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Abstract

Methods: We examined gene expression profiles of tumor cells from 29 untreated patients with lung cancer (10
adenocarcinomas (AC), 10 squamous cell carcinomas (SCC), and 9 small cell lung cancer (SCLC)) in comparison to 5
samples of normal lung tissue (NT). The European and American methodological quality guidelines for microarray
experiments were followed, including the stipulated use of laser capture microdissection for separation and purification
of the lung cancer tumor cells from surrounding tissue.

Results: Based on differentially expressed genes, different lung cancer samples could be distinguished from each other
and from normal lung tissue using hierarchical clustering. Comparing AC, SCC and SCLC with NT, we found 205, 335
and 404 genes, respectively, that were at least 2-fold differentially expressed (estimated false discovery rate: < 2.6%).
Different lung cancer subtypes had distinct molecular phenotypes, which also reflected their biological characteristics.
Differentially expressed genes in human lung tumors which may be of relevance in the respective lung cancer subtypes
were corroborated by quantitative real-time PCR.

Genetic programming (GP) was performed to construct a classifier for distinguishing between AC, SCC, SCLC, and NT.
Forty genes, that could be used to correctly classify the tumor or NT samples, have been identified. In addition, all
samples from an independent test set of |3 further tumors (AC or SCC) were also correctly classified.

Conclusion: The data from this research identified potential candidate genes which could be used as the basis for the
development of diagnostic tools and lung tumor type-specific targeted therapies.
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Background

Lung cancer represents a heterogeneous group of diseases
in terms of their biology and the clinical course. The diag-
nosis and classification of lung cancers are primarily
based on the histological morphology and immunohisto-
logical methods for distinguishing between small cell
lung cancer (SCLC) and non-small cell lung cancer
(NSCLC) [1]. The molecular pathogenesis of lung cancer,
as far as it has been deciphered, consists of genetic and
epigenetic alterations, including the activation of proto-
oncogenes and inactivation of tumor suppressor genes [2-
4]. This leads to a malignant phenotype, resulting in
changes in cell structure, adhesion and cell proliferation

[5]-

Oligonucleotide microarray studies are commonly used
to extend the knowledge of the differences in the biology
of lung tumors and to identify new candidate genes with
diagnostic, prognostic and therapeutic value [6-9]. Several
gene expression profiling studies in lung cancer have been
published, however, it is still difficult to compare these
studies due to the differences in methodologies, array
platforms, normalization of the data and biostatistical
analyses approaches, which may influence the reproduci-
bility and comparability [10-12]. Such differences could
have led to divergent results, with limited overlap of
described genes.

Another crucial step in the field of oligonucleotide micro-
array studies is the preparation of the solid tumor sample
itself. It contains a variable amount of mesenchymal
stroma cells, blood vessels, fibroblasts, tumor-invading
lymphocytes and necrotic areas next to the tumor cells
themselves. Analyzing the complete tumor sample with-
out efficient separation of the tumor cell confounds the
true gene expression profile of the tumor.

In order to overcome these methodological limitations,
we followed the guidelines from the Microarray Gene
Expression Data Society [13] and the MicroArray Quality
Control (MAQC) Consortium [14,15], the External RNA
Controls Consortium (ERCC) [16] as well as the Euro-
pean consensus guidelines for gene expression experi-
ments [17]. The purification of the tumor cells was carried
out by laser capture microdissection (LCM), which has
been shown to greatly improve the sample preparation for
microarray expression analysis [18]. Few reports on LCM
and microarray gene expression analysis have been pub-
lished to date, comparing all distinct lung cancer subtypes
to normal lung tissue [19-21].

In this report, we performed a comparison of gene expres-
sion profiles, using microarray analysis and LCM, accord-
ing to the methodological quality consensus guidelines
for microarray experiments, with the aim of identifying

http://www.translational-medicine.com/content/6/1/69

genes that are differentially expressed in the major histo-
logical lung cancer subtypes, as compared to normal lung
tissue. In addition, 14 differentially expressed genes in
human lung tumors were corroborated by quantitative
real-time PCR. Furthermore, using genetic programming,
we found a subset of 40 genes, that could be utilized for
the classification of different types of lung tumors.

Materials and methods

Lung tumor samples

Samples of lung tumors were obtained using bronchos-
copy or CT-guided needle aspiration from 29 patients,
newly diagnosed patients with lung cancer. The samples
that were immediately fixed in RNA-later consisted of 10
adenocarcinomas, 10 squamous cell carcinomas and 9
small cell lung carcinomas. Control samples of normal
lung tissue were obtained from 5 patients with suspected
tuberculosis or sarcoidosis, without presence of malig-
nant lung tumors. The histopathological diagnosis was
based on routinely processed hematoxylin-eosin stains
and confirmed by immunohistochemical staining look-
ing for pan-cytokeratin, cytokeratin 5 and 7, chrom-
ogranin A, synaptophysin and tissue-transcripion-factor-
1. For validation of the classificator from genetic program-
ming, 13 lung cancer samples were selected as a test-set
from patients with advanced NSCLC lung cancers. All
patients gave their informed consent and the study was
approved by the ethics committee of the Heinrich-Heine
University, Duesseldorf.

