from the FF total RNA is significantly higher
(Figure 1a). It is our experience that a linear relationship
between total RNA input and cRNA output is necessary to
ensure representative amplification and to avoid artifacts
or false positive gene expression signatures on different
microarray platforms. Figure 1b shows the cRNA yield dis-
tribution of a set of 20 breast carcinoma FFPET sample.
The input for the first round amplification was 100 ng
total RNA, which yielded 1-2 ug cRNA; the input for the
second round was 500 ng, which yielded 60-115 pg
cRNA. In the first round amplification, the input total

http://www.translational-medicine.com/content/7/1/65

RNA only contains a small fraction of amplifiable RNA
(mRNA), usually less than 1% for FFPET samples. How-
ever, the input of 500 ng cRNA for the second round is
derived from oligo dT-based amplification from the first
round, and all cRNA molecules should contain the spe-
cific polyT tails for further amplification. Essentially, all
cRNA molecules with polyT tails in the second round are
expected to be amplifiable following the conversion into
T7-promoter-containing double strand ¢cDNA. Thus, we
attribute the lower yields in the first round to the lower
amount of amplifiable mRNA relative to the second
round amplification. This is consistent with the prediction
that cRNA input used in the second round contains a
greater percentage of amplifiable RNA than the total RNA
used in the first round amplification.

Robustness to sample mass imbalances

The rationale for using Jurkat RNA is to model the toler-
ance of the platform to sample mass variations in terms of
mRNA content when the expression data of experimental
samples are presented as ratios. Each microarray platform
has different degrees of tolerance to sample mass imbal-
ance, which can result from either operational variations
during the sample preparation process, or from the varia-
tion of amplifiable mRNA content in the samples. For
example, different FFPET samples contain very different
amounts of amplifiable mRNA even when measured total
RNA concentrations are the same (data not shown). We
used a mass imbalance of intact Jurkat RNA to assess the
potential impact of degradation and chemical modifica-
tions that would vary across FFPET samples. While evalu-
ating imbalanced FFPET samples directly was more
appealing, we reasoned that the primary impact from the
degradation and chemical modifications of the fixation
and embedding procedures would be loss of amplifiable
mRNA, which the Jurkat RNA experiment adequately
approximates.

To quantify the degree to which the amplification steps
are susceptible to mass imbalance, we performed titra-
tions of input mass for the first round amplification with
25 to 200 ng of Jurkat total RNA sample to model the
impact of mass imbalance on microarrray data quality.
Following the first round amplification using different
mass inputs, a fixed amount (500 ng) of cRNA derived
from each input mass titration in the first round amplifi-
cation was used for the second round amplification. The
resulting cRNA from the second round amplification was
labelled and hybridized in fluor-reversed pair that was
formed to reflect the initial first round mass imbalance
between the reference input of 100 ng and the other mass
inputs which were originally titrated in the first round
amplification. The same experiments were done to titrate
input mass for the second round amplification by holding
the mass of the first round constant at 100 ng and varying
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the second round from 250 to 2,000 ng, with the input of
500 ng used as the baseline to form the reference for the
different fluor-reversed pairs.

In these mass imbalance experiments, hybridizations of
fluor-reversed pairs that are formed between different
mass input are still defined as 'same-vs-same' hybridiza-
tions since the exactly same mRNA-containing total RNA
are used in the amplification whether the input varied in
the first or the second round. If there is no amplification
bias resulting from the initial mass inputs, either for the
first round or the second round, then these same-vs-same
hybridizations should have shown no signatures of differ-
ential expression beyond background level. Same-vs-same
hybridization data are presented as a heat map in Figure
1c, which shows the second round amplification is less
susceptible to spurious signatures resulting from mass
imbalance than the first round. Fewer than 500 differen-
tial signature genes were detected in the hybridization
with up to 2-fold mass imbalance for the first round titra-
tion experiment and below 200 for the second round,
which corresponds to ~1% and 0.5%, respectively, of false
positive rate for the microarray hybridization with 44,000
gene probes. These false positive rates are within the back-
ground level normally predicted and defined as the pass
and fail metrics for different microarray platforms
(Affymetrix and Agilent). Based on the mass imbalance
experiment and our operational requirement of the high-
throughput amplification procedures, the optimal sample
mass inputs for the first and second round amplification
were determined to be 100 and 500 ng respectively. The
selected inputs have a high tolerance to unintended mass
imbalances either up or down from the intended input,
which serves as a buffer against the potential sample qual-
ity variation inherent in FFPET sample sets and the opera-
tional variation during the amplification process.

