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Abstract

Background: Mobilized-peripheral blood hematopoietic stem cells (HSCs) have been used for
transplantation, immunotherapy, and cardiovascular regenerative medicine. Agents used for HSC
mobilization include G-CSF and the CXCR4 inhibitor AMD3100 (plerixafor). The HSCs cells
mobilized by each agent may contain different subtypes and have different functions. To
characterize mobilized HSCs used for clinical applications, microRNA (miRNA) profiling and gene
expression profiling were used to compare AMD3100-mobilized CD 133+ cells from 4 subjects,
AMD3100 plus G-CSF-mobilized CD 133+ cells from 4 subjects and G-CSF-mobilized CD34+ cells
from 5 subjects. The HSCs were compared to peripheral blood leukocytes (PBLs) from 7 subjects.

Results: Hierarchical clustering of miRNAs separated HSCs from PBLs. miRNAs up-regulated in
all HSCs included hematopoiesis-associated miRNA; miR-126, miR-10a, miR-22| and miR-17-92
cluster. miRNAs up-regulated in PBLs included miR-142-3p, -218, -21, and -379. Hierarchical
clustering analysis of miRNA expression separated the AMD3 100-mobilized CD |33+ cells from G-
CSF-mobilized CD34+ cells. Gene expression analysis of the HSCs naturally segregated samples
according to mobilization and isolation protocol and cell differentiation status.

Conclusion: HSCs and PBLs have unique miRNA and gene expression profiles. miRNA and gene
expression microarrays maybe useful for assessing differences in HSCs.

Background enhance leukocyte recovery after immunosuppresive ther-

Hematopoietic stem cells (HSCs) have been used for
more than 35 years for transplantation therapy to treat
acute and chronic leukemia, lymphoma, marrow failure
and congenital immune deficiency. Advances in immuno-
therapy have lead to the use of HSCs to produce dendritic
cells (DCs) to enhance antigen presentation [1], to

apy, and to mount cancer rejection by adoptive transfer of
tumor infiltrating lymphocytes (TIL) [2]. HSCs have also
been used to treat patients with ischemic cardiac disease
to improve revascularization and cardiac function follow-
ing acute myocardial ischemia [3,4]. However, due to the
diversity of stem cell sources, mobilization methods
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employed, purity of cells, and the content of cell subsets,
there are many different types of HSCs and those that are
most beneficial for one application may not be best for
another.

HSCs can be obtained from several different sources
including bone marrow, mobilized peripheral blood, and
umbilical cord blood. For transplantation, traditionally,
HSCs were obtained from the bone marrow. However,
umbilical cord blood has been found to be especially rich
in HSCs [5] and HSCs have been found in the peripheral
blood and their level in the circulation increases several-
fold after G-CSF administion [6,7]. For HSC transplanta-
tion all three types of HSCs are used, but for most other
applications mobilized peripheral blood HSCs are most
commonly used.

The diversity of HSCs used for clinical therapies has also
increased due to the development of new HSC mobilizing
agents. For many years granulocyte colony-stimulating
factor (G-CSF) has been the standard agent to increase the
level of circulating HSCs. The administration of G-CSF
daily for 4 to 6 days results in a 10- to 30-fold increase in
the number of circulating HSCs [8,9] and G-CSF-mobi-
lized HSCs collected by apheresis have been used for
transplantation, immune therapy and the treatment of
cardiac ischemia. Another HSC mobilizing agent,
AMD3100, has been used with G-CSF to mobilize stem
cells for autologous transplants [10] and is currently being
evaluated as a single agent to mobilize HSCs for alloge-
neic donor transplants [11,12].

The mechanisms by which AMD3100 and G-CSF alter
HSC trafficking and mobilization are different suggesting
that HSCs with different intrinsic properties maybe be
mobilized by these agents. AMD3100, as a CXCR4 antag-
onist, mobilizes HSCs within 6 hours by disrupting the
engagement of stem cell surface CXCR4 with its ligand
SDEF-1 (CXCL12) which is expressed on marrow osteob-
lasts [10,13-20]. In contrast G-CSF mobilizes stem cells
indirectly by down regulating the expression of SDF-1 on
marrow osteoblasts and by releasing neutrophil and
monocyte proteolytic enzymes including neutrophil
elastase, cathepsin G, and maxtrix metalloproteinase-9
which in turn degrade important HSC trafficking and
adhesion molecules c-kit, VCAM-1, CXCR4, and SDF-1
[21]. In animal studies AMD3100 mobilizes a CD34+ cell
population with a greater long-term marrow repopulating
capacity than G-CSF [12,22,23], possibly due to differ-
ences in mechanisms of mobilization.

Although commonly accepted HSC specific surface mark-
ers have been used for HSC characterization and purifica-
tion, differences in the specificities of monoclonal
antibodies used to isolate HSCs have contributed to diver-
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sity in HSC clinical products. Antibodies specific for
CD34 have been the standard agent for the isolation of
HSCs. In addition, anti-CD133 has also been used [24-
27]. Approximately 75% of G-CSF mobilized peripheral
blood stem cells (PBSCs) express CD34 as well as CD133,
but small populations express one or the other [28].

MicroRNAs (miRNA) are short, 20-22 nucleotide long,
RNA molecules which negatively regulate protein transla-
tion in a variety of biological processes, including devel-
opmental timing,  signal transduction, tissue
differentiation and stem cell renewal and differentiation.
Some miRNAs are specifically expressed in stem cells and
control stem cell self-renewal and differentiation by nega-
tively regulating the expression of certain key genes in
stem cells.

To determine if miRNA and gene expression profiling
would be beneficial in distinguishing different types of
HSCs, we compared CD133+ cells isolated from
AMD3100- and AMD3100 plus G-CSF-mobilized PBSC
concentrates with CD34+ cells isolated from G-CSF-mobi-
lized PBSC concentrates. We applied miRNA profiling and
gene expression profiling analysis to assess these three dif-
ferent types of progenitor cell populations using periph-
eral blood T cells, B cells, monocytes and NK cells as a
reference. We hypothesized that miRNA and gene expres-
sion analysis would be useful for characterizing HSCs.
Global gene and miRNA expression profiling was used to
compare HSCs and peripheral blood leukocytes. T cells, B
cells, monocytes and NK cells isolated from peripheral
blood mononuclear cells (PBMCs) were compared to the
HSCs.

