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Abstract
The heterogeneity that soft tissue sarcomas (STS) exhibit in their clinical behavior, even within
histological subtypes, complicates patient care. Histological appearance is determined by gene
expression. Morphologic features are generally good predictors of biologic behavior, however,
metastatic propensity, tumor growth, and response to chemotherapy may be determined by gene
expression patterns that do not correlate well with morphology. One approach to identify
heterogeneity is to search for genetic markers that correlate with differences in tumor behavior.
Alternatively, subsets may be identified based on gene expression patterns alone, independent of
knowledge of clinical outcome. We have reported gene expression patterns that distinguish two
subgroups of clear cell renal carcinoma (ccRCC), and other gene expression patterns that
distinguish heterogeneity of serous ovarian carcinoma (OVCA) and aggressive fibromatosis (AF).
In this study, gene expression in 53 samples of STS and AF [including 16 malignant fibrous
histiocytoma (MFH), 9 leiomyosarcoma, 12 liposarcoma, 4 synovial sarcoma, and 12 samples of AF]
was determined at Gene Logic Inc. (Gaithersburg, MD) using Affymetrix GeneChip® U_133 arrays
containing approximately 40,000 genes/ESTs. Gene expression analysis was performed with the
Gene Logic Genesis Enterprise System® Software and Expressionist software. Hierarchical
clustering of the STS using our three previously reported gene sets, each generated subgroups
within the STS that for some subtypes correlated with histology, and also suggested the existence
of subsets of MFH. All three gene sets also recognized the same two subsets of the fibromatosis
samples that we had found in our earlier study of AF. These results suggest that these subgroups
may have biological significance, and that these gene sets may be useful for sub-classification of STS.
In addition, several genes that are targets of some anti-tumor drugs were found to be differentially
expressed in particular subsets of STS.

Introduction
Soft tissue sarcomas (STS) exhibit heterogeneity in their
clinical behavior, even within the same histological sub-

types. This heterogeneity is an important problem in the
treatment of patients with STS. Gene expression is felt to
play a critical role in cell development and malignant
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transformation, and gene expression profiles are of poten-
tial use in the classification and diagnosis of malignancies
[1-3]. Several recent studies have found distinctive gene
expression patterns that can differentiate between histo-
logic subtypes of STS [4-10].

Histological appearance is determined by gene expres-
sion. However, metastatic propensity, tumor growth, and
response to therapy may be determined by gene expres-
sion patterns that do not correlate well with morphology.
One approach to identify heterogeneity is to search for
markers that correlate with differences in tumor behavior.
Alternatively, subsets may be identified based on gene
expression patterns independent of knowledge of clinical
outcome. We have reported gene expression patterns that
distinguish two subsets of clear cell renal cell carcinoma
(ccRCC) [11], two major subgroups of aggressive fibroma-
tosis (AF) [12], and other patterns that distinguish border-
line from invasive serous ovarian carcinoma (OVCA)
[13].

In the current study, we sought to identify subsets of STS
based on patterns of gene expression using these three
gene sets. We also searched for the expression of genes
that encode targets of selected therapies in different STS
subsets. Gene expression levels were quantified by the use
of microarray technology using the Affymetrix GeneChip®

U_133 microarray, representing ~40,000 known genes
and expression sequence tags (ESTs). Hierarchical cluster-
ing of the STS using our three previously reported gene
sets, each generated subgroups within the STS that for
some, but not all, subtypes correlated with histology.

The term "malignant fibrous histiocytoma" (MFH) is cur-
rently used for pleomorphic sarcomas without identifia-
ble defined differentiation [14]. However, MFH may not
represent a distinct tumor entity; indeed many sarcomas
previously termed MFH appear to share biochemical
markers with other subtypes of STS, but are not readily
recognized as such based on their histologic appearance.
In this study, we also searched for potential subsets
among cases that were diagnosed as MFH. In a set of 16
MFH samples, two major subsets were identified on the
basis of gene expression.

We conclude that gene expression profiles may be useful
in sub-classifying STS. In addition, differences in gene
expression patterns may help identify potential therapies
in STS.

