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Abstract

Because of the lack of full characterization of tumor associated antigens for solid tumors, whole
antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells
have been used as a source of whole tumor antigen to prepare dendritic cell (DC) based tumor
vaccines, but their efficacy has not been directly compared. Here we compare directly RNA
electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV) B radiation
using a convenient tumor model expressing human papilloma virus (HPV) E6 and E7 oncogenes.
Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell
total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells,
and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs
electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a
significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor
cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated
tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation
results in more potent tumor vaccination under the examined experimental conditions.

Introduction

Because tumor-associated antigens are not well character-
ized for the majority of human tumors, polyvalent vac-
cines prepared with whole tumor antigen are an attractive
approach to induce tumor vaccination [1,2]. Recent
advances in generation and manipulation of DCs provide
opportunities to design powerful tumor vaccines. DCs are
ideal vehicles for polyvalent tumor vaccination, as they
readily process and present tumor antigen taken up from
dying tumor cells.

DCs pulsed with apoptotic tumor cells have been used
successfully to induce tumor vaccination [3-6,6-12].
Although controversy surrounds the ability of necrotic
versus apoptotic tumor cells to serve as a source of multi-
valent antigen to pulse DCs [10,13-15], UVB irradiation
has been shown to result in a mixed population of apop-
totic and necrotic tumor cells [16]. Tumor cells exposed to
lethal ultraviolet-B (UVB) radiation have been shown to
provide a suitable source of tumor antigen for DCs
[16,17]. For example, UV-irradiated primary tumor cells
provide sufficient tumor antigen to elicit expansion of
tumor-reactive autologous T cells ex vivo in patients with
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advanced ovarian cancer [17], suggesting that this
approach can be used clinically to induce therapeutic vac-
cination.

Several reports have described the use of tumor-extracted
RNA as source of tumor antigen for the preparation of
DCs and have indicated its potential use for antigen-spe-
cific or polyvalent tumor vaccination in the absence of
identified tumor antigens [18-23]. Such approach may
address important limitations in the procurement of
tumor antigen, as primary tumor cell cultures are not fea-
sible for a large number of patients. Although the feasibil-
ity and efficacy of electroporation of DCs with RNA for the
preparation of polyvalent tumor vaccines has been con-
vincingly demonstrated, a direct comparison of DC vac-
cines prepared with tumor RNA versus dying whole tumor
cells has not been performed.

In this study, we compared tumor RNA to apoptotic
tumor cells as a source of tumor antigen to generate a DC-
based vaccine against tumors expressing the early gene
products E6 and E7 of the human papilloma virus (HPV).
We report that the use of tumor RNA as a source of tumor
antigen is valuable alternative and superior to UV-irradi-
ated tumor cells.

Materials and methods

Cell lines

TC-1, cell line was a generous gift from Dr. Yvonne Pater-
son, University of Pennsylvania. TC-1 cells were main-
tained in RPMI (Invitrogen, Carlsbad, CA) supplemented
with L-glutamine (2 mM); penicillin (100 U/ml); strepto-
mycin (100 pg/ml); 10% fetal bovine serum (FBS), and
geneticin (1 mg/ml).

ID8, a cell line derived from spontaneous in vitro malig-
nant transformation of C57BL/6 mouse ovarian surface
epithelial cells, was a generous gift from Dr. Paul F. Ter-
ranova, University of Kansas [24]. ID8 cells were main-
tained in DMEM medium (Invitrogen) supplemented
with 4% FBS, penicillin, streptomycin, insulin (5 pg/ml),
transferrin (5 pg/ml), and sodium selenite (5 ng/ml, all
Roche, Indianapolis, IN) in a 5% CO, atmosphere at
37°C. An 1D8 cell line expressing the HPV16 E6 and E7
antigens was generated by transducing ID8 cells with the
retroviral vector LXSN16EGE7 (American Type Culture
Collection, Rockville, MD, donated by Dr. D. Galloway),
which encodes the HPV16 E6 and E7 genes, as well as the
neomycin phosphotransferase gene. The PA317 cell line
was used to generate the retroviral vectors as previously
described [25]. Selection of ID8 cells transduced with E6
and E7 (ID8-E6/7) or ID8 cells transduced with a control
retroviral vector (LXSN) was achieved under neomycin
pressure (1 mg/ml) [25]. The murine L1929 (ATCC)
immortalized cell line was grown in RPMI 1640 with 10%

http://www.translational-medicine.com/content/6/1/21

FBS and penicillin/streptomycin. All lines tested negative
for Mycoplasma by PCR.