Laser capture microdissection

From each frozen tumor tissue, we prepared 8-um thick
sections. The sections were fixed in methanol/acetic acid
and stained in hematoxylin. The tumor cells were identi-
fied and ascertained in the sample by an experienced
pathologist using the Autopix 100 automated LCM system
and collected on a CapSure HS LCM Cap (Arcturus,
Mount View, CA). Following microdissection, total RNA-
extraction was performed with the RNeasy Micro Kit
(QIAamp DNA MicroKit Qiagen, Santa Clarita, CA, USA),
according to the manufacturer's instruction. A standard
quality control of the total RNA was performed using the
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, USA).

RNA isolation, cRNA labeling and hybridization to
microarrays

The described procedures strictly adhered to the guide-
lines from the Microarray Gene Expression Data Society
and the MicroArray Quality Control (MAQC) Consor-
tium, the External RNA Controls Consortium (ERCC), as
well as the European consensus guidelines for gene
expression experiments [13-17]. The full description of
the Extraction protocol, labeling and labeling protocol,
hybridization protocol and data processing is obtainable
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in the GEO DATA  base under  http://
www.ncbi.nlm.nih.gov/geo/ (accession number

GSE6044). Total RNA (median: 375 ng; range: 250 - 500
ng) was used to generate biotin-labeled cRNA (median:
6,5 png; range: 3-10 pg) by means of Message Amp aRNA
Amplification Kit (Ambion, Austin, TX). Quality control
of RNA and cRNA was performed using a bioanalyzer
(Agilent 2001 Biosizing, Agilent Technologies). Following
fragmentation, labeled cRNA of each individual patient
sample was hybridized to Affymetrix HG-Focus Gene-
Chips, covering 8793 genes, and stained according to the
manufacturer's instructions.

Quantification, normalization and statistical analysis

The quality control, normalization and data analysis, were
assured with the affy package of functions of statistical
scripting language 'R’ integrated into the Bioconductor
project http://www.bioconductor.org/, as described previ-
ously [22]. Using histograms of perfect match intensities,
5' to 3' RNA degradation side-by-side plots, or scatter
plots, we estimated the quality of samples and hybridiza-
tions. To normalize raw data, we used a method of vari-
ance stabilizing transformations (VSN) [23]. To compare
the normalized data from AC, SCC, SCLC and normal
lung tissue, we used the Significance Analysis of Microar-
rays (SAM) algorithm v2.23 http://www-stat.stan
ford.edu/~tibs/SAM/ which contains a sliding scale for
false discovery rate (FDR) of significantly up- and down-
regulated genes [24]. All data were permuted 1000 times
by using the two classes, unpaired data mode of the algo-
rithm. As a cut-off for significance, an estimated FDR of
2.6% was chosen by the tuning parameter delta of the
software. The significance level of each gene was given by
the g-value describing the lowest FDR in multiple testing
[25], and a cut-off for fold-change of differential expres-
sion of 2 was used.

Hierarchical clustering analysis (HCA) was used to deter-
mine components of variation in the data in this study.
For these analyses we used the unsupervised complete
linkage algorithm.

The data points were organized in a phylogenetic tree with
the branch lengths represent the degree of similarity
between the values. Significantly expressed genes were
uploaded to KEGG (Kyoto Encyclopedia of Genes and
Genomes) and functional annotation was performed.
Genes that were not listed or could be classified in more
than one functional group were reviewed for the function
based on the literature available using Pubmed, OMIM

and GENE available in http://www.ncbi.nlm.nih.gov.

Quantitative real-time PCR
Corroboration of RNA expression data was performed by
realtime PCR using the ABI PRISM 7900 HT Sequence
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Detection System Instrument (Applied Biosystems,
Applera Deutschland GmbH, Darmstadt, Germany).
Total RNA, ranging between 600 - 1000 ng, underwent
reverse transcription using a High capacity cDNA Archive
Kit according to the manufacturer's instruction (Applied
Biosystems, Applera Deutschland GmbH, Darmstadt,
Germany). PCRs were performed according to the instruc-
tions of the manufacturer, using commercially available
assays-on-demand (Applied Biosystems, Applera Deut-
schland GmbH, Darmstadt, Germany). Ct values were cal-
culated by the ABI PRISM software, and relative gene
expression levels were expressed as the difference in Ct
values of the target gene and the control gene ribosomal
protein S11(RPS11). RPS11 was selected as reference gene
for the quantification analyses, because the expression
levels of the gene were similar between the examined
tumor samples and normal tissue.

Classification using genetic programming

In order to generate a classifier that distinguishes between
AC, SCC and SCLC, as well as the normal lung tissue, a
Genetic Programming (GP) approach was used. The soft-
ware DISCIPULUS which implements GP [26] was uti-
lized. A leave-one-out cross validation (LOOCV) was
performed, whereby one sample is removed from the
training set. The other samples are reduced to those 50
genes with the highest signal-to-noise ratio, which are
used as a training set in a training series. A training series
generates a number of classifiers. After each series, the 30
best resulting classifiers are applied to that sample
removed before, and the number of exact predictions were
counted. The procedure was iterated, so that every sample
was outside the training set once. The percentages of exact
predictions for all samples of a class using 1020 classifiers
(34 tissue samples and 30 classifiers = 34 * 30 = 1020 clas-
sifiers) were calculated. Each classifier used 50 different
genes of a sample, queried their expression values and
made the decision of "part of the class" or "outside the
class". For each classifier and LOOCYV iteration, the fre-
quency of a gene (how often a gene occurs as appropriate
classifier) was determined. The frequency was used as a
quality criterion. The 10 genes with the highest frequency
in each of the four classes were chosen in order to generate
a final classifier of 40 genes. The accuracy of correct classi-
fication of the tissue is calculated as percentage using 30
classifiers of all left-out samples.