Materials and methods
Tissue samples
Tissue from 53 soft tissue tumors, including 41 sarcomas
and 12 AF (see additional file 1), were obtained from the
University of Minnesota Cancer Center's Tissue Procure-

ment Facility. Samples were obtained using protocols
approved by the University of Minnesota Institutional
Review Board. Tumor samples were identified by a pathol-
ogist, dissected ensuring the presence of gross tumor and
the absence of necrosis, and snap frozen in liquid nitrogen
within 30 min of excision. Parallel tissue sections of each
sample were processed routinely, and were examined by
light microscopy after H&E staining to confirm the patho-
logic nature of the sample. In addition, diagnoses were
also confirmed by the Tissue Procurement Facility pathol-
ogist and by a separate review by a pathologist at Gene
Logic Inc. (Gaithersburg, MD).

Pathology review and grading
Slides of the STS and AF tumors from which samples had
been obtained were reviewed independently by two
pathologists experienced in the field of STS without
knowledge of their gene expression profiles. All slides
available from primary tumors and implants/metastases
were reviewed, without knowledge of the original diagno-
sis or the clinical characteristics of the patients, and
assigned a histologic type and grade. Histologic type was
determined according to the WHO [15]. The mitotic rate
was determined by counting mitoses in 50 high-power
fields (HPF) and averaged mitotic counts for 10 HPF.
Necrosis was estimated from both the gross description of
the tumor and review of all available slides. Histologic
grading was performed according to the National Cancer
Institute (NCI) system proposed in 1984 by Costa [16]
and the updated version of the European system
(FNCLCC) [17]. In brief, the NCI system employs three
grades based on a combination of histologic diagnosis,
cellularity, cellular pleomorphism, mitotic activity and
tumor necrosis. A variation of the Costa grading system
(as described by Kandel et al [18]) was used, where a score
of 1 was assigned to each of the following features: > 6
mitoses/10 HPF, presence of cellular pleomorphism, pres-
ence of high tumor cellularity (> 50% cells to matrix), and
> 15% tumor necrosis. Tumors with a cumulative score of
1 were assigned grade 1, those with a score of 2 were
assigned grade 2, and those with a score of >/= 3 were
grade 3. The FNCLCC (Federation Nationale des Centres
de Lutte Contre le Cancer) system also employs three
grades. Briefly summarized, the FNCLCC system assigns a
score to tumor differentiation (1: sarcoma closely resem-
bling normal adult mesenchymal tissue; 2: sarcoma for
which the histologic typing is certain; 3: embryonal and
undifferentiated sarcomas; sarcomas of uncertain type), a
score for mitotic activity (1: 0–9/10 HPF; 2: 10–19/10
HPF; 3: 20 or more/10 HPF), and a score for tumor necro-
sis (0: no tumor necrosis; 1: 50% or less necrosis; 2: > 50%
necrosis). The histologic grade is 1 for total score 2 or 3;
grade 2 for total score 4 or 5; and grade 3 for total score 6,
7 or 8. An attempt to simplify the grading into a two-tiered
system of high and low grade tumors has also been pro-
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posed [18], and tumors were also subjectively classified
into two grades (high or low) and into three grades
(1,2,3) (see additional file 1).

Gene expression analysis
RNA was prepared and gene expression was determined at
Gene Logic Inc. using Affymetrix GeneChip® U_133
microarrays containing oligodeoxynucleotides that corre-
spond to approximately 40,000 genes/ESTs. Gene expres-
sion analysis was performed with the Gene Logic Genesis
Enterprise System® Software and Expressionist software as
previously described [7-9,11-13,19]. Samples underwent
stringent quality control measures in order to preserve the
integrity of the RNA before use in gene microarray experi-
ments. RNA was isolated by homogenization of frozen tis-
sue in extraction buffer in RNase-free conditions. RNA
quantity was determined spectrophotometrically, and the
quality was assessed on agarose gels to confirm the pres-
ence of non-degraded RNA. Tissue samples were not used
if the RNA yield was low or RNA degradation was evident.
Biotinylated cRNAs were prepared using standard Affyme-
trix protocols. Briefly, RNA was converted to first strand
cDNA followed by second strand synthesis. Double-
stranded cDNA was used as the template for in vitro tran-
scription using biotinylated ribonucleotides to generate
biotin-labeled cRNA. Biotinylated cRNA was fragmented
for target preparation and then hybridized on Affymetrix
GeneChip® U_133 microarrays according to the standard
Affymetrix protocols. Following hybridization, the micro-
arrays were washed and stained using an automated fluid-
ics system. The microarrays were then digitally scanned
and images of the average probe intensities were visually
monitored for any irregularities in the microarrays. Sam-
ples were rehybridized when images appeared flawed in
any way.