Animals and tumors

Six to eight week old female C57BL/6 (H-2KP) and BALB/
¢ (H-2K4) mice (Charles River Laboratories, Wilmington,
MA) were used in protocols approved by the Institutional
Animal Care and Use Committee and the University of
Pennsylvania. TC-1 tumors were generated in C57BL/6
mice by s.c. inoculation of 2 x 104 TC-1 cells in 0.2 ml of
PBS. Tumors were detectable ten days later and were
measured weekly using a Vernier caliper. Tumor volumes
were calculated by the formula V= 1/2 L x W2, where L is
length (longest dimension) and W is width (shortest
dimension). For some in vivo studies, CD8+* cells were
depleted with rat anti-mouse CD8 (MCA1768XZ) and
CD4+ cells with rat anti-mouse CD4 (MCA1767XZ) (both
Serotec, Raleigh, NC). The antibodies were administered
intravenously (100 pg/animal) on the day of tumor injec-
tion and a second dose one week later.

Generation of bone marrow-derived DCs

Murine dendritic cells were generated from bone marrow
precursor cells with recombinant murine granulocyte-
macrophage colony-stimulating factor (GM-CSF; Pepro-
tech, Rocky Hill, NJ; 20 ng/ml) as described previously
[26]. Cells were counted using Trypan blue. Differentia-
tion into immature DCs was documented through flow
cytometry detection of CD80, CD86 and major histocom-
patibility complex class II (MHC-II). DC maturation was
induced by culturing cells in RPMI media under standard
conditions in the presence of 10 ng/ml murine GM-CSF
supplemented with 0.1 pg/ml lipopolysaccharide (LPS,
Sigma Chemical Co, Saint Louis, MO) and 20 ng/ml
tumor necrosis factor-alpha (TNF-a, Peprotech).

DC electroporation with tumor RNA

Total cellular RNA was extracted from TC-1 cells using
TRIzol Reagent (Invitrogen). Cells grown in 75 cm? flasks
were resuspended and lysed using TRIzol reagent. Chloro-
form (0.2 ml per ml of TRIzol reagent) was added and
incubated at room temperature for 2 min. The samples
were centrifuged at 12,000 x g for 15 min at 4°C, and the
aqueous phase was transferred to a new tube. Cold isopro-
panol was added at 0.5 ml per ml TRIzol reagent to pre-
cipitate RNA. Following 10 min incubation at room
temperature the samples were centrifuged at 12,000 x g
for 10 min at 4°C. The RNA pellet was washed once with
70% DEPC-ethanol and centrifuged at 7500 x g for 5 min.
The pellet was briefly dried and dissolved in DEPC water.
The quality and quantity of the total RNA was checked
using RNA Nano LabChip® (Agilent Technologies, Palo
Alto, CA) according to the protocol provided. Two million
DCs were resuspended with the appropriate amount of
total TC-1 RNA in a 0.2-cm cuvette and electroporated
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using Gene Pulser II (BIO-RAD Laboratories, Hercules,
CA) under different voltage and capacitance settings. DCs
electroporated in the absence of TC-1 RNA (mock) were
used as controls for some experiments.