Methods

Hematopoietic progenitor cell isolation

AMD3100 and AMD3 100 plus G-CSF stem cell mobilization,
collections and isolation

For the mobilization of cells with AMD3100 alone, one
dose of AMD3100 (Plerixafor, Genzyme Corporation,
Cambridge, MA) (240 pg/kg) was given subcutaneously
and PBSC concentrate was collected by leukapheresis
(CS3000, Baxter Healthcare Corp., Fenwal Division, Deer-
field, IL) six hours later. For AMD3100 plus G-CSF-mobi-
lization G-CSF (10 pg/kg) (Filgrastim, Amgen, Thousand
Oaks, CA) was given subcutaneously to healthy subjects
daily for four days and on the fifth day in addition to G-
CSF, AMD3100 (240 pg/kg) was given subcutaneously. A
mobilized PBSC concentrate was collected by leukapher-
esis (CS3000, Baxter Healthcare Corp.) on day 5 twelve
hours after the administration of AMD3100 and 2 hours
after the last dose of G-CSF. CD133+ cells were isolated
from the PBSC concentrates by positive selection with
anti-CD133 and magnetic microparticles (CliniMacs,
Miltenyi Biotec, Bergisch Gladbach, Germany) and the
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isolated cells were cryopreserved. The proportion of iso-
lated cells that expressed CD133 ranged from 88% to
98%.

G-CSF stem cell mobilization, collection, and isolation

Healthy subjects were given G-CSF (10 pg/kg) (Filgrastim,
Amgen Thousand Oaks, CA) subcutaneously daily for 5
days. A mobilized PBSC concentrate was collected by leu-
kapheresis (CS3000, Baxter Healthcare Corp) on the fifth
day and cryopreserved in 5% DMSO and 6% pentastarch
using a controlled rate freezer and stored in liquid nitro-
gen. The PBSC concentrate was thawed and CD34+ cells
were isolated by immunoaffinity chromatography with
CD34 monoclonal antibody and magnetic beads (Isolex,
Baxter Healthcare). The proportion of isolated cells that
expressed CD34 ranged from 87% to 98%.

Non-mobilized PBMC collection and sample preparation
A non-mobilized PBMC concentrate was collected from 7
healthy subjects by apheresis (CS3000) at the Department
of Transfusion Medicine (DTM), Clinical Center (CC),
National Institutes of Health (NIH). All subjects signed an
informed consent approved by the NIH. Mononuclear
leukocytes were separated from contaminating granulo-
cytes and red blood cells by Ficoll gradient separation, cry-
opreserved and stored in liquid nitrogen. T cells, B cells,
NK cells and monocytes were isolated by positive selec-
tion by using anti-CD3, anti-CD19, anti-CD56 and anti-
CD14 magnetic beads, respectively (AutoMACS, Miltenyi
Biotec) (purity > 90%).

RNA preparation, amplification and labeling
Total RNA was isolated from each sample by using TRI-
ZOL reagent (Invitrogen, Carlsbad, CA).

cDNA expression array

Total RNA (3 pg) was amplified from 0.5 x 10°to 107 cells
into anti-sense RNA (aRNA), also, total RNA from PBMCs
pooled from six normal donors was extracted and ampli-
fied into aRNA to serve as the constant reference [29] Test
and reference RNAs were labeled with Cy5 (red) and Cy3
(green) dyes, respectively, and co-hybridized to the cus-
tom-made 17.5 K cDNA (UniGene cluster) microarrays
which were printed in the Immunogenetics Section of
DTM with a configuration of 32 x 24 x 23 [30]. Clones
used for printing included a combination of the Research
Genetics RG_HsKG_031901 8 k clone set and 9,000
clones selected from the RG_Hs_seq_ver_070700 40 k
clone set. The 17,500 spots included 12,072 uniquely-
named genes, 875 duplicated genes and about 4,000
expression sequence tags. The complete list of genes
included in the Hs-CCDTV-17.5k-1px printing is available
at the web site http://nciarray.nci.nih.gov/gal files/Hs-

CCDTM17.5k-2px.gal.
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MicroRNA array

A miRNA probe set was designed using mature antisense
miRNA sequences (Sanger data base, version 8.1) consist-
ing of 736 human, mouse, rat and virus plus two control
probes. The probes were 5' amine modified and printed in
duplicate in the Immunogenetics Section of the DTM on
CodeLink activated slides (General Electric, GE Health,
NJ, USA) via covalent bonding.Small RNA was enriched
from 10 ug total RNA by flashPAGE (Pre-cast Gel, Type A)
(Ambion, Austin, TX, USA) and purified using flashPAGE
reaction clean-up kit (Ambion, Austin, TX, USA) accord-
ing to manufacture's instruction. The same procedures
were applied to obtain small RNA from the Epstein-Barr
virus (EBV)-transformed lymphoblastoid cell lines that
was used as the reference for the miRNA expression array
assay. Fragmented small RNA were 3'-end tailed with
amine-modified nucleotides and chemically coupled to
CyDye fluors (Amersham Biosciences, piscatway, NJ,
USA), the test sample with Cy5 and the reference with
Cy3, using the mirVana miRNA Labeling Kit (Ambion)
following the manufacturer recommended protocol. After
labeling, the samples and the reference were co-hybrid-
ized to the miRNA array at room temperature over night.
Both the processed cDNA and the miRNA array slides
were scanned by GenePix scanner Pro 4.0 (Axon, Sunny-
vale, CA, USA).

Data and statistical analyses

The raw microarray data set was filtered according to a
standard procedure to exclude spots with minimum
intensity that was arbitrarily set to an intensity parameter
of > 300 for cDNA expression data and > 100 for the
miRNA microarray data in both fluorescence channels. If
the fluorescence intensity of one channel was below the
cut-off while the other was above, the lower channel
intensity was overridden. Spots with diameters < 25 pm
for cDNA expression array and < 10 pm for miRNA micro-
arry and flagged spots were also excluded from the analy-
ses. Then, the filtered data were normalized using Lowess
Smoother and retrieved by the BRB ArrayTool http://
linus.nci.nih.gov/BRB-ArrayTools.html developed at the
National Cancer Institute (NCI), Biometric Research
Branch, Division of Cancer Treatment and Diagnosis.
Hierarchical cluster analysis and TreeView software [31]
were used for visualization [32]. All of the predictions of
miRNA gene targets were made using BRB ArrayTool
microRNA  targets http://linus.nci.nih.gov/BRB-Array
Tools.html developed at the NCI, Biometric Research
Branch, Division of Cancer Treatment and Diagnosis.

Results

Peripheral blood leukocytes and hematopoietic progenitor
cells

PBMC concentrates were collected by apheresis from 7
healthy subjects. B cells, T cells, NK cells, and monocytes
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were isolated from each PBMC concentrate. 92% to 98%
of the isolated B cells expressed CD21, 95% to 98% of T
cells expressed CD3, 90% to 97% of NK cells expressed
CD56 and 92% to 98% of monocytes expressed CD14.
Mobilized peripheral blood HSCs were collected from 13
healthy subjects: 5 were given G-CSF and their HSCs iso-
lated with anti-CD34 while 4 were given AMD3100 alone
and 4 were given AMD3100 plus G-CSF and their HSCs
isolated with anti-CD133. In the four donors given
AMD3100 plus G-CSF the concentration of circulating
CD34+ cells increased from 62 + 45 x 10¢/L prior to the
administration of AMD3100 to 215 + 117 x 10%/L twelve
hours after AMD3100 was given, suggesting that
AMD3100 was responsible for mobilizing a substantial
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portion of the circulating CD34+ cells. In the four donors
given AMD3100 the CD34+ cell counts increased from a
baseline level of 3 + 4 x 10°/L to 23 + 4 x 10%/L 6 hours
after the administration of AMD3100.