The integrity of the RNA sample was further monitored by
examining the relative expression of a probe from the 3'
end of beta-actin compared with the expression of a probe
from the 5' end of the same gene. In addition, internal
controls were provided on each Affymetrix microarray,
and samples with "flawed" data were not utilized. The
geometric means of the expression intensities of the rele-
vant gene fragments were computed, and the ratio was
reported as the fold change (up or down). Confidence
intervals and p values on the fold change were calculated
using a two-sided Welch modified two-sample t-test. Dif-
ferences were considered significant when p </= 0.05.
Principle Component Analysis (PCA), contrast analyses,
and e-Northern® analyses were performed using the Gene
Logic Genesis Enterprise System® Software. Clustering was
performed using the Eisen clustering software and viewed
using the Tree View software.

Results
Identification of AF subsets
In a previous study we reported that a set of AF samples
could be separated into two major subgroups, AF-1 to AF-
5 (AF-set A) and AF-6 to AF-12 (AF-set B), as determined
by gene expression patterns [12]. We identified a set of
200 gene fragments most differentially expressed between
the two subsets of AF (AF gene set). We recently per-
formed a similar series of gene expression analyses in a set
of ccRCC, and identified two major subgroups of ccRCC
[11]. Hierarchical clustering using the 167 gene fragments
most differentially expressed between the two ccRCC sub-
sets previously reported (RCC gene set) separated the AF
samples into two major groups (Fig 1, top). In similar
studies, we identified 200 gene fragments most differen-
tially expressed between borderline and invasive OVCA
(OVCA gene set) [13]. Similarly, hierarchical clustering of
the AF samples using the OVCA gene set separated the AF
samples into the same two major groups (Fig 1, bottom).
Only 9 genes were present in both the RCC and OVCA
gene sets, 16 genes in both the RCC and AF gene sets, and
4 genes in both the OVCA and AF gene sets (Table 1).

To better characterize the potential differences in expres-
sion of genes involved in specific signaling pathways and
potential therapeutic targets, a series of gene sets were
examined for differential expression between AF-set A (AF
1–5) and AF-set B (AF 6–12). First we examined a gene set
for wnt-signaling, since differential expression in AF sam-
ples of some genes involved in wnt-signaling has been
previously reported [12,20-27]. We found many genes
involved in the wnt-signaling pathway to be differentially
expressed in AF-set A compared with AF-set B. The genes
that were up-regulated 4-fold or more in AF-set B are
shown in Table 2. None were up-regulated in AF-set A.

Next we compared the expression of genes encoding
known growth factors, receptors, cytokines, proteins
involved in the immune response, and signaling path-
ways, including angiogenesis and mTOR in AF-set A com-
pared with AF-set B. The genes that were up-regulated 3-
fold or more in AF-set B compared to AF-set A are listed in
additional file 2. TGFB1I1, TGFB2, TGFB3, TGFBR1,
TGFBR2, IGF1, IGFBP3, IGFBP4, IGFBP7 HDGF, PDGFC,
PDGFRA, PDGFRB, HIF1A, EDNRA, CTGF, LEPR, and as
previously reported, FAP and ADAM12, were all over-
expressed in AF-set B compared with AF-set A. Genes
involved in the initiation of translation were also differen-
tially expressed in AF-set B compared with AF-set A.