Results

Expression profiles and hierarchical cluster analysis

In this study, we examined gene expression profiles of
untreated tumor cells from 29 patients with lung cancer
(10 adenocarcinomas, 10 squamous cell carcinomas, 9
small cell lung cancer) in comparison to 5 normal lung
tissues. The original data set and the patients characteris-
tics are available in the GEO DATA base under http://
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www.ncbi.nlm.nih.gov/geo/ number

GSEG044).

(accession

Comparing AC, SCC and SCLC to normal lung tissue
using significance analysis of microarrays (SAM), we
found 205, 335 and 404 genes with an at least 2-fold dif-
ferent expression level and an estimated false discovery
rate (FDR) of <2.6%. For an overview, a Venn diagram
shows the overlaps of the three among groups (Figure 1)
and the differentially expressed genes were further
grouped in 14 functional classes (Table 1). Following
SAM analysis, an unsupervised complete linkage cluster-
ing algorithm for cluster analyses was performed. The
closest pair of the highest expression values of 198 differ-
entially expressed genes was grouped together and a clear
segregation of the analyzed groups (adenocarcinomas,
squamous cell carcinomas, small cell lung cancer and nor-
mal lung tissue) was obtained (Figure 2)

Adenocarcinomas

We found 205 deregulated genes in AC; 43 were upregu-
lated and 162 were downregulated. Looking at oncogenes
and tumor-associated genes, only the paraneoplastic anti-
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gen MA2 gene was upregulated. Focusing on genes
involved in cell structure, 7 genes were upregulated 2 to
7.9-fold, compared to normal lung tissue. Next to the
intermediary filament keratin 7 gene, 3 genes were
involved in the actin metabolism such as thymosin beta-
10, actin-related protein 2/3 complex subunit 1B and
plastin 3. Four downregulated genes, involved in cell
structure, were found in AC compared to normal lung tis-
sue. These genes were tubulin alpha 3 and beta 2 involved
in the assembly of microtubules and intermediary fila-
ments, as well as keratin 5 and 15.

We also looked for genes involved in cell adhesion and
migration and found integrin alpha 3, integrin beta 2 and
intercellular adhesion molecule 1 to be upregulated in
adenocarcinomas, while 6 genes, including the desmo-
somal cadherins desmoglein 3 and desmocollin 3, were
significantly downregulated compared to normal lung tis-
sue.

Examining the genes involved in cell cycle control and
proliferation, we found only 2 genes differentially
expressed. The chromosome condensation protein G was

Table I: Classification of significantly deregulated lung cancer genes in comparison to normal lung tissue with respect to cancer

subtype and biological functions.

functional class Adenocarcinoma

squamous cell carcinoma small cell lung cancer

n =205 n=335 n = 404
proliferation | gene T | gene 41 genes T 56 genes T | gene
DNA-repair | gene 4 8 genes T 14 genes T

oncogenes/tumor related genes | gene T I'l genes ¥ 9 genes T I'l genes ¥ 13 genes T 10 genes 4
cell adhesion 3 genes 0 6 genes \2 2 genes T 6 genes J 8 genes 0 7 genes \2
cell structure 7 genes T 20 genes 4 14 genes T I5 genes 19 genes T 18 genes

metabolism Il genes T 25 genes 4 34 genes T 26 genes ¥ 22 genes T 38 genes +
immune system 6 genes 0 13 genes J 3 genes T 19 genes J 2 genes 0 25 genes J
signal transduction I3 genes 7 genes T 3 genes 18 genes T 10 genes
transcription | gene T 8 genes 10 genes T 5 genes 22 genes T 4 genes 4
transport 2 genes T 12 genes 4 Il genes T I5 genes 8 genes T I5 genes
development | gene 0 9 genes \2 5 genes T 6 genes J 12 genes 0 4 genes \2
calcium-binding 3 genes T 4 genes | 3 genes | 4 genes 4
apoptosis | gene 3 genes T | gene 4
unknown 7 genes 0 38 genes J 28 genes 0 54 genes J 26 genes 0 44 genes J
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(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/geo/

Journal of Translational Medicine 2008, 6:69

- small vell lung cnncer
(404 genes)

T up-regalated

4 down.regulated

Figure |

[:11 Oh ', '
26 senes

(3*:234)

http://www.translational-medicine.com/content/6/1/69

¢ squamous cell crermoma

{335 cencs)

136 poads
r81tiaz4)

69 penes

~

adenocarcinoma

Venn Diagramm of significantly regulated genes comparing adenocarcinomas, squamous cell carcinomas and small cell lung can-
cer to normal lung tissue (NT). The 3 genes that were overexpressed in all 3 tumor types were chromosome condensation
protein G (overexpression in AC vs. NT, SCC vs. NT and SCLC vs. NT was 2.2, 2.1 and 3.2-fold, respectively); collagen, type
|, alpha | (overexpression in AC vs. NT, SCC vs. NT and SCLC vs. NT was 7.98, 3.24 and 2.4-fold, respectively) and mesoderm
specific transcript homolog (overexpression in AC vs. NT, SCC vs. NT and SCLC vs. NT was 2.9, 4.5 and 14.8-fold, respec-

tively).

upregulated, while cyclin A1 was downregulated in com-
parison to normal lung tissue. Looking at genes involved
in DNA repair, only the DNA mismatch repair gene mut$
homolog 3 was downregulated (Table 2).