Comparison of miRNA expression among hematopoietic
progenitor cells and peripheral blood leukocytes

Among the 13 HSC samples and the 28 peripheral blood
leukocyte (PBL) samples analyzed > 80% of the samples
expressed 148 miRNAs of the 457 human miRNA in our
chip. Unsupervised hierarchical clustering analysis based
on the 148 miRNAs revealed 3 distinct groups: the exclu-
sively HSC cluster; the T (n = 5) and NK cell (n = 3) cluster;
and the B cell and monocyte dominant cluster which con-
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MicroRNA (miRNA) expression profiles of hematopoietic stem cells (HSCs) and peripheral blood leukocytes
(PBLs). RNA was isolated from T cells, B cells, monocytes and NK cells from 7 subjects, G-CSF-mobilized CD34+ cells from
5 subjects, AMD3100 (A)-mobilized CD 133+ cells from 4 subjects, and AMD3100 plus G-CSF (A+G)-mobilized CD 133+ cells
from 4 subjects and miRNA expression was analyzed using an expression array with 457 human miRNAs. A) Unsupervised
hierarchical clustering of Eisen was used to analyze the 148 miRNAs that remained after filtering (miRNA expressed in > 80%
of samples). B) Signature miRNAs whose expression was markedly up-regulated in HSCs or PBLs.
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tained a mixture of B cells (n = 7), monocytes (n =7), T
cells (n = 2) and NK cells (n = 4) (Figure 1A). Within the
HSC group the 4 AMD3100-mobilized and the 4
AMD3100 plus G-CSF-mobilized CD133+ cells clustered
together, but separate from the G-CSF-mobilized CD34+
cells.

The make-up of the miRNAs that separated HSCs and
PBLs differed markedly. Eight signature miRNAs demon-
strated increased expression and 3 miRNAs decreased
expression in HSCs compared to PBLs (Figure 1B). The 8
signature HSC miRNAs whose expression was increased
included miR-19a, -19b, -20a, and 20b, which are part of
the polycistronic cancer-associated miR-17-92 cluster. The
3 signature miRNAs whose expression was greatest in the
PBL samples were miR-142-3p, miR-21, and miR-142-5p.
Both probes for miR-20b were up-regulated in HSCs and
both for miR-142-3p were up-regulated in PBLs.

To identify the entire set of miRNAs whose expression dif-
fered between HSCs and PBLs, the expression of miRNAs
by all 13 HSC samples was compared with those by all 28
PBL samples (t-test, p < 0.005). The expression of 35 miR-
NAs differed between the two types of cells: the expression
of 13 miRNAs were increased in HSCs and 22 miRNAs
were increased in PBLs (Table 1). The expression of two
miRNAs, miR-126 and miR-10a, were markedly increased

http://www.translational-medicine.com/content/6/1/39

in HSCs. Both miR-126 and miR-10a and 7 others, miR-
19a, -19b, -17-5p, 20b, -93, -130a and -221, have been
previously reported to be expressed by HSCs [33-35].
Among the 13 miRNAs whose expression was increased in
HSCs were 3 miRNAs belonging to the cancer-associated
miR-17-92 cluster; miR-19a, 19b, and -17-5p. When the
expression of all the miRNAs in the miR-17-92 cluster (n
= 7) were compared between HSCs and PBLs, 5 of the 7
were increased in HSCs (Table 2). Regulated by the onco-
gene cMyc, the miR-17-92 cluster targets large numbers of
genes. Consistent with this notion, the expression of cMyc
gene was increased 3.3-fold in HSCs based on our gene
expression analysis. The expression of 3 miRNAs in a sec-
ond cancer-associated miR-106-303 cluster were also
increased in HSCs (Table 2). In contrast, expression of two
cancer suppressing miRNAs, miR-15a and miR-16, were
decreased in HSCs.

Among the 148 miRNAs 47 were differentially expressed
between AMD3100-mobilized CD133+ cells and the G-
CSF-mobilized CD34+ cells (t-tests, p < 0.005). The
expression of 17 was increased in the AMD3100 group
and 30 were increased in the G-CSF group (data not
shown).

The expression of 4 miRNAs were markedly increased in
PBL: miR-142-3p, miR-218, miR-21, and miR-379. In

Table I: MicroRNAs (miRs) whose expression differed among 13 hematopoietic stem cell

miRs whose expression was
increased in HSCs

Fold-increase

miRs whose expression Fold-increase

was increased in PBLs

hsa-miR-126 14.43 hsa-miR-142-3p 15.66
hsa-miR-10a 13.46 hsa-miR-218 11.07
hsa-miR-19a 3.89 hsa-miR-21 8.46
hsa-miR-19b 3.1 hsa-miR-379 7.63
hsa-mir-595 2.98 hsa-miR-381 4.6l
hsa-miR-146a 2.72 hsa-miR-29b 3.83
hsa-miR-93 2.56 hsa-miR-26b 3.54
hsa-miR-221 2.38 hsa-miR-30c 3.12
hsa-miR-20b 2.35 hsa-miR-142-5p 251
hsa-miR-130a 2.25 hsa-miR-29a 2.49
hsa-miR-34a 2,12 hsa-let-7g 2.49
hsa-miR-363 1.92 hsa-let-7i 242
hsa-miR-17-5p 1.89 hsa-miR-191 2.3
hsa-miR-30b 2.03
hsa-let-7b 1.88
hsa-miR-26a 1.85
hsa-miR-16 1.78
hsa-let-7c 1.75
hsa-miR-30a-5p 1.73
hsa-miR-373 1.62
hsa-mir-594 1.6
hsa-mir-610 1.34
(HSC) and 28 peripheral blood leukocyte (PBL) samples*
* The expression of miRs between the two groups were compared with t-tests (p < 0.005)
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Table 2: Cancer-associated microRNAs (miRNAs) whose
expression was up- and down-regulated in hematopoietic stem
cells (HSCs)

Cluster miR-17-92

miRNA Fold-increase in HSCs P
17-p5 1.89 0.004
17-p3 NC NS

18a 1.31 0.018
19a 3.89 4 x 107
20a 1.55 0.015
19b-1 3.1 1.3 x 10-¢
92-1 NC NS
Cluster miR-106-363
miRNA Fold-increase in HSCs P
106a 1.55 0.016
18b NC NS
20b 2.34 2.9 x |005
19b-2 3.1 1.3 x 10-06
92-2 NC NS
363 NC NS
Cluster miR-15-16
miRNA Fold-decrease in HSCs P
15a 3.33 0.007466
16 1.78 9.93 x 104

NC = no change
NS = not significant

addition to these 4 miRNAs, expression of miR-16 which
belongs to the leukemia associated cluster miR-15a-16
was also increased.