Identification of STS subsets
We questioned whether these same gene sets might distin-
guish subgroups of STS independent of histologic diagno-
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Clustering of gene expression in the aggressive fibromatosis samples using the RCC gene set (top) and OVCA gene set (bot-tom) and the Eisen clustering software ClusterFigure 1
Clustering of gene expression in the aggressive fibromatosis samples using the RCC gene set (top) and OVCA gene set (bot-
tom) and the Eisen clustering software Cluster. The 12 AF samples were clustered using the Eisen clustering software Cluster 
and the set of 167 gene fragments from the U_133 microarray set most differentially expressed between two groups of ccRCC 
previously described [11] (top) and the set of 200 gene fragments most differentially expressed between borderline and inva-
sive OVCA [13] (bottom) as described in the text. Samples AF-1 to AF-5 formed a cluster, while samples AF-6 to AF-12 
formed another cluster. The tissue samples in the tree are joined by very short branches if they have gene expression patterns 
that are very similar to each other, and by increasingly longer branches as their similarity decreases.
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sis. Hierarchical clustering was performed with the 12 AF
samples, 4 synovial sarcomas, 7 myxoid liposarcomas, 5
other liposarcomas, and 9 leiomyosarcomas using the
RCC gene set (Fig 2A), the OVCA gene set (Fig 2B), and
the AF gene set (Fig 2C). Two major subgroups were
observed in each case. With the RCC gene set (Fig 2A), one
subgroup (solid circles and squares) contained 7 AF sam-
ples (AF-set B, i.e. AF-6 to AF-12) (solid squares), 4 leio-
myosarcoma samples (solid circles), 1 myxoid
liposarcoma (solid circle), and 1 round cell liposarcoma
(solid circle). When hierarchical clustering was done
using the OVCA gene set and the AF gene set (Fig 2B and
2C, respectively), this subgroup contained 3 additional
samples (solid triangles) (1 round cell liposarcoma, 1
myxoid liposarcoma, and 1 other liposarcoma). The other
major subgroup (open circles and squares), contained five
AF samples (AF-set A, i.e. AF-1 to AF-5) (open squares), all

four synovial sarcomas, the majority of the myxoid liposa-
rcomas and leiomyosarcomas, and two other liposarco-
mas.

Since the results of hierarchical clustering are dependent
on the composition of the sample sets, hierarchical clus-
tering was then performed using the same three gene sets
with the 25 STS samples, but without the AF samples (Fig
3). A similar clustering of the STS samples was again
observed, whereby a subgroup consisting of the same four
leiomyosarcoma samples, one myxoid liposarcoma, and
one round cell liposarcoma (solid circles) clustered
together, frequently with the three additional samples
(solid triangles). Also, LMS-7 was now included in this
cluster using all three gene sets.

Because MFH is not universally recognized as a diagnostic
entity, and since STS with the diagnosis of MFH can have
different biological behavior, we performed hierarchical
clustering of the 16 MFH samples using the 3 gene sets.
Hierarchical clustering using the RCC gene set generated
two major subsets (Fig 4A), hereafter termed MFH-A
(MFH-1 to MFH-9, indicated by an asterisk) and MFH-B
(MFH-10 to MFH-16). Hierarchical clustering of the MFH
samples using the OVCA gene set (Fig 4B), and the AF
gene set (Fig 4C) also generated two clusters of the MFH
samples similar to those described above. Since protein
kinases are involved in many signaling pathways, hierar-
chical clustering of the MFH samples was performed using
a set of 1500 probes that represent genes that encode pro-
tein tyrosine-, serine-, and threonine-kinases; these same
two major clusters were again observed (Fig 4D). Each
MFH subset appeared to contain a group of four MFH
samples (MFH-12 to MFH-15) that were more closely
clustered with each other than to the remaining samples
of the subset. Because these subclusters contained only
four samples, they were not further analyzed separately.

While more than two biologically distinct subsets of the
16 MFH samples likely exist, we focused our subsequent
studies on differences between the two major subsets,
MFH-A and MFH-B, defined above. A fold change analysis
was performed comparing MFH-A to MFH-B. Those genes
expressed at >/= 2-fold more between the two sets were
then evaluated by e-Northern® analysis. e-Northern® anal-
ysis provides a graphical representation of the expression
values for each sample. The genes most differentially
expressed between MFH-A and MFH-B are listed in addi-
tional file 3. Interestingly, all of these genes were over-
expressed in MFA-A compared with MFH-B, while none
were over-expressed in MFH-B. Among the differentially
expressed genes were genes that encode growth factors,
receptors, and genes involved in various signaling path-
ways that are potential drug targets. For example, the 5.3-
fold up-regulation of VEGF in MFH-A vs. MFH-B suggests

Table 1: Genes expressed in multiple gene sets

Gene Symbol Gene Set

RCCa OVCAb AFc

CXCR4 X X
GPX3 X X
IgL X X
LOC440871 X X
MT1G X X
MT1H X X
PRAME X X
SERPINA1 X X

ACTN1 X X
CD44 X X
CKAP4 X X
CSPG2 X X
DCN X X
FABP5 X X
FLNA X X
IGSF4 X X
KDELR3 X X
MT1E X X
MT1X X X
MT2A X X
PLOD2 X X
TMEM45A X X
TUBA3 X X