Squamous cell carcinomas

In SCC, we found 335 deregulated genes, including 172
upregulated and 163 downregulated genes. Looking at
oncogenes and tumor-associated genes, 4 genes of the
RAS associated gene family; the oncogenes v-myc myelo-
cytomatosis viral oncogene homolog, v-maf muscu-
loaponeurotic fibrosarcoma oncogene homolog and
pituitary tumor-transforming 1 were upregulated. Exam-
ining genes involved in cell structure and cell adhesion,
we found 5 types of collagen genes, in particular the genes
encoding for collagen type I alpha-1 and 2, type V alpha-
2, type VI alpha-3 and type XI alpha-1 to be upregulated

in comparison to normal lung tissue. Further, gap junc-
tion protein alpha 1 (43 kDa), a member of the connexin
gene family and neuronal cell adhesion molecule, a mem-
ber of the immunoglobulin superfamily were upregu-
lated, while 6 other genes involved in cell adhesion such
as the tight junction protein 3 and claudin 10 were down-
regulated in comparison to normal lung tissue. In SCCs,
41 genes involved in cell cycle regulation were upregu-
lated between 2 to 4.3-fold. Looking at key molecules for
progression of cell cycle, the cyclines A2 and B2, cyclin-
dependent kinase 4 and the cell division cycle 2 genes
were upregulated. In the group of genes involved in DNA
repair, we found genes with key functions for mismatch
and double-strand DNA repair such as proliferating cell
nuclear antigen, mutS homolog 6 replication factor C 4
and C5, RADS51 associated protein 1, which were overex-
pressed in comparison to normal lung tissue (Table 3).
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Figure 2
Consensus tree of hierarchical clustering of AC (A1-A10), SCC (PI-P10), SCLC (KI1-K10) and lung tissue samples (NT) as a

control without cancer (N1-N5) using the genes with the higherst differential expression according to the fold change from
the comparison of AC vs. NT, SCC vs. NT and SCLC vs. NT. Data are displayed by a color code. Green, transcript levels
below the median; black, equal to the median; red, greater than median. The effective length of the dash after sample separa-

tion visualizes the degree of similarity of the different samples.
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Table 2: Selection of significantly differentially expressed genes in adenocarcinomas focusing on cell structure, cell adhesion and

oncogenesis.

Gene Symbol Gene Name Fold Change g-value
AC vs. NT
cell structure
COLIAI collagen, type |, alpha | 7.98 1.22
KRT7 keratin 7 5.11 0.53
PLS3 plastin 3 243 0.53
TMSBI0 thymosin, beta 10 2.01 0.89
ARPCIB actin related protein 2/3 complex, |B 2.38 1.22
TUBA3 tubulin, alpha 3 0.39 1.22
TUBB2 tubulin, beta 2 0.33 0.53
KRTI5 keratin |5 0.06 0.53
KRT5 keratin 5 0.05 0.53
cell adhesion
ICAMI intercellular adhesion molecule | 5.80 0.89
ITGB2 integrin, &#x03AF;-2 2.48 1.22
ITGA3 integrin a-3 2.02 1.53
DSG3 desmoglein 3 0.48 0.53
DsSC3 desmocollin 3 0.32 0.53
oncogenesis
SERPINH serine (or cysteine) proteinase inhibitor, clade H 3.27 0.89
PNMA2 paraneoplastic antigen MA2 3.13 0.89
MSH3 mutS homolog 3 0.44 0.53
MYB v-myb Avian Myeloblastosis viral oncogene homolog 0.39 0.53
RABL2B rab-like 2B 0.34 0.53
RABL2A rab-like 2A 0.27 0.53

AC = adenocarcinoma, NT = normal lung tissue

Small cell lung cancer

In SCLC, we found 404 differential expressed genes,
including 223 upregulated and 181 downregulated genes.
Looking at oncogenes and tumor-associated genes, 4
genes of the rat sarcoma viral oncogene homolog associ-

ated gene family, FYN oncogene related to SRC and pitui-
tary tumor-transforming 1 were upregulated, respectively.
Of interest, the three tumor-related genes: tumor protein
D52, melanoma antigen family D 4, stathmin 1/oncopro-
tein 18 and two oncogenes DEK oncogene and forkhead

Page 7 of 17

(page number not for citation purposes)



Journal of Translational Medicine 2008, 6:69 http://www.translational-medicine.com/content/6/1/69

Table 3: Selection of significantly differentially expressed genes in squamous cell carcinomas focusing on proliferation, cell structure
and oncogenesis.