Use of quantitative PCR for assessing the relative quality
of FFPET total RNA and amplified cRNA

The extent and nature of RNA degradation in FFPET
blocks depends on FFPET preparation method, length of
storage and storage conditions [9,17,18]. While the RNA
extraction procedure can be optimized to increase RNA
yield (data not shown), most FFPET blocks were not pre-
pared with RNA quality preservation in mind. Even if suf-
ficient amounts of total RNA can be recovered from
poorly prepared and stored FFPET blocks, one cannot be
certain the microarray experimental results derived there-
from will yield biologically meaningful data, even after
applying bioinformatic and data processing approaches
to compensate for the effects of degradation. For FF sam-
ples, the quality the total RNA can be assessed by the
integrity of the 18S to 28S ribosomal RNAs (measured by
abundance ratio) or the RNA Integrity Number (RIN)
[19]. It is not feasible to employ similar methods for
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assessing the quality of FFPET-derived total RNA samples.
Thus, there is a need to measure the relative total RNA
quality of FFPET samples and to determine whether data
are impacted by poor total RNA quality or by the proce-
dures used to store or process the samples. In particular,
we sought to determine whether the quality of the micro-
array hybridization data for a given sample could be pre-
dicted from the integrity of the starting total RNA or the
amplified cRNA prior to microarray hybridization.

First, we noted that mean log ratio of some samples dis-
played a dependence on the distance of the probe to the
3' end of the message. We reasoned that a non-zero slope
of this plot indicates a bias in the data quality (i.e., a data
artifact), and that the 3' slope of mean log ratio could be
used as a key quality metric for microarray hybridization.
In fact, the 3' slope metric is analogous to the RNA Degra-
dation metric [20] on Affymetrix microarrays, which was
originally developed to measure bias in array data due to
degradation of total RNA. In an ideal experiment, number
of signatures should not correlate to 3' slope. From a plot
of the slope vs Ct, we determined the region of no corre-
lation to Ct is around a slope of 0.15; therefore, we use
0.15 as the threshold for 3' bias. We suspect the 3' slope
metric is a measure of variation in cRNA length intro-
duced by amplification bias or RNA quality. The variation
in cRNA length is likely to be induced during first strand
cDNA synthesis and likely can be applied to any mRNA
amplification method utilizing reverse transcription.

Then, we developed a qPCR-based assay to measure the
relative abundance of transcripts in the total RNA and the
amplified cRNA to quantify the relative quality of FFPET-
derived total RNA as a way to relate the RNA quality to the
subsequent microarray hybridization quality. Then, as we
had done with FF samples, we started by selecting a set of
FFPET samples that had been previously profiled and that
cover a range of microarray data quality, and then assayed
several housekeeping transcripts by qPCR. Figure 2a
shows the correlation of abundance (mean Ct) of a house-
keeping gene, GAPDH, in total RNA versus the 3' slope of
mean log ratio of all genes from FFPET breast cancer tis-
sues. To measure the relative abundance of transcripts in
the amplified cRNA, we selected a set of cRNAs that have
been previously profiled with known data. The strong cor-
relation of signatures to the Ct counts of amyloid beta pre-
cursor protein binding protein (APPBP1) indicates bias in
cRNA specificity. The higher is the Ct counts the lower is
the specificity. It is difficult to determine a sensitive uni-
versal threshold because abundance of transcripts
depends on the tissue examined. Nevertheless, we estab-
lished that samples with APPBP1 Ct > 29 should not be
used in downstream analysis because majority of cRNA is
likely to be non-specific material. As shown in Figure 2b,
the relative abundance (mean Ct) of mRNA for APPBP1 is
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a) The mean Ct of the housekeeping gene (GAPDH) is correlated with the 3' slope of mean log ratio of the sig-
natures from FFPET muscle issues. The 3' slope of mean log ratio is one of the key quality metrics for microarray hybrid-
ization, which is the mean expression ratio of all genes as a function of distance to the 3' end of the transcript. Good quality
samples that show no amplification bias will have a 3' slope of zero. b) One-dimensional heatmap of FFPET hybridization exper-
iments starting with cRNAs of different qualities sorted by Ct count of the APPBPI. The Ct count for gene APPBPI is a meas-
ure of the relative abundance of 'specific transcript' (amplifiable RNA) in the amplified cRNA for each sample. A distinctive
gene expression pattern is correlated with the Ct count of cRNA for each individual hybridization. At p-value of 0.05, 4,500
genes are selected in this plot. The top panel shows the relative GC content for the corresponding signatures. c) Histogram
showing the number of genes in each correlation between the mean Ct count of the amplified cRNA and the detected expres-
sion pattern. In an ideal hybridization, there should be no correlation between the Ct count of the APPBPI for the amplified