DC pulsing with apoptotic tumor cells

Subconfluent cultures of TC-1 cells were rinsed twice in
phosphate buffer saline (PBS) and exposed to ultraviolet-
B (UVB) radiation at various doses up to 1500 pW/cm?2 for
various times. Apoptosis at 24 hours was quantified by
flow cytometry detection of annexin-V staining using the
TACS™ Annexin-Biotin Apoptosis detection kit (R&D Sys-
tems, Minneapolis, MN) and confirmed with the ApopTag
peroxidase in situ detection kit (Intergen, Purchase, NY)
and the Apoptotic DNA-Ladder Kit (Roche), according to
the manufacturers' instructions. Twenty-four hours after
UVB radiation tumor cells were incubated with immature
DCs at a 2:1 ratio (tumor cells, DCs). Twenty-four hours
later, TNF-a (Peprotech; 20 ng/ml) and LPS (0.1 pg/ml)
were added for additional 48 hours. DCs were harvested,
rinsed and counted by trypan blue exclusion. In some
experiments, radiated tumor cells were labeled with
PKH26 fluorescent dye (Sigma; 5 uM) for 5 min at room
temperature. RPMI supplemented with 10% FBS was
added to stop the reaction and cells were rinsed three
times prior to using them for pulsing DCs.

Animal vaccination

Animals received one intraperitoneally (i.p.) and then
twice subcutaneously (s.c.) seven days apart, DCs (5 x 105
per dose) electroporated with TC-1 RNA or loaded with
TC-1 cells killed by UVB and incubated with TNF-a (20
ng/ml) and LPS (0.1 pg/ml) were injected once. DCs.
Control animals were injected with DCs mock electropo-
rated and matured with TNF-o and LPS. Animals were
challenged with tumor cells seven days after the last DC
vaccination.

Flow cytometry

Cells were subjected to four-color flow cytometry on a
FACSCalibur flow cytometer using CellQuest 3.2.1f1 soft-
ware (Becton Dickinson, San Jose, CA). Non-specific
staining was blocked with anti-CD16/CD32 antibody (Fc
block, 2.4G2; BD Pharmingen; San Diego, CA). Fluoro-
chrome-conjugated monoclonal antibodies against CD3
(17A2), CD8 [53-67], CD11c (HL3), CD80 (16-10A1),
CD86 (GL1), MHC-I (H-2 kb/H-2Db), MHC-II (KH74; all
BD Pharmingen, San Diego, CA) were used at 1:100 dilu-
tion. PE-conjugated H2-Db RAHYNIVTF tetramer recog-
nizing a dominant MHC-I epitope of E7 antigen [27] was
a kind gift of Dr. Yvonne Paterson. Rabbit anti-HPV-16 E6
(N-17) and E7 (ED-17) antibodies (Santa Cruz Biotech-
nology, Santa Cruz, CA) were used at 1:100 dilution.
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Proliferation assays

For mixed leukocyte reactions C57BL/6 DCs were electro-
porated with TC-1 RNA (50 pg/10° DCs) or loaded with
TC-1 cells killed with UVB; incubated with TNF-o and LPS
for 48 h; washed twice with PBS; and subjected to gamma-
irradiation (20 Gy). DCs were seeded in 96-well round-
bottom plates at various dilutions in RPMI containing
10% FBS. BALB/c spleen lymphocytes were procured as
described [28]. Constant number of BALB/c lymphocytes
(1 x 105 cells/well) were incubated with irradiated C57BL/
6 DCs at increasing ratios (DC: lymphocytes) for 5 days at
37°C. [3H|thymidine (NEN Life Science, Boston, MA, 1
uCi/well) was added for 18 hours at 37°C. Samples were
recovered on glass fiber filters and analyzed with a
Microbeta Trilux (Perkin Elmer Wallac, Inc., Gaithersburg,
MD). Each experimental value was determined three
times. For some experiments, splenocytes from vaccinated
animals were cultured with gamma-irradiated (20 Gy)
tumor cells in the presence of 20 U/ml of recombinant
murine IL-2 (Peprotech). After 5 days 1 pCi/well of
[3H]thymidine was added for 18 hours at 37°C.