To identify miRNAs uniquely expressed among PBLs, 5-
way ANOVA was performed to compare the expression of
the 148 miRNAs among T cell, B cell, monocyte, NK cell
and the HSC samples. T cells were characterized by
increased expression of miR-146a, -146b, -29a, and -29b
and B cells were characterized by the increased expression
of miR-29a -29b, and -29c¢ (Table 3). The expression of
several miRNAs including miR-223 and miR-21 were
increased in monocytes, but none were increased NK cells
(Table 3).

cDNA expression profiling

Analysis of miRNA expression revealed that HSCs and
PBLs had unique miRNA expression profiles. To investi-
gate this further, gene expression profiles were also com-
pared using cDNA expression microarrays which

http://www.translational-medicine.com/content/6/1/39

contained 17,088 genes. Unsupervised hierarchical clus-
tering of the 11,023 genes that were expressed in > 80% of
the samples separated the HPC and PBL samples into two
distinct groups (Figure 2). All of the HSC samples clus-
tered separately from mature PBL subsets. The AMD3100-
mobilized CD133+ cells and the AMD3100 plus G-CSF-
mobilized CD133+ cells clustered together and again were
considered as one group, the AMD3100 group. The two
different types of HSCs, AMD3100-mobilized CD133+
cells and G-CSF-mobilized CD34+ cells clustered sepa-
rately (Figure 2). In addition, T cell, B cell, monocyte, and
NK cell samples clustered into separate groups (Figure 2).

A comparison of genes expressed by HSCs and PBLs
revealed that 5,392 genes were differentially expressed
among the two types of cells (t-tests, p < 0.001). The 30
genes whose expression increased the greatest in HSCs
included several transcription factors and oncogenes such
as GATA2 and N-myc, while the 30 genes whose expres-
sion was increased the most in PBLs were enriched for
genes known to be expressed by circulating leukocytes
such as Fc-y receptor III (CD16), integrin o M subunit and
IL-10 receptor a (Table 4).

Discussion

In this study we discovered that miRNA expressed by HSC
differed from those expressed by PBLs. We also found that
miRNA profiling and cDNA expression analysis are poten-
tially useful tools for the analysis of clinical HSCs derived
by different mobilization and isolation methods which
may yield functionally diverse products.

Among the 13 miRNAs increased in HSCs miR-10a, -17-
5p, -19a, -19b, -20b, -93, -126, -130a, and -221; have pre-
viously been found to be expressed by HSCs [33-36]. miR-
126 and miR-10a have been found to be down-regulated
in erythrocyte and megakaryocyte precursors [33,36].
miR-221 has previously been shown to be important in
erythropoiesis; the expression of miR-221 and -222
inhibit erythropoiesis [37]. The expression of miR-221
has been reported to be down regulated in CD34+ cells
during erythropoesis [33,37]. The expression of miR-221
is also increased in papillary thyroid carincomas [38] and
is involved with the pathogenesis of hepatocelluar carin-
coma [39] and prostate cancer [40].

Polycistronically transcribed miRNA clusters, so called
onco-miR clusters, were also highly expressed by HSCs
compared to PBLs. These findings are consistent with the
theory that stem cells are important in cancer. The miR-
17-92 cluster has been reported to be up-regulated in dif-
fuse large B cell lymphoma (DLBCL), lung, breast, pros-
tate, and colon cancer [41-43]. Venurini and colleagues
found that the miR-17-92 cluster was up-regulated in
CD34+ cells from healthy subjects and those with early-
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Table 3: MicoRNAs (miRNAs) characteristic of each type of peripheral blood leukocyte*

T cells NK cells
Increased FC Decreased FC Increased FC Decreased FC
miR-146b 4.05 miR-223 16.8 None NA miR-19a 3.54
miR-29b 3.86 miR-181b 2.4 miR-19b 3.06
miR-146a 345 miR-93 2.32 miR-92 1.85
miR-29a 3.38 miR-20b 2.19
miR-17-5p 2.0l
miR-20a 1.88
miR-106a 1.86
Monocytes B cells
Increased FC Decreased FC Increased FC Decreased FC
miR-223 21.0 miR-146b 5.85 miR-29b 4.53 miR-22 7.62
miR-21 10.1 miR-146a 571 miR-2%9a 3.66 miR-23a 6.15
miR-424 5.74 miR-29¢ 2.92 miR-29¢ 3.05 miR-24 5.87
miR-365 3.28 miR-146b 3.33
miR-191 3.28 miR-27a 3.29
miR-103 3.19 miR-23b 2.42
miR-23a 3.1
miR-27a 2.85
miR-15a 2.77
miR-374 2.74
miR-107 2.58
miR-106b 2.33
miR-16 2.1
miR-422b 2.01
miR-23b 1.78
miR-185 1.62

*The groups of cells were compared using F-tests (p < 0.005)
FC = fold change

chronic phase chronic myelogenous leukemia, but was
not up-regulated in CD34+ cells from subjects with CML
blast crisis [44]. In addition, 3 of 6 members of the cancer-
associated miR-106-363 cluster were also up-regulated in
HSCs. Elevated expression of this cluster has been found
in T cell leukemia [45] and T cell lymphoma [46].

miR-21 was increased in PBLs. miR-21 has also been
found to be increased in chronic lymphocytic leukemia
[47], B cell lymphomas [48], breast cancer [49], pancreatic
cancer [50], head and neck cancer cell lines [51]. In addi-
tion, the expression of miR-16 was greater in PBLs, espe-
cially in monocytes, than HSCs. miR-15 and miR-16 are
cancer-associated miRNA that are down-regulated in B-
cell chronic lymphocyte leukemia [52,53] and pituitary
adenomas [54] but upregulated in acute promyelocytic
leukemia [55]. We also found that T cells were character-
ized by the upregulation of miR-29a and -29b and B cells
by miR-29a, -29b, and -29c. These miRNA are down-regu-
lated in aggressive B cell lymphoma [56].

At the transcription level we found that the expression of
a number of oncogenes and genes related to transcription
was greater in HSCs than in PBLs. The expression of
GATA2, a transcription factor important in hematopoietic
stem cell and endothelial cell differentiation [57,58] was
137-fold greater in HSCs and that of N-myc was 97-fold
greater. Computational gene target prediction http://
www.targetscan.org/ indicates that GATA2 is targeted by
miR-27a whose expression was 2-fold less in HSCs than
PBLs (p = 0.0069).