Gene Symbol Gene Name Fold Change g-value
SCCvs. NT

Proliferation

RFC4 replication factor C (activator 4) 5.73 0.37
CCNB2 Cyclin B2 434 0.37
PRCI protein regulator of cytokinesis | 3.54 1.21
CENPA centromere protein A 3.29 0.6l
MAD2LI mitotic arrest deficient-like | 3.20 0.61
CDK4 cyclin-dependent kinase 4 2.89 0.37
CbhC2 cell division cycle 2 2.89 0.37
BUBIB budding uninhibited by benzimidazoles | homolog beta 2.67 1.21
PCNA proliferating cell nuclear antigen 2.62 0.37
PIR51 RADS| associated protein | 2.48 0.6l
HECI kinetochore associated 2 2.15 0.84
MSHé mutS homolog 6 2.10 1.06
RFC5 replication factor C (activator 5) 2.09 0.37
CCNA2 Cyclin A2 2.05 1.06
CCNAI Cyclin Al 0.57 0.61

cell structure

COLIIAI collagen, type XI, alpha | 7.94 0.84
COLIAI collagen, type I, alpha | 3.24 1.21
TMSNB thymosin, beta, 4X 3.24 2.53
COL5A2 collagen, type V, alpha 2 2.99 0.37
COLIA2 collagen, type |, alpha 2 2.89 0.84
PLS3 plastin 3 2.46 0.37
COL6A3 collagen, type VI, alpha 3 2.28 1.34
FSCNI fascin, homolog | 2.20 1.06
oncogenesis
NMB glycoprotein (transmembrane) nmb 4.0l 1.34
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Table 3: Selection of significantly differentially expressed genes in squamous cell carcinomas focusing on proliferation, cell structure

and oncogenesis. (Continued)

RANBPI RAN binding protein | 3.23 0.37
MAF v-maf Avian Musculoaponeurotic Fibrosarcoma oncogene 2.63 1.34
RACGAPI Rac GTPase activating protein | 2.53 0.61
PTTGI pituitary tumor-transforming | 249 1.34
MYC v-myc Avian Myelocytomatosis viral oncogene homolog 243 1.90
RALA v-ral simian leukemia viral oncogene homolog A 242 1.34
RAP2B Ras-Related Protein 2B 2.30 0.84
RAN Ras-Related Nuclear Protein 2.02 1.90
KIT v-KIT Hardy-Zuckerman 4 Feline Sarcoma viral oncogene homolog 0.46 0.37
RABL2B Rab-like 2B 0.35 0.37
RABL2A Rab-like 2A 0.33 1.34

SCC = squamous cell carcinomas, NT = normal lung tissue

box G1 were upregulated which has not been described in
the context of lung cancer so far.

In comparison to normal lung tissue, a different pattern of
cell adhesion molecules was found in SCLC, showing 8
genes up- and 7 genes downregulated between 2 to 12.8-
fold and 2.1 to 4.6-fold, respectively. In particular, the
neural cell adhesion molecule 1 and the neuronal cell
adhesion molecule, both members of the immunoglobu-
lin superfamily, were overexpressed. Looking for genes
involved in cell cycle regulation, we found 56 genes upreg-
ulated between 2.1 to 5.1-fold compared to normal lung
tissue among them the key molecules for progression of
cell cycle, the cyclines A2 and B2, cyclin-dependent kinase
4 and the cell division cycle 2 genes and cyclin E. The
expression patterns of genes of the centromer/kinetochore
complex and genes involved in DNA repair were similar to
the expression patterns in SCC (Table 4).

Corroboration of array data by quantitative real-time (RT)
PCR

Quantitative RT-PCR was used to verify the microarray
data for 13 genes found to be differentially regulated in
the different histologic lung cancer subgroups as com-
pared to normal lung tissue. The 13 tested genes that were
selected from different functional classes, with focus on
the genes presented in tables 2-4, were: CASK (calcium/
calmodulin-dependent serine protein kinase), CCNB2
(cyclin B2), COL1A1 (collagen, type 1, alpha 1), IFNGR2
(interferon gamma receptor 2), PCNA (proliferating cell

nuclear antigen), PRKCI (protein kinase C, iota), PLS3
(plastin 3), PTTG1 (pituitary tumor-transforming 1),
PTTG1-IP (pituitary tumor-transforming 1 binding pro-
tein), UBE2C (ubiquitin-conjugating enzyme E2C),
MAGED4 (melanoma antigen family D 4), FOX (fork-
head box G1) and FYN (FYN oncogene related to SRC)
and NRCAM (neuronal cell adhesion molecule). The
expression data generated by the oligonucleotide array
and RT-PCR were highly concordant, supporting the reli-
ability of the array analysis (Figure 3). Of interest, the
pituitary tumor-transforming gene 1 was 2.56 and 2.49-
fold significantly differentially expressed in SCLC and
SCC, respectively, in comparison to normal lung tissue
using microarray analysis. In AC, the difference of expres-
sion was not significant in microarray analysis. However,
using RT-PCR for corroboration, the pituitary tumor-
transforming gene 1 was 5.7, 8.0 and 8.3 overexpressed in
SCLC, SCC and AC, respectively, in comparison to normal
lung tissue. In a previously conducted immunohisto-
chemical study, we have demonstrated a strong pituitary
tumor-transforming gene 1 expression in SCLC, adenocar-
cinomas, as well as in SCC, whilst a weak expression was
only found in the luminal layer of normal lung epithelia,
thus supporting the data of RT-PCR [27].