D6S1101, DST X X
IGFBP7 X X
MEST X x

SULF1 X X X

aGene set that distinguished two subsets of clear cell renal cell 
carcinoma (ref [11]).
bGene set that distinguished borderline from invasive serous ovarian 
carcinoma (ref [13]).
cGene set that defined two major subgroups of aggressive 
fibromatosis (ref [12]).
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that the efficacy of treatment directed against VEGF could
differ in the two MFH subgroups. In addition, genes
involved in the initiation of translation, another potential
drug target, were also differentially expressed, (i.e. EIF1,
EIF2B1, EIF2S, EIF3S7, EIF3S10, EIF4A1, EIF4B, EIF4G1,
were all over-expressed > 2.6-fold in MFH-A compared to
MFH-B).

Since heterogeneity of a drug target in a diagnostic cate-
gory is critical to the outcome of a clinical trial, the expres-
sion of known potential target genes in the other types of
STS was also examined. The expression of many of these
genes, and genes for several tumor antigens that might be
relevant in immunotherapy trials, was heterogeneous
within diagnostic categories (Tables 3 and 4). For exam-
ple, while VEGF (not shown) was expressed in all of the
STS subtypes, TGFB1 and FGF7 (keratinocyte growth fac-
tor) were expressed in ~78% of LMS but only ~40% of
non-myxoid liposarcoma, while OGFR was expressed in
~43% of myxoid liposarcoma, 100% of non-myxoid
liposarcomas, ~67% of leiomyosarcomas, and none of the
AF samples. Similarly, as regards the potential use of vac-
cines and immunotherapy, we observed differential
expression of several genes. For example, CTAG2 was
expressed in ~60% of the non-myxoid liposarcoma sam-
ples, but in none of the LMS, AF, or MFH samples. Also,
PRAME was expressed in 100% of the non-myxoid liposa-
rcomas and synovial sarcomas, but none of the AF or
MFH-B samples.

Taken together, these data suggest that the AF and MFH
sample sets can each be divided into two major subsets.
Review of the pathology specimens was performed inde-
pendently by two pathologists (Table 1), without knowl-
edge of the clustering results. In all but 3 cases of the 40
non-AF cases, both pathologists agreed on high vs low
grade. No clear histologic features were identified that cor-
related with the clusters described above, although the
average mitosis score appeared lower in the MFH-A than
in MFH-B set.

Discussion
STS form a heterogeneous group of malignancies com-
prised of more than fifty distinct diagnostic categories [28-
33]. Histologic criteria are useful in predicting outcome in
STS. For example, in a comparative study of the NCI and
FNCLCC grading systems in 410 adult patients with non-
metastatic STS [17], both systems were of prognostic value
for predicting metastases and overall survival, by univari-
ate analysis. By multivariate analysis, high tumor grade,
regardless of the system used, large tumor size (10 or more
cm), and deep location, had independent prognostic
value. Importantly, however, STS often exhibit heteroge-
neity of biological behavior even within diagnostic cate-
gories. This heterogeneity makes the clinical care of
patients with these diseases challenging, and may also
confound the development of drugs to treat these dis-
eases. Thus, there is a need to move past simple histologic
examination in STS trials.

Table 2: WNT pathway genes upregulated 4-fold or more in AF-set B compared to AF-set A

Gene Symbol Gene Name Fragment Name Fold change-up in AF-set B

CCND2 cyclin D2 200953_s_at 7
CSNK1A1 casein kinase 1, alpha 1 208865_at 4.9
CSNK2B casein kinase 2, beta polypeptide 201390_s_at 4.4
CTBP1 C-terminal binding protein 1 203392_s_at 7.8
CTBP2, LOC440008 C-terminal binding protein 2, LOC440008 210835_s_at 5.8
DVL3 dishevelled, dsh homolog 3 (Drosophila) 201908_at 6.4
FZD1 frizzled homolog 1 (Drosophila) 204451_at 4.8
JUN v-jun sarcoma virus 17 oncogene homolog (avian) 201464_x_at 5.1
PPP2CB protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform 201375_s_at 5.4
PPP3CB protein phosphatase 3 (formerly 2B), catalytic subunit, beta isoform 