An interesting finding of this study resides in the differ-
ences in both miRNA and gene expression found between
G-CSF-mobilized CD34+ cells and AMD3100-mobilized
CD133+ cells. While both miRNA expression profiling
and DNA expression profiling differentiated the two dif-
ferent types of HSCs, these two populations were
obtained using different HSC mobilization and isolation
procedures. It is not certain if the differences in the two
stem cell types were due to the different mobilizing agents
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Figure 2

Gene expression profiles of hematopoietic stem cells (HSCs) and peripheral blood leukocytes (PBLs). cDNA
was isolated from T cells, B cells, monocytes and NK cells from 7 subjects, G-CSF (G)-mobilized CD34+ cells from 5 subjects,
AMD3100 (A)-mobilized CD 133+ cells from 4 subjects and AMD3100 plus G-CSF (A+G)-mobilized CD 133+ cells from 4 sub-
jects. cDNA expression was analyzed using an expression microarray with 17,500 cDNA. Unsupervised hierarchical clustering
of Eisen was used to analyze the |1,023 genes that remained after filtering (cDNA expressed in > 80% of samples).

or isolation antibodies. We suspect that both the mobiliz-
ing agents and antibodies contributed to the differences.
In addition, the G-CSF-mobilized CD34+ cells underwent
an additional freeze-thaw cycle. This was not expected to
affect the HSCs, but we can not exclude this possibility.
Further studies are needed which compare HSCs mobi-
lized with AMD3100 alone and with G-CSF alone and
with both types of stem cells isolated with the same mon-
oclonal antibody. Since both CD34 and CD133 are being
used to isolate stem cells for clinical applications, HSCs
mobilized with one agent and isolated with each antibody
should also be compared.

When considering new or different mobilization or isola-
tion protocols, changes in both the quantity and quality
of HSCs should be considered. The quantitation of
CD34+ cells has been the gold standard for assessing the
potency of HSCs for clinical therapies. When comparing
HSCs mobilized with G-CSF from different subjects, dif-
ferent G-CSF mobilization protocols, or different HSC
collection protocols, measuring CD34+ cells is a good
indicator of the potency of the HSCs. However, if stem
cells mobilized with G-CSF are to be compared with those
mobilized with AMD3100 or AMD3100 plus G-CSF,
measuring only CD34+ or CD133+ cells may not com-
pletely reflect the differences among these types of cells.
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Table 4: Genes differentially expressed between hematopoietic stem cells (HSCs) and peripheral blood leukocytes (PBLs)

Expression Increased in HSCs

Expression Increased in PBLs

Gene Symbol Description Fold Gene Description Fold Change
Change Symbol
GATA2 GATA-binding protein 2 237.82 CARDI4 Caspase recruitment domain protein 14 25.59
MYCN N-myc 97.75 LTBR Lymphotoxin-Beta receptor precursor = 18.83
Tumor necrosis factor receptor 2 related
protein = Tumor necrosis factor C
receptor
CRHBP CRF-BP = corticotropin-releasing factor 65.52 GPR65  TDAGS = putative G protein-coupled 18.33
binding protein receptor induced during activation-
induced apoptosis of T cells = G protein-
coupled receptor 65
FHLI Four and a half LIM domains | 582 FCGR3A CDI6 = Fcgamma receptor llla 18.15
ERG V-ets erythroblastosis virus E26 oncogene 43.57 ITGAM  Integrin, alpha M 16.96
homolog (avian) (complement component 3 receptor 3
subunit)
NPR3 Natriuretic peptide receptor C/guanylate 42.04 SGSH N-sulfoglucosamine sulfohydrolase 16.64
cyclase C (sulfamidase)
(atrionatriuretic peptide receptor C)
SCHIPI Schwannomin interacting protein | 41.77 ITGB7 Integrin, beta 7 16.39
MSRB3 Methionine sulfoxide reductase B3 35.29 GNLY Granulysin 15.21
MYB V-myb myeloblastosis viral oncogene 3299  ALOXSAP Arachidonate 5-lipoxygenase-activating I15.11
homolog (avian) protein
DEPDCé DEP domain containing 6 28.85 CD48 CD48 = BLAST-I 14.81
EPDRI Ependymin related protein | (zebrafish) 27.88 ILIORA  Interleukin 10 receptor, alpha 13.71
TRH Thyrotropin-releasing hormone 26.63 CX3CRI  Chemokine (C-X3-C motif) receptor | 13.64
NGFRAPI Nerve growth factor receptor (TNFRSF16) 25.86 COTLI  Coactosin-like | (Dictyostelium) 13.4
associated protein |
SERPINGI Serpin peptidase inhibitor, clade G (Cl 25.83 ADAMI9 ADAM metallopeptidase domain 19 13.24
inhibitor), member |, (angioedema, (meltrin beta)
hereditary)
MAP7 Microtubule-associated protein 7 25.11 IL2RB IL-2 receptor beta chain 13
SOCSs2 Suppressor of cytokine signaling 2 24.44 ITK IL2-inducible T-cell kinase 11.91
TSC22DI TSC22 domain family, member | 24.12 KLRC4  Killer cell lectin-like receptor subfamily 11.36
C, member 4
HIFO HI histone family, member 0 22.71 CCL4 MIP-I beta 11.22
RBPMS RNA binding protein with multiple splicing 22.67 CTSH Cathepsin H 11.18
CTDSPL CTD (carboxy-terminal domain, RNA 22.64 EBI2 Epstein-Barr virus induced gene 2 10.69
polymerase Il, polypeptide A) small (lymphocyte-specific G protein-coupled
phosphatase-like receptor)
CDCA7 Cell division cycle associated 7 22.49 GIMAP4  GTPase, IMAP family member 4 10.28
CYTLI Cytokine-like | 20.9 POU2F2  POU domain, class 2, transcription factor 10.22
2
FLT3 Fms-related tyrosine kinase 3 20.45 CXCR4  CXCR4 = CXC chemokine receptor 4 10.11
PRKAR2B Protein kinase, cAMP-dependent, 20.09 CYP4AIll Cytochrome P450, family 4, subfamily A, 10.1
regulatory, type Il, beta polypeptide | |
TRIM58 Tripartite motif-containing 58 19.18 LGALS3  Lectin, galactoside-binding, soluble, 3 9.61
(galectin 3)
FSCNI Fascin homolog |, actin-bundling protein 18.91 SNX27  Sorting nexin family member 27 9.44
(Strongylocentrotus purpuratus)
Clorfl50 Chromosome | open reading frame 150 18.83 TRIM26  Tripartite motif-containing 26 9.23
TRH Thyrotropin-releasing hormone 17.56 SNX27  Sorting nexin family member 27 9.05
KIT V-kit Hardy-Zuckerman 4 feline sarcoma 17.27 CSPG2  Chondroitin sulfate proteoglycan 2 8.89
viral oncogene homolog (versican)
WASFI WAS protein family, member | 16.75 1L32 Interleukin 32 8.76
*The groups were compared using t-tests (p < 0.001).
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Measures in addition of CD34 and CD133 are needed to
more completely characterize HSCs.