Class prediction using genetic programming

In order to identify genes that enable accurate distinction
between AC, SCC and SCLC, as well as normal lung tissue,
a genetic programming data analysis was performed. The
percentages of exact predictions for all samples of a class
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Table 4: Selection of significantly differentially expressed genes in small cell lung cancer focusing on proliferation, oncogenesis and cell
adhesion.

Gene Symbol Gene Name Fold Change q-value
SCLC vs. NT

proliferation

RFC4 replication factor C (activator 4) 5.56 0.09
pl6/CDKN2A cyclin-dependent kinase inhibitor 2A 5.15 0.23
CENPA centromere protein A 4.68 0.09
CCNE Cyclin E 4.48 0.09
CCNB2 Cyclin B2 4.43 0.09
PRCI protein regulator of cytokinesis | 4.23 0.28
CENPF centromere protein F 4.01 0.23
MAD2LI mitotic arrest deficient-like | 3.78 0.09
HECI kinetochore associated 2 3.66 0.09
PIRS51 RADS| associated protein| 3.60 0.09
BUBIB budding uninhibited by benzimidazoles | homolog beta 3.51 0.09
CDhC2 cell division cycle 2 3.42 0.28
PCNA proliferating cell nuclear antigen 3.12 0.09
RFC3 replication factor C (activator 3) 2.58 0.09
RFC5 replication factor C (activator 5) 2.55 0.09
CDK4 cyclin-dependent kinase 4 2.55 0.09
NEK2 never in mitosis gene a-related kinase 2 248 0.09
CDK2 cyclin-dependent kinase 2 241 0.09
BUBI budding uninhibited by benzimidazoles | homolog 2.38 0.09
CENPE centromere protein E 2.38 0.09
ENCI ectodermal-neural cortex | 232 0.23
MSH2 mutS homolog 2 2.31 0.09
FANCG Fanconi anemia, complementation G 2.22 0.09
MSHé6 mutS homolog 6 2.09 0.09
CCNA2 Cyclin A2 2.07 0.09
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Table 4: Selection of significantly differentially expressed genes in small cell lung cancer focusing on proliferation, oncogenesis and cell

adhesion. (Continued)

oncogenesis

FOXGIB Forkhead BOX GIB, QIN oncogene 16.76 0.09
STMNI stathmin |/oncoprotein 18 4.98 0.16
FYN fyn oncogene related to src, fgr, yes 391 0.16
MAGED4 melanoma antigen, family D, 4 3.51 0.28
PTTGI pituitary tumor-transforming | 2.56 0.09
RACGAPI Rac GTPase activating protein | 3.30 0.09
DEK DEK oncogene (DNA binding) 2.49 0.16
RAN Ras-Related Nuclear Protein 2.39 0.16
RANBPI RAN binding protein | 2.39 0.16
TPD52 tumor protein D52 2.08 0.16
RABL2B Rab-like 2B 0.44 0.09
RABL2 Rab-like 2A 0.40 0.09
Cell adhesion
NCAMI neural cell adhesion molecule | 12.75 0.16
NRCAM neuronal cell adhesion molecule 9.43 0.09
CDH2 N-cadherin 5.41 0.09
CELSR3 cadherin, EGF LAG seven-pass G-type receptor 3 2.46 0.09
TJP3 tight junction protein 3, zona occludens 3 0.45 0.09

SCLC = small cell lung cancer, NT = normal lung tissue

using 1020 classifiers (34 tissue samples and 30 classifiers
=34 * 30 = 1020 classifiers) are shown in Table 5 and the
10 genes with the highest frequency in each of the four
classes were chosen in order to generate a final classifier of
40 genes. Using microarray training set of 34 samples (10
AC, 10 SCC, 9 SCLC and 5 normal lung tissues), a mini-
mal set of 40 genes (Table 6) provided a classification
accuracy for division into the 4 different cell tissues. For
external validation, the test set included 13 different
NSCLC samples from pretreated patients (9 recurrent AC
and 4 recurrent SCC). All test set samples were correctly
classified using the 40 genes found with genetic program-
ming.

Discussion
In this study, a comparison of the expression pattern of
the 3 major histological lung cancer subtypes, as meas-

ured by array analysis, is presented. In comparison to the
normal lung tissue, 205, 335 and 404 genes in AC, SCC
and SCLC were found to be at least 2-fold differentially
expressed. Fourteen genes of different gene families were
corroborated using RT-PCR.

In AC, we found an up-regulation of keratin 7, a character-
istic finding for pathologists to diagnose this subtype of
lung cancer. On the other hand, keratin 5 was downregu-
lated in AC. The differential expression is already
described as a separator between AC and SCC, in line with
our results [28,29]. Looking at adhesion molecules in AC,
a down-regulation of the desmosomes desmoglein 3 and
desmocollin 3 was found. In this context, it was shown
that the invasive behavior of cells is inhibited when trans-
fected with desmosomal components [30], suggesting
that down-regulation of the desmosomes in adenocarci-
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Figure 3

Corroboration of the results from microarray analysis using RT-PCR. The gene expression levels were normalized to a house-
keeping gene (RPSI 1) for calculating AACt values. A AACt value of | corresponds to a Fold Change of 2. A) adenocarcinomas
(AC), B) squamous cell carcinomas (SCC) and C) small cell lung cancer (SCLC).
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Table 5: Leave-one-out Cross Validation (LOOCY) accuracy for
all one vs. rest experiments.