(calcineurin A beta)
202432_at 6.7

PRKACB protein kinase, cAMP-dependent, catalytic, beta 202741_at 7.1
RAC1 ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding 

protein Rac1)
208640_at 5.4

RHOA ras homolog gene family, member A 200059_s_at 5.6
RHOB ras homolog gene family, member B 212099_at 8.2
SFRP2 secreted frizzled-related protein 2 223121_s_at 4.9
SFRP4 secreted frizzled-related protein 4 204051_s_at 5.6
SKP1A S-phase kinase-associated protein 1A (p19A) 200718_s_at 5.9
TBL1XR1 transducin (beta)-like 1X-linked receptor 1 223013_at 4.8
WNT5A wingless-type MMTV integration site family, member 5A 205990_s_at 6.9

Fold change analysis was performed using genes involved in the wnt-signaling pathway. Genes that were most differentially expressed between AF-
set A and AF-set B are listed.
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Clustering of gene expression of the STS and AF samples with the RCC gene set (A), OVCA gene set (B), and AF gene set (C)Figure 2
Clustering of gene expression of the STS and AF samples with the RCC gene set (A), OVCA gene set (B), and AF gene set (C). 
The 12 AF samples and the 25 other STS samples were clustered using the Eisen clustering software Cluster as described in 
the text. The 16 samples that cluster with AF-1 to AF-5 (open squares) using all 3 gene sets are indicated by open circles. The 
6 samples that cluster with AF-6 to AF-12 (solid squares) using all 3 gene sets are indicated by closed circles. The clustering of 
3 samples (solid triangles) varied with the gene set. The tissue samples in the tree are joined by very short branches if they 
have gene expression patterns that are very similar to each other, and by increasingly longer branches as their similarity 
decreases.
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Clustering of gene expression of the STS samples with the RCC gene set (A), OVCA gene set (B), and AF gene set (C)Figure 3
Clustering of gene expression of the STS samples with the RCC gene set (A), OVCA gene set (B), and AF gene set (C). The 25 
STS samples were clustered using the Eisen clustering software Cluster as described in the text and are labeled as in Figure 2. 
The tissue samples in the tree are joined by very short branches if they have gene expression patterns that are very similar to 
each other, and by increasingly longer branches as their similarity decreases.
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The classification of STS has traditionally been deter-
mined by light microscopic examination of H&E stained
tissues, in which recognizable characteristics are identified
in the tumors, and more recently also by the use of genetic
techniques (reviewed in [28-33]). Classification of tumors
by gene expression profiles has the potential to provide
additional useful information that is free of observer bias
and variability, and aid in tumor classification and diag-
nosis. Analysis of gene expression by microarray also has
the potential to identify heterogeneity among STS [4-6,8-
10]. While one approach is to search for genes that corre-
late with clinical outcome, heterogeneity of the sample
sets may complicate this search, as predictive genes may
differ in different types of tumors. The search for genes
that predict a particular behavior may also be complicated
by genes whose expression is not relevant to the question
of interest. Restriction of the number of genes in an anal-
ysis by elimination of irrelevant signals may help, if pos-
sible. In addition, relevant signals may or may not be
different in different histological categories.

In the current report, potential subsets of STS were identi-
fied by gene expression profiles independent of knowl-
edge of biological behavior using gene sets that differed
between two subgroups of ccRCC, OVCA, and AF. The cur-
rent report confirms that gene expression patterns can be
used to identify subsets of STS directly, without searching
for differences based on clinical correlates. This approach
may also allow the identification of potential subsets that
could be obscured by searching for patterns that discrimi-
nate between two predefined groups determined by a par-
ticular clinical outcome. Given the simplicity of the
technology, there may be no need to identify the smallest
gene set that can be used as a reproducible prognostic fac-
tor. Indeed, prognostic information may be lost by such
an approach. The differences in gene expression observed
between subgroups may reflect intrinsic differences in the
tumor cells, differences in the host response to the tumor,
or both. It is possible that these differences in gene expres-
sion patterns reflect differences in biology of these
tumors, although we do not have adequate clinical out-
come data to confirm this possibility. It is important to
note that hierarchical clustering of any random set of sam-
ples using a random gene set may yield what appears to be
two major clusters; further studies will be required to
determine the reproducibility of the current findings and
their potential practical utility.