Chemotaxis assay

Migration of DCs towards murine macrophage inflamma-
tory protein (MIP)-3a or MIP-33 (R&D Systems, Minne-
apolis, MN) was assessed in 96-well chemotaxis chambers
using an 8 um-pore nitrocellulose membrane (Neuro-
probe, Gathersburg, MD) [29]. Pyrogen-free RPMI 1640
containing 1% BSA was used as chemotactic media.
Results are presented as chemotactic index (CI), defined
as fold increase in cell migration in the presence of chem-
otactic factors compared to chemotactic media alone.
Each experiment was performed in triplicate.

IFN-y ELISPOT

ELISPOT was performed as previously described [28]. We
used purified anti-mouse IFN-y (R4-6A2) for capture and
biotin anti-mouse IFN-y (XMG1.2) (both BD Pharmin-
gen) for detection.

Immunostaining

Solid tumor samples (n = 6 for each experimental group)
were snap-frozen in ornithine carbamyltransferase (OCT,
Tissue Tek, Sakura, Torrance, CA). For immunofluores-
cense analysis, sections were fixed in cold acetone for 10
minutes and sequentially incubated with anti-mouse
CD16/32 antibody (1:100 dilution), FITC-anti-mouse
CD3 (17A2) and biotin-anti-mouse CD8 (53-67, 1:100
dilution, both BD Pharmingen). After incubation with
streptavidin tetramethylrhodamine conjugate (Molecular
Probes, Eugene, OR) (1:200 dilution), sections were
counterstained  with  4',6'-diamidino-2-phenylindole
hydrochloride (DAPI) and inspected under the fluores-
cent microscope.

Page 3 of 14

(page number not for citation purposes)



Journal of Translational Medicine 2008, 6:21

For immunofluorescense of DCs following electropora-
tion with TC-1 RNA, electroporated DCs were seeded on
glass coverslips and cultured in RPMI in the presence of
10% FBS and 10 ng/ml GM-CSF for two days. Cells were
fixed with acetone and consecutively stained with anti-
HPV-16 E7 antibody (ED-17, Santa Cruz Biotechnolo-
gies) and anti-rabbit FITC (BD Pharmingen). Slides were
counterstained with DAPI. Images were acquired through
Cool SNAP Pro color digital camera (Media Cybernetics,
Carlsbad, CA). Ten different fields for each sample at x
400 magnification were evaluated for cell counting.

Immunoprecipitation and Western blot

For E7 immunoprecipitation and Western blot analysis,
ID8-E6/7 and ID8 control cells were lysed in M-Per mam-
malian protein extraction kit (Pierce, Rockford, IL) plus
protease inhibitor cocktail (HALT Protease inhibitor kit,
Pierce). Lysate concentration was determined by the Brad-
ford assay (Biorad; Hercules, CA). Two hundred micro-
grams of extract was subjected to immunoprecipitation
with rabbit anti-HPV16 E7 (ED-17, Santa Cruz Biotech-
nologies). Immunoconjugates were collected on protein
A-agarose (Invitrogen), washed with lysis buffer, and
resolved on 15% acrylamide gels. Proteins were trans-
ferred to polyvinylidene difluoride membranes (Immo-
bilon-P, Millipore) and probed with mouse anti-E7
antibody (clone 8C9, Zymed Labs Inc., San Fransisco,
CA). Sheep anti-mouse IgG-HRP (NA93I1V, Amersham
Biosciences, Buckinhamshire, UK) was used as the sec-
ondary reagent. Proteins were visualized by enhanced
chemiluminescence (Lumigen PS-3, Amersham) and
exposure to Kodak X-Omat Blue film.

RT-PCR and Real-Time Quantitative Reverse
Transcription-PCR

The expression of E6 and E7 was demonstrated using RT-
PCR with the following primers: E6 forward primer (F),
5-AAA GCA GAC ATT TTA TGC ACC A-3'; E6 reverse
primer (R), 5'-TCA TGC AAT GTA GGT GTA TCT CC -3
E7 F 5'-CAC GTA GAG AAA CCCAGCTGT A -3, E7R5'-
GTA CCC TCT TCC CCA TTG TT-3'. The RT portion of the
RT-PCR was conducted using SuperScript reverse tran-
scriptase (Invitrogen) at 50°C (10 min). The PCR cycling
was conducted with Taq polymerase for both sequences at
94°C (3 min), 50°C (1 min), and 72°C (1 min) for 40
cycles.