cRNA and the detected expression pattern, either positive or negat
Ct counts for all genes detected on the FFPET array indicates thata

ive. However, the histogram of correlation coefficient with
significant fraction of genes is correlated or anti-correlated

with the Ct count of the APPBP| for the amplified cRNA, suggesting that the sample quality rather than the biology of FFPET

samples dictates the correlation.
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correlated to the expression pattern of the selected sam-
ples. We noticed that there is a large fraction of signatures
either positively or negatively correlated with Ct count of
the corresponding cRNA (Figure 2b). It is also important
to note that these signatures are also enriched for the C
content of the array probe as observed in the upper por-
tion of Figure 2b. The lack of specificity of these C-rich
probes reinforces the conclusion that these signatures are
spurious regulations. Furthermore, the skewed distribu-
tion of ratio correlation of signature genes with Ct counts,
along with the enrichment for C content in the correlated
array probes, indicates that the sample quality rather than
biology caused the skewed distribution of ratio correla-
tion (Figure 2c).

In summary, the hybridization data of a sample of ideal
quality should show no correlation between the Ct count
of the total RNA or the amplified cRNA and the detected
expression pattern, either positive or negative. Since the
measured Ct count from the total RNA and amplified
cRNA correlate with the quality of microarray hybridiza-
tion (Figure 2), the qPCR method can be utilized as a cost-
and time-effective manner to assess the relative quality of
total RNA and cRNA for FFPET microarray assays. It
should be noted that measured Ct count in terms of sam-
ple quality will be contextual not only on the basal expres-
sion of the transcripts in the sample type of interest, but
also within the experimental FFPET sample set. Our
approach of estimating FFPET sample quality using a
qPCR method and the method's effectiveness at predict-
ing array performance (at either total RNA and cRNA lev-
els) improves our confidence in the data quality of the
FFPET profile.

Development and optimization of an FFPET array

Standard microarrays with probes approximately 500
nucleotides or greater from the 3' end have been found to
be ill-suited for FFPET profiling. Therefore, we designed
an array with probe content more suited to nature of
FFPET samples and less susceptible to cross-hybridization
by optimizing probe distance to the 3' end of the tran-
script, the probe base composition and the OSD cross-
hybridization filter. While we had preliminary success at
obtaining gene expression data from FFPET samples on a
44 K array (Human 44 K) designed for FF samples, the raw
intensity of signals measured on the array drops off more
precipitously for FFPET samples than FF samples as the
probes' distance from the 3' end is increased. This is due
to the extensive degradation of total RNA and the use of 3'
poly-A priming amplification approach. One way to over-
come the reduced intensity of hybridizations with cRNA
from the 3' poly-A priming method is to optimize the
probe content and composition on the array to reflect the
proximity of amplified cRNA sequence of each transcript
toits 3' end from degraded FFPET samples. To this end, we

http://www.translational-medicine.com/content/7/1/65

designed an array specifically suited to profiling FFPET
samples with probe sequences within the first 400 nucle-
otides of the 3' end of each transcript (Figure 3).

To evaluate the performance of the new FFPET array
(HumFFPET 44 k 2.0), a set of matched FF and FFPET liver
and muscle samples were used to measure the sensitivity
and specificity of the HumFFPET 44 k 2.0 array in compar-
ison with our standard Human 44 k array (see methods
for details). To compare the overall performance of the
FFPET and standard array designs, we used a ROC curve
analysis [21] to show that the FF samples perform almost
identically on either array; on the other hand, the FFPET
samples perform significantly better on the HumFFPET 44
k 2.0 array than on the Human 44 k array in terms of sen-
sitivity and specificity (Figure 4). These data indicate that
the HumFFPET 44 k 2.0 array could significantly improve
FFPET profiling with a minimal impact on FF RNA profil-
ing.