Our findings, though limited by small sample size, sug-
gest the existence of distinct subgroups within the MFH
set. As tumors evolve, sequential mutation and/or epige-
netic changes may result in increasing divergence in gene
expression and biology from the original tumor. We pre-
viously reported that hierarchical clustering of gene
expression patterns appeared to cluster some MFH sam-

Clustering of gene expression of the MFH samples with the RCC gene set (A), OVCA gene set (B), AF gene set (C), and the protein kinase gene set (D) as described in the textFigure 4
Clustering of gene expression of the MFH samples with the 
RCC gene set (A), OVCA gene set (B), AF gene set (C), and 
the protein kinase gene set (D) as described in the text. The 
16 MFH samples were clustered using the Eisen clustering 
software Cluster as described in the text. MFH-1 to MFH-9 
grouped together in panel A and are indicated by an asterisk. 
The tissue samples in the tree are joined by very short 
branches if they have gene expression patterns that are very 
similar to each other, and by increasingly longer branches as 
their similarity decreases.
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ples near samples of liposarcoma, while others appeared
to form more distinct clusters [9]. It is possible that anal-
ysis of a larger number of samples will identify additional
clinically and biologically relevant subsets of MFH.

The current report also demonstrates a wide range among
STS subgroups in the expression of genes that code for tar-
gets of some therapies. For example, PRAME, CTAG1, and
CTAG2 have been reported to be over-expressed in liposa-
rcoma compared with a variety of normal tissues [7], and
recent studies have reported the expression of these and
other CTAGs in several sarcoma subtypes [34,35]. The cur-
rent results confirmed our earlier report of over-expres-
sion of PRAME, CTAG1 and CTAG2 in liposarcomas using
the U_95 array [7] with the newer U_133 array, and also
demonstrated that the expression of these potential tar-
gets of immunotherapy is heterogeneous among STS.
Thus, studies in STS of agents with known targets would
be strengthened by stratification by expression of target
genes.

Notably, the three earlier studies that suggested the exist-
ence of two major subsets of AF, RCC, and OVCA, from
which the gene sets used herein were derived, found dif-
ferences in the expression of many extracellular matrix
(ECM) genes between the respective subsets in each of the
three diseases. This could be important for several rea-
sons. First, the interaction of tumor cells with ECM pro-
teins can have profound effects on cell biology, regulating
signal transduction, apoptosis/anoikis, morphology, and
tissue architecture. In this regard, expression of the ECM
protein TGFBI has recently been reported to influence
paclitaxel sensitivity of ovarian carcinoma cells [36]. ECM
proteins can regulate interactions between growth factors
and ovarian hormones in mammary epithelial cells, and
laminin inhibits estrogen-induced proliferation of breast
cancer cells [37]. Interactions with ECM components have
been reported to alter TNF-alpha induced changes in
endothelial permeability [38], and the ECM proteoglycan
decorin can inhibit growth of pancreatic carcinoma cells
[39]. Similarly, fibrin clots can promote motility of
fibroblasts and endothelial cells, and fibrinogen degrada-

Table 3: Differential Expression of potential target genes in STS samples

Percent of Samples Expressing Gene

Gene Symbol Gene Name Fragment Name AF Liposarcoma LMS Myxoid Liposarcoma MFH

CTGF connective tissue growth factor 209101_at 100 80 100 100 9
EGF epidermal growth factor 206254_at 8 0 33 0 19
EGFR epidermal growth factor receptor 232541_at 83 60 67 86 75
FAP Fibroblast activation protein, alpha 209955_s_at 100 60 78 29 100
FGF13 fibroblast growth factor 13 205110_s_at 67 80 67 71 56
FGF18 fibroblast growth factor 18 231382_at 33 60 0 71 19
FGF2 fibroblast growth factor 2 (basic) 204422_s_at 33 40 33 14 31
FGF7 fibroblast growth factor 7 (keratinocyte growth 

factor)
205782_at 58 40 78 57 56

FGFR1 fibroblast growth factor receptor 1 222164_at 92 80 89 86 94
FGFR2 fibroblast growth factor receptor 2 208228_s_at 83 40 89 71 50
FLT1 fms-related tyrosine kinase 1 (vascular endothelial 

growth factor receptor)
226497_s_at 100 100 78 100 100

IGF1 insulin-like growth factor 1 (somatomedin C) 209541_at 100 100 67 100 94
IGF2R insulin-like growth factor 2 receptor 201392_s_at 67 100 67 43 75
MET met proto-oncogene (hepatocyte growth factor 