Our results show that the global miRNA and cDNA
expression assessment can distinguish different types of
HSCs. Both types of global gene expression arrays were
able to distinguish the two types of HSCs that we studied
and both should be useful for potency testing of clinical
HPC components. miRNA and cDNA microarray assays
with several thousand probes usually require several days
to complete, but it would be possible to more rapidly ana-
lyze the expression of a smaller selected group of miRNA
or genes.

In conclusion, HSCs and PBLs have unique miRNA
expression profiles and many cancer-associated miRNA
are expressed by HSCs. miRNA and gene expression
microarrays maybe useful for assessing differences in
HSCs.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

All of the authors read and approved the final manuscript.
The studies were designed by PJ and DS and were pre-
formed by PJ, JR, and JWS. Stem cell mobilization and iso-
lation was performed under the direction of RC and HK.
The data was analyzed by PJ, EW, DS and FM. PJ and DS
wrote the manuscript with help from RC and EW.

Acknowledgements

We thank the Staff of the Dowling Clinic, DTM, CC, NIH for collecting the
cells and the staff of the Cell Processing Laboratory, DTM, CC, NIH for iso-
lating the CD34+ and CD 133+ cells. The study was funded by the NIH,
Bethesda, Maryland, USA.

References

I. Gilboa E: DC-based cancer vaccines.
117:1195-1203.

2. Wrzesinski C, Paulos CM, Gattinoni L, Palmer DC, Kaiser A, Yu Z,
Rosenberg SA, Restifo NP: Hematopoietic stem cells promote
the expansion and function of adoptively transferred antitu-
mor CD8 T cells. J Clin Invest 2007, 117:492-501.

3.  Losordo DW, Schatz RA, White CJ, Udelson JE, Veereshwarayya V,
Durgin M, Poh KK, Weinstein R, Kearney M, Chaudhry M, Burg A,
Eaton L, Heyd L, Thorne T, Shturman L, Hoffmeister P, Story K, Zak
V, Dowling D, Traverse JH, Olson RE, Flanagan ], Sodano D,
Murayama T, Kawamoto A, Kusano KF, Wollins ], Welt F, Shah P,
Soukas P, Asahara T, Henry TD: Intramyocardial transplantation
of autologous CD34+ stem cells for intractable angina: a
phase l/lla double-blind, randomized controlled trial. Circula-
tion 2007, 115:3165-3172.

4.  Kurdi M, Booz GW: G-CSF-based stem cell therapy for the
heart-unresolved issues part A: Paracrine actions, mobiliza-
tion, and delivery. Congest Heart Fail 2007, 13:221-227.

5. Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder
M, Wagner ], Vadhan-Raj S, Benninger L, Rubinstein P, .: Growth
characteristics and expansion of human umbilical cord blood
and estimation of its potential for transplantation in adults.
Proc Natl Acad Sci U S A 1992, 89:4109-4113.

6.  Dreger P, Haferlach T, Eckstein V, Jacobs S, Suttorp M, Loffler H,
Muller-Ruchholtz W, Schmitz N: G-CSF-mobilized peripheral

J Clin Invest 2007,

20.

21.

22.

http://www.translational-medicine.com/content/6/1/39

blood progenitor cells for allogeneic transplantation: safety,
kinetics of mobilization, and composition of the graft. Br |
Haematol 1994, 87:609-613.

Stroncek DF, Clay ME, Herr G, Smith }, Jaszcz WB, lIstrup S, McCul-
lough J: The kinetics of G-CSF mobilization of CD34+ cells in
healthy people. Transfus Med 1997, 7:19-24.

Korbling M, Huh YO, Durett A, Mirza N, Miller P, Engel H, Anderlini
P, van Besien K, Andreeff M, Przepiorka D, Deisseroth AB, Champlin
RE: Allogeneic blood stem cell transplantation: peripherali-
zation and yield of donor-derived primitive hematopoietic
progenitor cells (CD34+ Thy-ldim) and lymphoid subsets,
and possible predictors of engraftment and graft-versus-host
disease. Blood 1995, 86:2842-2848.

Prosper F, Stroncek D, Verfaillie CM: Phenotypic and functional
characterization of long-term culture-initiating cells present
in peripheral blood progenitor collections of normal donors
treated with granulocyte colony-stimulating factor. Blood
1996, 88:2033-2042.

Flomenberg N, Devine SM, Dipersio JF, Liesveld JL, McCarty JM, Row-
ley SD, Vesole DH, Badel K, Calandra G: The use of AMD3100
plus G-CSF for autologous hematopoietic progenitor cell
mobilization is superior to G-CSF alone. Blood 2005,
106:1867-1874.

Burroughs L, Mielcarek M, Little MT, Bridger G, Macfarland R, Fricker
S, LaBrecque J, Sandmaier BM, Storb R: Durable engraftment of
AMD3100-mobilized autologous and allogeneic peripheral-
blood mononuclear cells in a canine transplantation model.
Blood 2005, 106:4002-4008.

Larochelle A, Krouse A, Metzger M, Orlic D, Donahue RE, Fricker S,
Bridger G, Dunbar CE, Hematti P: AMD3100 mobilizes hemat-
opoietic stem cells with long-term repopulating capacity in
nonhuman primates. Blood 2006, 107:3772-3778.

Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kita-
mura Y, Yoshida N, Kikutani H, Kishimoto T: Defects of B-cell lym-
phopoiesis and bone-marrow myelopoiesis in mice lacking
the CXC chemokine PBSF/SDF-I. Nature 1996, 382:635-638.
Deichmann M, Kronenwett R, Haas R: Expression of the human
immunodeficiency virus type-l coreceptors CXCR-4 (fusin,
LESTR) and CKR-5 in CD34+ hematopoietic progenitor
cells. Blood 1997, 89:3522-3528.

Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L: The chem-
okine receptor CXCR-4 is expressed on CD34+ hematopoi-
etic progenitors and leukemic cells and mediates
transendothelial migration induced by stromal cell-derived
factor-1. Blood 1998, 91:4523-4530.

Aiuti A, Webb ], Bleul C, Springer T, Gutierrez-Ramos JC: The
chemokine SDF-1 is a chemoattractant for human CD34+
hematopoietic progenitor cells and provides a new mecha-
nism to explain the mobilization of CD34+ progenitors to
peripheral blood. | Exp Med 1997, 185:111-120.

Kim CH, Broxmeyer HE: In vitro behavior of hematopoietic
progenitor cells under the influence of chemoattractants:
stromal cell-derived factor-1, steel factor, and the bone mar-
row environment. Blood 1998, 91:100-110.