Using the HumFFPET 44 k 2.0 array with a set of FF and
FFPET samples, we found that the measured expression
ratio correlation between FF and FFPET samples is also
improved on the HumFFPET 44 k 2.0 array (r = 0.80) over
the Human 44 k array (r = 0.70, Additional file 2), which
compared favorably to correlation observed by others
[11]. While the performance of FFPET RNA profiling
would not be expected to match that from FF samples, the
correlation between matched FFPET and FF samples can
be used as a way to optimize an FFPET profiling platform
(including microarray and quantitative PCR). Our results
suggest that the optimization of probe design on HumFF-

@
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memm=  Human 44k 1.1
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Figure 3

Percentage of probes as a function of distance from
the 3' end of a transcript to the 3' end of the probe
for the HumFFPET 44 k 2.0 and the standard Human
44 k vl.l arrays. Note that over 95% of probes on HumFF-
PET v2.0 are within 200 bases to each transcript 3' end.
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solid red line) and Human 44 k v1.0 (solid blue line)

(

tivity and specificity of Hum FFPET 44 k and Human 44 k microarrays with

cRNA generated from FF and FFPET samples. The ROC curves demonstrated the sensitivity and specificity of microar-

ray hybridizations with cRNAs from FF samples on Hum FFPET 44 k v2.0

ROC curve analysis showing sens

and cRNAs from FFPET samples on Hum FFPET 44 k v2.0 (dashed red line) and Human 44 k v1.0 (dashed blue line). The

number of false positives on the x

the number of pos-

Each ROC curve was gener-

’

-axis indicated the specificity (data derived from liver versus liver arrays);

).

itive on the y-axis indicated the sensitivity (data derived from liver versus muscle experiments

ated with data from one pair of liver versus liver arrays against data from one pair of liver versus liver arrays, and one

representative ROC curve of three plots was shown for each method.

-color array platform has the potential

samples in the two

PET 44 k 2.0 array could improve overall performance of

the platform for the profiling of FFPET samples.

for increased consistency and reduced susceptibility to

protocol variation [15]. The fluor

reversed hybridization

is performed to minimize dye bias when two samples are

Determination of the Optimal Reference Sample for

FFPET Profiling

labelled with different dyes. Initially, we focused on self-

reference pools because previous studies [21] clearly

An experiment on the Agilent two-color microarray plat-

showed that for optimal microarray performance, the ref-

form requires the pairing of differentially-labelled experi-
mental and reference samples. Frequently, samples are

hybridized to two separate slides in fluor-reversed pairs.

ples as possible (i.e., a self-reference pool). However, such
self-reference pools present several challenges, including

erence pool should be as similar to the experimental sam-

The competitive hybridization of differentially labelled
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that they require twice as much sample and that poor
quality samples in the pool can skew the expression data
and create data artifacts.

To obviate the need to generate a population-specific ref-
erence pool, we evaluated the microarray data perform-
ance of a commercially available and well-defined RNA
sample (the Universal Human Reference; UHR) versus a
FFPET-based self-reference pool. UHR RNA is composed
of total RNA from 10 human cell lines and has been used
widely as a reference in gene-profiling experiments,
microarray platform evaluations, and cross-platform com-
parisons [22]. Using UHR as a reference allows for a con-
trolled pool that can be leveraged across large studies
while halving the mass requirements for samples which
would have made up a self-reference pool. To effectively
compare UHR with a self-reference pool control, we
hybridized labelled cRNAs from FFPET breast tumors as
the experimental channel either against UHR or against a
10-member self-reference FFPET pool as the reference
channel. Results were subjected to two-dimensional clus-
tering, and as shown in Figure 5, all ten samples paired
with the UHR reference co-clustered with the experiments
using the self-reference pool as the reference channel.
With the re-ratio method, it is possible to exclude the
effect of UHR and compare the FFPET samples of interest
in the corresponding hybridizations with UHR as a com-
mon reference. Re-ratio of the ratio profiles effectively
cancels out the effect of UHR profile, and leaving only the
FFPET profiles of interest. Thus, the data indicate that one
can generate the same sorting results when using UHR as
when using a self-reference pool. Although differentially
degraded samples can adversely impact pool perform-
ance, in this case, all 10 members of self-reference FFPET
pool were assessed with the developed qPCR method and
additionally were known to be good quality FFPET sam-
ples from previous microarray hybridizations. In general
practice, it would be difficult to know the FFPET sample
quality without the qPCR step. Overall, we decided to pro-
ceed with UHR as the reference because it provided several
logistic advantages and did not have a negative impact on
the final microarray results.