receptor)
203510_at 58 60 11 29 75

NGFB nerve growth factor, beta polypeptide 206814_at 25 0 11 14 6
OGFR opioid growth factor receptor 202841_x_at 0 100 67 43 75
PDGFA platelet-derived growth factor alpha polypeptide 229830_at 17 0 11 0 13
PDGFB platelet-derived growth factor beta polypeptide 216061_x_at 42 80 67 86 63
PDGFRA platelet-derived growth factor receptor, alpha 

polypeptide
203131_at 100 100 67 100 100

PDGFRB platelet-derived growth factor receptor, beta 
polypeptide

202273_at 100 100 89 100 100

PGF placental growth factor, vascular endothelial growth 
factor-related protein

215179_x_at 100 100 100 100 100

TGFA transforming growth factor, alpha 205016_at 8 0 22 14 63
TGFB1 transforming growth factor, beta 1 203085_s_at 83 40 78 57 100
TGFB2 transforming growth factor, beta 2 228121_at 92 60 67 86 81
TGFB3 transforming growth factor, beta 3 209747_at 100 40 89 43 88
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tion products may be angiogenic [40,41]. Second, the
response of the host to the tumor may also play an impor-
tant role in tumor biology, and ECM expression, by either
tumor cells or host stromal cells, could reflect the local
host response. For example, stromal fibroblasts could pro-
duce factors that alter tumor cell growth/biology [42].

It would be reasonable to stratify patients entering clinical
trials using a technique similar to that described herein, in
an attempt to decrease the problem of heterogeneity of
the study population. Even if not performed in real time,
tumor samples should be saved for a later analysis of this
type. Since the results of a clustering analysis depend
upon the composition of the sample set analyzed, such an
approach would use a standard reference group of STS
samples with clustering performed with the addition of
the new test sample.

When comparing histologic grading of soft tissue sarco-
mas and their gene expression, it is important to take into
consideration several facts. Histologic grading is an imper-
fect exercise; when the reproducibility of the European
system was tested by 15 pathologists [43], an agreement
was reached in 81% of the cases for tumor necrosis, 74%
for tumor differentiation, 73% for mitotic rate, and 75%
for overall tumor grade, although the agreement for histo-
logic type was only 61%. In a study in which the NCI and
FNCLCC grading systems were compared, there were dis-
crepancies in ~35% of the cases [17]. Compared to the
NCI system, the FNCLCC system produced a greater
number of grade 3 tumors, a lower number of grade 2
tumors, and had better correlation with metastases-free
and overall survival. Despite the limitations in reproduci-
bility, numerous studies have confirmed the prognostic
value of histologic grading of soft tissue sarcomas [44-46].

Any new technique that attempts to establish new path-
ways for prognostication should be compared to currently
available techniques, and its superiority should be docu-

mented. Gene expression profiles, in addition to provid-
ing potentially useful prognostic information, may yield
insight into two important aspects of sarcoma; namely,
the identification of therapeutic targets, leading to more
individualized therapies, and second, better understand-
ing of the genesis, progression, and biology of these
tumors.

The current study supports the use of gene expression pat-
terns as a complementary set of data that may augment
the use of light microscopy to help classify STS. Analysis
of a larger number of samples and correlation of biologi-
cal phenotypes with gene expression patterns may identify
clinically meaningful characteristics of the subsets identi-
fied herein.
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Table 4: Differential expression of potential immunotherapy target genes in STS samples

Percent of Samples Expressing Gene

Gene Symbol Gene Name AF Liposarcoma LMS Myxoid Liposarcoma Synovial MFH-B MFH-A

CTAG2 cancer/testis antigen 2 0 60 0 71 75 0 0
CTAGE5 CTAGE family, member 5 75 60 44 29 25 71 67
MAGEA9 melanoma antigen family A, 9 0 40 111 71 75 14 0
MAGED1 melanoma antigen family D, 1 100 100 100 100 100 100 100
MAGED2 melanoma antigen family D, 2 100 80 89 100 50 86 78
MAGED4 melanoma antigen family D, 4 92 80 78 57 100 57 44
MAGEF1 melanoma antigen family F, 1 92 100 100 100 75 86 78
MAGEH1 melanoma antigen family H, 1 92 100 100 71 100 86 100
PRAME preferentially expressed antigen in melanoma 0 100 33 86 100 0 11
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