Experiment Accuracy of all 30 classifiers

AC vs. rest 87.75%
SCLC vs. rest 93.92%
SCC vs. rest 82.25%

NT vs. rest 93.24%

nomas of the lung plays a role in the loss of cell to cell
contact and tumor spreading.

The extracellular cell matrix receptors integrin alpha-3 and
integrin beta-2 as well as the collagen binding protein-1
(SERPHINHT1) were upregulated in AC. These genes have
a high affinity to collagen IV and laminin, both essential
components of the basement membrane [31], possibly
mediating adhesion and invasion. Additionally, we found
intercellular adhesion molecule 1 (ICAM1), a cell-adhe-
sion molecule also binding to integrin beta-2 and pro-
moting metastasis due to tumor cell adhesion to
endothelium overexpressed in AC [32,33].

Looking at the oncogenes in SCC, we found genes of the
RAS associated gene family, the myc myelocytomatosis
viral oncogene homolog (MYC) and musculoaponeurotic
fibrosarcoma oncogene (MAF) upregulated. MAF encodes
for nuclear transcriptional regulating proteins with a leu-
cine zipper motif, and was identified in the genome of the
acute transforming avian retrovirus AS42, which induces
fibrosarcomas and has the ability to transform chicken
embryo fibroblasts [34].

It is noteworthy that in SCC 5 members of the collagen
family type I, V, VI, and XI were upregulated. An increased
collagen synthesis might be associated with carcinogene-
sis, as in patients with breast cancer the emerging fibrotic
focus is regarded as an indicator of tumor angiogenesis
and independent predictor of early metastasis [35].

SCLCs show an up-regulation of 3 proto-oncogenes,
which have not been described in this context so far. The
DEK oncogene encodes for a 375 amino acid chromatin
binding protein, which introduces supercoiling in DNA. It
has been described to be upregulated in other tumor
types, such as bladder cancer, glioblastoma, melanoma
and leukemia [36]. The Qin oncogene, originally isolated
from avian sarcoma virus, causes oncogenic transforma-
tion. Qin is the avian orthologue of mammalian brain fac-
tor-1 or forkhead box G1 (FOXGI1B), a gene which
belongs to the human forkhead-box gene family [37].
Possibly related to the neuroendocrine differentiation of
SCLC, forkehead box G1 is essential for the proliferation
and survival of cerebro-cortical progenitor cells [38]. Fur-
ther, we found the Fyn oncogene upregulated in SCLC.

http://www.translational-medicine.com/content/6/1/69

Fyn is a member of the src family which is activated in
colorectal cancer, and has also been identified in
melanoma cells with elevated cell motility and spreading
ability [39,40].

With regard to adhesion molecules, the overexpressed
neural cell adhesion molecule 1 is useful for the diagnosis
of SCLC [41,42]. Next to neural cell adhesion molecule 1
we found other genes significantly upregulated such as the
Purkinje cell protein 4, secretory granule neuroendocrine
protein 1, synaptotagmin 1 and the neuronal cell adhe-
sion molecule (NRCAM) that seems to reflect the neuro-
nal heritage of this particular lung tumor subtype.
NRCAM belongs to the L1 family immunoglobulin-like
CAMs, which are involved in the guidance, growth and
fasciculation of neuronal cells [43]. Neuronal cell adhe-
sion molecule has also been described in 2006 by Tani-
waki and colleagues', who performed comprehensive
gene expression profiles of pure SCLC cells derived from
laser-microdissected tissue samples [44]. In order to con-
firm the overexpression of the neuronal cell adhesion
molecule using a different technique, we corroborated the
result of microarray analysis using RT-PCR, showing a 9.3-
fold overexpression of the neuronal cell adhesion mole-
cule in SCLC in comparison to lung tissue.

The imbalance of activated oncogenes and lost tumor sup-
pressor genes, found in different types of lung cancer, may
be associated with the different tumor growth kinetics.
SCLC is the fastest growing lung tumor with a median
tumor doubling time of 50 days [45]. This is reflected by
our data with regard to the number and strength of upreg-
ulated cell cycle genes affecting growth rate. Several
cyclines, their associated cyclin-dependent kinases and
cell division cycle (CDC) genes controlling cell cycle pro-
gression, such as cyclin A2, B2 and E2, and cyclin-depend-
ent kinase 2 and 4, as well as cell division cycle 2, 20 and
25B were upregulated [46]. The activation level of differ-
ent cell cycle genes may be relevant with regard to new
antitumor agents, which selectively target cell cycle pro-
teins. For example, flavopiridol has the ability to induce
cell cycle arrest by binding and inhibiting different cyclin-
dependent kinase such as 2 and 4 [47,48]. Both CDKs are
significantly upregulated in SCLC. On the other hand, the
upregulation of cyclin-dependent kinase 2, that is critical
for cell entry and progression through S phase of the cell
cycle, is missing in NSCLC. Preclinical data support this
finding since most NSCLC cell lines are resistant to fla-
vopiridol-induced apoptosis unless they were treated dur-
ing S phase. Furthermore, the IC 50 of flavopiridol-treated
cells in SCLC cell lines is three times lower compared to
NSCLC cell lines [49]. Consequently, this drug might be
more promising in patients with SCLC.We have further
shown that genes involved in mismatch repair, such as
mutS homolog 2 or 6, were upregulated in SCLCs, which
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Table 6: Genes found by genetic programming for discrimination between SCLC, NSCLC (AC and SCC) and normal lung tissue.