Liles WC, Broxmeyer HE, Rodger E, Wood B, Hubel K, Cooper S,
Hangoc G, Bridger GJ, Henson GW, Calandra G, Dale DC: Mobili-
zation of hematopoietic progenitor cells in healthy volun-
teers by AMD3100, a CXCR4 antagonist. Blood 2003,
102:2728-2730.

Devine SM, Flomenberg N, Vesole DH, Liesveld ], Weisdorf D, Badel
K, Calandra G, Dipersio JF: Rapid mobilization of CD34+ cells
following administration of the CXCR4 antagonist
AMD3100 to patients with multiple myeloma and non-Hodg-
kin's lymphoma. | Clin Oncol 2004, 22:1095-1102.

Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett
PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G,
Bridger G, Dale DC, Srour EF: Rapid mobilization of murine and
human hematopoietic stem and progenitor cells with
AMD3100, a CXCR4 antagonist. ] Exp Med 2005,
201:1307-1318.

Nervi B, Link DC, Dipersio JF: Cytokines and hematopoietic
stem cell mobilization. | Cell Biochem 2006, 99:690-705.

Hess DA, Bonde J, Craft TP, Wirthlin L, Hohm S, Lahey R, Todt LM,
Dipersio JF, Devine SM, Nolta JA: Human progenitor cells rapidly
mobilized by AMD3100 repopulate NOD/SCID mice with
increased frequency in comparison to cells from the same

Page 10 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17476349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17273561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17273561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17273561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17562958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17562958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17562958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17673875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17673875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17673875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1373894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1373894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7527648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7527648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7527648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9089980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9089980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7545476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7545476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7545476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8822922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8822922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8822922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15890685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15890685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15890685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16105977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16105977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16439684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16439684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16439684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8757135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8757135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8757135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9160656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9160656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9160656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9616148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9616148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9616148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8996247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8996247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8996247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9414273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9414273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9414273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15020611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15020611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15020611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15837815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15837815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15837815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16888804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16888804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17382247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17382247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17382247

Journal of Translational Medicine 2008, 6:39

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

donor mobilized by granulocyte colony stimulating factor.
Biol Blood Marrow Transplant 2007, 13:398-411.
Fruehauf S, Seeger T, Maier P, Li L, Weinhardt S, Laufs S, Wagner W,
Eckstein V, Bridger G, Calandra G, Wenz F, Zeller WJ, Goldschmidt
H, Ho AD: The CXCR4 antagonist AMD3100 releases a sub-
set of G-CSF-primed peripheral blood progenitor cells with
specific gene expression characteristics. Exp Hematol 2006,
34:1052-1059.

Lang P, Bader P, Schumm M, Feuchtinger T, Einsele H, Fuhrer M,
Weinstock C, Handgretinger R, Kuci S, Martin D, Niethammer D,
Greil J: Transplantation of a combination of CDI133+ and
CD34+ selected progenitor cells from alternative donors. Br
J Haematol 2004, 124:72-79.

Lang P, Schumm M, Greil J, Bader P, Klingebiel T, Muller I, Feuchtinger
T, Pfeiffer M, Schlegel PG, Niethammer D, Handgretinger R: A com-
parison between three graft manipulation methods for hap-
loidentical stem cell transplantation in pediatric patients:
preliminary results of a pilot study. Kiin Padiatr 2005,
217:334-338.

Bitan M, Shapira MY, Resnick IB, Zilberman I, Miron S, Samuel S, Ack-
erstein A, Elad S, Israel S, Amar A, Fibach E, Or R, Slavin S: Success-
ful transplantation of haploidentically mismatched
peripheral blood stem cells using CDI33+-purified stem
cells. Exp Hematol 2005, 33:713-718.

Isidori A, Motta MR, Tani M, Terragna C, Zinzani P, Curti A, Rizzi S,
Taioli S, Giudice V, D'Addio A, Gugliotta G, Conte R, Baccarani M,
Lemoli RM: Positive selection and transplantation of autolo-
gous highly purified CDI33(+) stem cells in resistant/
relapsed chronic lymphocytic leukemia patients results in
rapid hematopoietic reconstitution without an adequate
leukemic cell purging. Biol Blood Marrow Transplant 2007,
13:1224-1232.

Tura O, Barclay GT, Roddie H, Davies |, Turner ML: Absence of a
relationship between immunophenotypic and colony enu-
meration analysis of endothelial progenitor cells in clinical
haematopoietic cell sources. | Transl Med 2007 in press.

Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM: High-fidel-
ity mRNA amplification for gene profiling. Nat Biotechnol 2000,
18:457-459.

Wang E, Miller LD, Ohnmacht GA, Mocellin S, Perez-Diez A,
Petersen D, Zhao Y, Simon R, Powell JI, Asaki E, Alexander HR, Duray
PH, Herlyn M, Restifo NP, Liu ET, Rosenberg SA, Marincola FM: Pro-
spective molecular profiling of melanoma metastases sug-
gests classifiers of immune responsiveness. Cancer Res 2002,
62:3581-3586.

Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis
and display of genome-wide expression patterns. Proc Natl
Acad Sci U S A 1998, 95:14863-14868.

Dennis G Jr., Sherman BT, Hosack DA, Yang ), Gao W, Lane HC,
Lempicki RA: DAVID: Database for Annotation, Visualization,
and Integrated Discovery. Genome Biol 2003, 4:3.

Choong ML, Yang HH, McNiece I: MicroRNA expression profil-
ing during human cord blood-derived CD34 cell erythropoi-
esis. Exp Hematol 2007, 35:551-564.

Georgantas RW lll, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld
S, Calin GA, Croce CM, Civin Cl: CD34+ hematopoietic stem-
progenitor cell microRNA expression and function: A circuit
diagram of differentiation control. Proc Natl Acad Sci U S A 2007.
Liao R, Sun J, Zhang L, Lou G, Chen M, Zhou D, Chen Z, Zhang S:
MicroRNAs play a role in the development of human hemat-
opoietic stem cells. | Cell Biochem 2008, 104(3):805-817.

Garzon R, Pichiorri F, Palumbo T, luliano R, Cimmino A, Ageilan R,
Volinia S, Bhatt D, Alder H, Marcucci G, Calin GA, Liu CG, Bloomfield
CD, Andreeff M, Croce CM: MicroRNA fingerprints during
human megakaryocytopoiesis. Proc Natl Acad Sci U S A 2006,
103:5078-5083.

Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F,
Lulli V, Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino
A, Croce CM, Peschle C: MicroRNAs 221 and 222 inhibit nor-
mal erythropoiesis and erythroleukemic cell growth via kit
receptor down-modulation. Proc Natl Acad Sci U S A 2005,
102:18081-18086.