Before applying the two-color microarray platform for
classification, we validated the optimized platform meas-
uring the correlation of gene expression profiles from the
matched fresh frozen and FFPET tumor samples. As
shown in Figure 6, there is an excellent correlation of
measured differential expression ratio of breast and colon
cancers between fresh frozen and matched FFPET tumor
samples.

Is FFPET RNA Profiling of Sufficient Quality to Classify
Samples?

A number of papers have recently been published utiliz-
ing microarray technology to identify prognostic and

http://www.translational-medicine.com/content/7/1/65

diagnostic biomarkers as a tool to predict treatment
response or disease outcome [12,23]. Such patient seg-
mentation efforts have been successful using microarray
data of FF samples. Ideally, one would design a clinical
trial to address a specific hypothesis, then collect samples
and analyze outcome data for tumor signatures, with val-
idation performed in an independent cohort. While prog-
nostic classifiers of FFPET samples have been reported
[4,10,11,23,24], our aim was to determine whether the
improvements we describe enabled the generation of
hypotheses and classifiers that could be used in subse-
quent clinical trials. Therefore, we addressed two ques-
tions: 1) how will data from FFPET samples perform in
predicting class labels derived from FF samples; and 2)
how does the predictive power of a FFPET-derived classi-
fier compare to that of a classifier derived from FF sam-
ples?

Performance of FFPET samples in FF-derived classifiers

To answer the first question, we chose a well established
biomarker, the breast cancer prognostic signature identi-
fied by van 't Veer et al. [1]. In the van 't Veer's publication,
the authors developed a "good prognosis" template using
the average expression of the 70 prognostic genes of
patients with a good outcome, and then calculated a cor-
relation coefficient to each patient's expression profile to
derive a prognostic score. For the present study, we
obtained 50 matched pairs (FF and FFPET) of breast can-
cer samples and calculated the prognostic scores using the
methods and templates (both "good template" and "poor
template") of van 't Veer et al [1]. Class labels ("good
prognosis" and "poor prognosis") were assigned to each
of the 50 patients using the FF samples; we then tested
how well the FFPET data could match the FF sample class
labels (using the same method and templates). Since no
clinical or outcome data were available for these samples,
the present study does not allow for a direct validation of
the prognostic signatures (that is, this was not an objective
for this study).

Using the prognostic scores from 50 FF samples, we
assigned 25 "good prognosis" patients and 25 "poor prog-
nosis" patients according to their signature patterns. Fig-
ure 7 compares the prognostic scores from FFPET vs. the
scores from the FF samples for good and poor templates
separately. As one can see, the scores correlated quite well
(r = 0.88 and r = 0.81 for the good and poor prognosis
templates, respectively). Except for a few samples which
were flagged with poor RNA quality by the qPCR method
(Figure 7, red circles), a clear correlation of scores between
FFPET and FF samples is observed (Figure 7). When these
samples are removed from the analysis, the correlations
improve further. When predicting the class labels assigned
by the FF samples, the FFPET samples correlate accurately
except a few poor quality or boundary samples (for the
good template, OR = 36.4, 95% CI: 6.6-201.7, P-value of
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Two-dimensional hierarchical clustering of self-reference pool vs experiments and the universal reference pool
vs experiments. Ildentical set of cRNA from FFPET samples are hybridized in pairs with the self-reference pool of FFPET sam-
ples and the universal human reference samples. All hybridizations are co-clustered according to the identity of each individual
FFPET sample, regardless of references used in the two-color hybridizations.

Fisher's Exact Test: 1.6E-6, average error rate = 16%; with
the poor template, OR = 60.4, 95%CI: 10.0-364.4, P =
7.1E-8, and error rate = 12%). Similar to the correlation,
the error rate could be attributed to poor quality samples
flagged by qPCR. Thus, when the prognosis scores were
calculated based on the classifier developed previously
from patients who have shown good and poor treatment
labels, a clear correlation of scores between FFPET and FF
samples is observed (Figure 7).