Gene Symbol Gene Name Location
Discrimination AC vs. rest
CLCA2 chloride channel, calcium activated, family member 2 1p31-p22
EFS embryonal Fyn-associated substrate 14q11.2-ql2
FGG fibrinogen, gamma polypeptide 4q28
GPCR5A G protein-coupled receptor, family C, group 5, member A 12p13-pl12.3
KRT7 keratin 7 12q12-q13
KRT5 keratin 5 (epidermolysis bullosa simplex) 12q12-q13
PTPRZI protein tyrosine phosphatase, receptor-type, Z polypeptide | 7q31.3
SEMA3F sema domain, immunoglobulin domain (lg), (semaphorin) 3F 3p21.3
SERPINAI serine (or cysteine) proteinase inhibitor, clade A member | 14q32.1
SLC39A8 solute carrier family 39 (zinc transporter), member 8 4q22-q24
Discrimination SCC vs. rest
ADCY3 adenylate cyclase 3 2p24-p22
ATP2BI ATPase, Ca++ transporting, plasma membrane | 12q21.3
CASK calcium/calmodulin-dependent serine protein kinase Xpll.4
CHST2 carbohydrate (N-acetylglucosamine-6-O) sulfotransferase 2 3q24| 731
DGKA diacylglycerol kinase, alpha 80kDa 12q13.3
GOLPH2 golgi phosphoprotein 2 9q21.33
KIFI3B kinesin family member 13B 8pl2
RABI7 RABI17, member RAS oncogene family 2q37.3
RAB40B RAB40B, member RAS oncogene family 17q25.3
SCNNIA sodium channel, nonvoltage-gated | alpha 12p13
Discrimination SCLC vs. rest
CELSR3 cadherin, EGF LAG seven-pass G-type receptor 3 3p24.1-p21.2
CTSH cathepsin H 15q24-q25
DLKI delta-like | homolog (Drosophila) 14q32
ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 17q11.2-ql2
FANCA Fanconi anemia, complementation group A 16q24.3
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Table 6: Genes found by genetic programming for discrimination between SCLC, NSCLC (AC and SCC) and normal lung tissue.

ID4 inhibitor of DNA binding 4, dominant helix-loop-helix protein 6p22-p21
ISL1 ISLI transcription factor, LIM/homeodomain, (islet-1) 5ql1.2
MGC13024 hypothetical protein MGC13024 lépl 1.2
POUA4FI POU domain, class 4, transcription factor | 13q21.1-q22
XYLT2 xylosyltransferase Il 17921.3-17q22
Discrimination NT vs. rest

ALOXI5 arachidonate |5-lipoxygenase 17p13.3
ANKMY ankyrin repeat and MYND domain containing | 2q37.3
Cl8orf43 chromosome |8 open reading frame 43 18pl1.21
DNAII dynein, axonemal, intermediate polypeptide | 9p21-pl3
GSTA3 glutathione S-transferase A3 6pl2.l
LRRC6 leucine rich repeat containing 6 8q24.22
MIPEP mitochondrial intermediate peptidase 13ql2
NKX3-1 NK3 transcription factor related, locus | (Drosophila) 8p2l
RTDRI rhabdoid tumor deletion region gene | 22ql1.2
VNN3 vanin 3 6q23-q24

AC = adenocarcinoma, SCC = squamous cell carcinoma, SCLC = small cell lung cancer, NT = normal lung tissue

is in line with other reports showing that these gene tran-
scripts and proteins are present [50,51], in contrast to
NSCLCs, where high resolution deletion mapping reveals
frequent allelic losses at the DNA mismatch repair loci
mutS homolog 3 [52]. Similar to the latter report, we have
observed a downregulation of mutS homolog 3 in ACs.

After outlining potentially important molecular differ-
ences in different subtypes of lung cancer to normal lung
tissue, we were interested in defining how many and
which genes are necessary for correct classification of the
lung tumor subtype. Using genetic programming (GP), a
training set of 34 tissue samples was applied. With an evo-
lutionary algorithm of GP, 40 genes were sufficient for a
correct discrimination between all lung tumor tissue types
and normal lung tissue. The 40 selected genes, identified
using GP, were a subset of the genes, which were previ-
ously identified to be differentially expressed using cluster
analysis. Following identification of the 40 genes with GP,
further 13 tissue samples of previously treated patients
NSCLC lung cancers were correctly classified with 100%

prediction accuracy. It is important to note that the sam-
ples of the training set were from treatment naive patients,
while the test set came from those that were previously
treated for their cancer using platinum-based chemother-
apy. Nevertheless, the presented genes for distinction
seem to maintain their value, independent from whether
or not the patient had been treated. However, caution
must be applied, since in the test set did not contain addi-
tional SCLC samples and larger sample size is needed
which includes samples from all lung cancer subtypes in
order to confirm the predictor.

Conclusion

Our data show the different gene expression profiles in
dependence from the histological type of lung cancer,
which reflects the specific biological characteristics of the
respective tumor subtype. These data may form the basis
for a molecular classification system and allows a further
insight into the altered genomic progress of the lung can-
cer cell, which may help to develop molecularly targeted
drugs.
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