He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin
GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la CA:
The role of microRNA genes in papillary thyroid carcinoma.
Proc Natl Acad Sci U S A 2005, 102:19075-19080.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.
50.

51.

52.

53.

54.

55.

56.

http://www.translational-medicine.com/content/6/1/39

Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG,
Calin GA, Giovannini C, Ferrazzi E, Grazi GL, Croce CM, Bolondi L,
Negrini M: Cyclin Gl is a target of miR-122a, a microRNA fre-
quently down-regulated in human hepatocellular carcinoma.
Cancer Res 2007, 67:6092-6099.

Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA,
Farace MG: miR-221 and miR-222 expression affects the pro-
liferation potential of human prostate carcinoma cell lines by
targeting p27kip|l. | Biol Chem 2007.

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone
R, lorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G,
Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A micro-
RNA expression signature of human solid tumors defines
cancer gene targets. Proc Natl Acad Sci U S A 2006, 103:2257-2261.
He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Good-
son S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond
SM: A microRNA polycistron as a potential human oncogene.
Nature 2005, 435:828-833.

Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tom-
ida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T: A polycistronic
microRNA cluster, miR-17-92, is overexpressed in human
lung cancers and enhances cell proliferation. Cancer Res 2005,
65:9628-9632.

Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muck-
enthaler MU, Ganser A, Eder M, Scherr M: Expression of the miR-
17-92 polycistron in chronic myeloid leukemia (CML) CD34+
cells. Blood 2007, 109:4399-4405.

Landais S, Landry S, Legault P, Rassart E: Oncogenic potential of
the miR-106-363 cluster and its implication in human T-cell
leukemia. Cancer Res 2007, 67:5699-5707.

Lum AM, Wang BB, Li L, Channa N, Bartha G, Wabl M: Retroviral
activation of the mir-106a microRNA cistron in T lym-
phoma. Retrovirology 2007, 4:5.

Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N, Tavolaro S, Cas-
tellano L, Magrelli A, Citarella F, Messina M, Maggio R, Peragine N,
Santangelo S, Mauro FR, Landgraf P, Tuschl T, Weir DB, Chien M,
Russo JJ, Ju ], Sheridan R, Sander C, Zavolan M, Guarini A, Foa R, Mac-
ino G: Quantitative technologies establish a novel microRNA
profile of chronic lymphocytic leukemia. Blood 2007,
109:4944-4951.

Lawrie CH, Soneji S, Marafioti T, Cooper CD, Palazzo S, Paterson JC,
Cattan H, Enver T, Mager R, Boultwood |, Wainscoat JS, Hatton CS:
Microrna expression distinguishes between germinal center
B cell-like and activated B cell-like subtypes of diffuse large B
cell lymphoma. Int | Cancer 2007, 121:1156-1161.

SiML, Zhu S, WuH, Lu Z, Wu F, Mo YY: miR-21-mediated tumor
growth. Oncogene 2007, 26:2799-2803.

Lee EJ, Gusev Y, Jiang ], Nuovo GJ, Lerner MR, Frankel WL, Morgan
DL, Postier RG, Brackett D], Schmittgen TD: Expression profiling
identifies microRNA signature in pancreatic cancer. IntJ Can-
cer 2007, 120:1046-1054.

Tran N, McLean T, Zhang X, Zhao CJ, Thomson JM, O'Brien C, Rose
B: MicroRNA expression profiles in head and neck cancer cell
lines. Biochem Biophys Res Commun 2007, 358:12-17.

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler
H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich
F, Croce CM: Frequent deletions and down-regulation of
micro- RNA genes miRI5 and miR16 at 13ql4 in chronic
lymphocytic leukemia. Proc Natl Acad Sci U S A 2002,
99:15524-15529.

Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD,
Shimizu M, Cimmino A, Zupo S, Dono M, Dell'Aquila ML, Alder H,
Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM: MicroRNA
profiling reveals distinct signatures in B cell chronic lym-
phocytic leukemias. Proc Natl Acad Sci U S A 2004,
101:11755-11760.

Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC:
miR-15a and miR-16-1 down-regulation in pituitary adeno-
mas. | Cell Physiol 2005, 204:280-285.

Garzon R, Pichiorri F, Palumbo T, Visentini M, Ageilan R, Cimmino A,
Wang H, Sun H, Volinia S, Alder H, Calin GA, Liu CG, Andreeff M,
Croce CM: MicroRNA gene expression during retinoic acid-
induced differentiation of human acute promyelocytic leuke-
mia. Oncogene 2007, 26:4148-4157.

Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maxi-
mov V, Volinia S, Alder H, Liu CG, Rassenti L, Calin GA, Hagan JP,

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17382247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16863911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16863911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16863911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14675410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14675410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16307419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16307419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16307419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15911096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15911096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15911096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17889360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17889360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17889360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10748532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10748532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12097256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12097256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12097256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17379065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17379065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17379065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17293455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17293455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17293455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18189265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18189265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18189265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16549775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16549775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16330772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16330772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16330772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16365291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16365291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17616664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17616664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17569667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17569667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17569667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16461460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16461460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16461460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16266980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16266980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16266980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17284533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17284533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17284533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17575136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17575136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17575136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17442096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17442096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17442096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17327404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17327404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17487835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17487835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17487835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17072344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17072344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17149698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17149698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17475218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17475218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12434020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12434020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12434020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15648093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15648093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15648093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17260024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17260024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17260024

Journal of Translational Medicine 2008, 6:39

57.

58.

Kipps T, Croce CM: Tcll expression in chronic lymphocytic
leukemia is regulated by miR-29 and miR-181. Cancer Res
2006, 66:11590-11593.

Khandekar M, Brandt W, Zhou Y, Dagenais S, Glover TW, Suzuki N,
Shimizu R, Yamamoto M, Lim KC, Engel JD: A Gata2 intronic
enhancer confers its pan-endothelia-specific regulation.
Development 2007, 134:1703-1712.

Lugus JJ, Chung YS, Mills JC, Kim SI, Grass ], Kyba M, Doherty |M,
Bresnick EH, Choi K: GATAZ2 functions at multiple steps in
hemangioblast development and differentiation. Development
2007, 134:393-405.

http://www.translational-medicine.com/content/6/1/39

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17178851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17178851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17395646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17395646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17166922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17166922
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Hematopoietic progenitor cell isolation
	AMD3100 and AMD3100 plus G-CSF stem cell mobilization, collections and isolation
	G-CSF stem cell mobilization, collection, and isolation

	Non-mobilized PBMC collection and sample preparation
	RNA preparation, amplification and labeling
	cDNA expression array
	MicroRNA array

	Data and statistical analyses

	Results
	Peripheral blood leukocytes and hematopoietic progenitor cells
	Comparison of miRNA expression among hematopoietic progenitor cells and peripheral blood leukocytes
	cDNA expression profiling

	Discussion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