Performance of classifiers derived from FFPET samples

To determine whether FFPET data is of sufficient quality
to discover a classifier, we used the samples divided into
"good" and "poor" classes by FF prognosis scores as train-
ing sets, and then developed and optimized a classifier
using the FFPET gene expression data by a leave-one-out
cross validation (LOOCYV, including re-selecting features)
process to select "prognostic" genes based only on FFPET
profiling data. The FFPET-derived classifier prediction
accuracy was then evaluated against the FF samples. As
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P-value < 0.01

Correlation (all dots) = 0.86
Correlation (signature) =  0.87
Detection limit="-1.5 N

FFPET Samples

Fresh Frozen Samples

Figure 6

Correlation of Differential Expression of Muscle and
Liver Cancer tissues Between FFPET and Matched
FF Samples. Genes correlated (signatures, either up- or
down-regulated relative to reference) are in red; genes
detected as signatures in FF but not FFPET samples are
green; genes detected as signatures in FFPET but not FF are
light blue; genes shown anti-correlation between FF and
FFPET samples are brown; genes unchanged are in dark blue.

shown in Figure 8 (top panel), the classifier has a LOOCV
error rate of ~14% (p-value = 3.7 x 107), with errors
mostly coming from poor quality samples flagged by
qPCR. If poor quality samples as indicated by qPCR are
excluded, the error rate will be 10% or less, mostly caused
by samples originally very close to the threshold. More
importantly, the classifier derived from the FFPET samples
is confirmed by the FF sample data (Figure 8 bottom
panel). The derived classifier, when applied to FF data, can
predict all the FF sample flags except one, providing
strong evidence that classifiers developed from FFPET
samples are functional.

Comments on the use of FFPET samples for personalized medicine
Enabling personalized medicine in the near future will
rely to a large extent on extracting data from well-anno-
tated archived samples for which the three-to-five year
outcome of the subject is known. We consider this
approach as a bridging strategy for patient stratification
and enrollment, during which time the hypotheses are
tested and confirmed. Part of this strategy includes inte-
grating FDA guidelines relating to retrospective sample
and data mining; key factors in this regard are (1) storage
conditions; (2) samples are representative of intended
use; (3) samples meet inclusion/exclusion criteria; and
(4) performance is comparable to that expected from a
prospective study [25]. The FDA has expressed reluctance
to accept retrospective data as support for a label that will

http://www.translational-medicine.com/content/7/1/65
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Correlation plots of prognosis scores for FF and
FFPET samples. Panel A shows the correlation of progno-
sis scores for FF and FFPET samples using a good prognosis
template; panel B shows the same data set using a poor prog-
nosis template. In each case, the correlation is high, despite
including samples that were observed to have cross-hybridi-
zation artifacts due to poor sample quality (red dots).

be used to make clinical decisions because the protocol
was not an integral part of development and may not
meet the agency's scientific standards for the assay [26].
Therefore, while we demonstrated the ability to develop
hypothesis-generating classifiers from FFPET samples
based on concordance with classifiers from FF samples,
we anticipate significant work remains to validate the
results.

Conclusion

We demonstrated the ability to derive gene expression-
based classifiers from FFPET data that sort patient samples
into class labels that recapitulates the sorting of FF sam-
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Figure 8

Two-dimensional hierarchical heatmaps showing classifier discovered from FFPET samples accurately pre-

dicts class labels in agreement with FF. Top panel: samples in FFPET are ranked by classifier score. Leave-one-out cross
validation error rate is ~14% (p-value of 3.7 x 10-7). Bottom panel: FF samples are clustered based on the "prognostic" genes
derived from FFPET. The clustering analysis can group all samples correctly except one. The right panel indicates the relative

truth as shown in Figure 7.

ples. The method involved the development of an opti-
mized microarray platform with two-round RT-IVT
amplification using 100 ng of total RNA input for the tar-
get preparation, a quantitative PCR method for assessing
the relative quality of FFPET samples and a custom micro-
array with content and probe features specifically opti-
mized for FFPET profiling. We found this microarray
platform reliably and reproducibly measured differential
gene expression of FFPET samples with a good correlation
to corresponding FF samples. FFPET samples were cor-

rectly assigned to class labels developed from FF-derived
classifiers. Although we cannot directly attribute the suc-
cess of the classifiers to the optimizations performed on
the profiling platform, further study with FFPET samples
also showed our platform is of sufficient quality to enable
hypothesis generation that could be validated with FF or
FFPET samples in controlled, well-designed clinical trials.
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