The AbiPrism 7700 Sequence Detection System and SYBR
green I PCR kits (both Applied Biosystems, Foster City,
CA) were used for Real-Time PCR as described previously
[30]. The following primers were used: E6: F 5'-GAC TIT
GCTTIT CGG GATTTATGC -3', R 5'-TCA CAC AAC GGT
TTG TTG TAT TGC-3'; E7: F 5'-CTG GAC AAG CAG AAC
CGG ACA-3', R 5'-TGC TIT GTA CGC ACA CCG AA-3".
We normalized the cDNA load to mouse glyceraldehyde-
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3-phosphate dehydrogenase (GAPDH) with primers
GAPDH F 5'-CCT GCA CCA CCA ACT GCT TA-3' and
GAPDH R 5'-CAT GAG TCCTTC CAC GAT ACC A-3'. Data
were expressed as relative units to GAPDH mRNA mole-
cules. Molecules were considered to be present if more
than five copies of mRNA were detected for every 10° cop-
ies of GAPDH mRNA.

Statistical analysis

A two-tailed Student's t-test was applied to determine dif-
ferences between two groups. For multiple comparisons
we performed ANOVA with post-analysis comparisons by
the Tukey-Kramer multiple comparisons test. Non-para-
metric studies were performed by using the Mann-Whit-
ney U test. A value of p < 0.05 was considered significant.
Data are expressed as mean + SD. Data was analyzed using
Graph Pad Instat software (GraphPad Software, Inc., San
Diego, CA).

Results

Preparation of DCs electroporated with TC-1 cell RNA
(RNA-DCs)

To test the efficacy of loading DCs with tumor antigen by
RNA electroporation we used TC-1 cells, a mouse adeno-
carcinoma cell line generated by cotransfection of lung
epithelial cells with HPV-16 E6 and E7 genes and H-Ras
[31], which has been used to test E6 and E7-targeted
tumor immunotherapy [32-34]. Reproducible amounts of
total RNA ranging between 20-35 ug RNA/10¢ cells were
obtained from cultured TC-1 cells (Mean = 27.05, SD =
9.183, N = 10 independent samples). High quality RNA
was procured (Figure 1A), with rRNA ratio (28S/18S)
reproducibly greater than 2.00 (Figure 1B).

To determine the best conditions for RNA electroporation
in our system, bone marrow-derived DCs were electropo-
rated with tumor cell RNA using different capacitance and
voltage settings and 25 pg RNA per 10¢ DCs, which repre-
sents RNA from approximately one tumor cell per DC.
The reaction was performed in a total volume of 200 pL.
As shown in Figure 1C, the highest expression of E7 anti-
gen in live electroporated DCs, was obtained at 300 V and
150 pF. These settings yielded 50% viability in electropo-
rated DCs, as determined by flow cytometry PI exclusion
analysis (Figure 1D). Similar viability levels were obtained
in DCs electroporated in the absence of RNA (mock, not
shown).

To optimize DC electroporation, we electroporated DCs
with different amounts of TC-1 RNA (5-50 pg/10°¢ DCs)
using the previously determined settings (300 V, 150 pF).
E6-transcripts are longer than E7. As shown in Figure 1E,
high E6 expression was observed only after electroporat-
ing 50 pg TC-1 RNA/10¢ DCs. Higher RNA amounts did
not result in increased E6 expression (not shown). Elec-
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Expression of tumor-associated HPV E6 and E7 antigens by bone marrow-derived DCs after RNA electroporation. (A) Gel-
like image obtained from 10 independent samples of TC-1 RNA analyzed by the Agilent bioanalyzer. (B) Electropherogram of
sample | from A showing ribosomal RNA peaks. (C) Flow cytometry analysis of intracellular E7 expression in CD | I c* cells 24
hours after electroporation with TC-1 RNA at different voltage and capacitance conditions. Electroporation was performed
with 25 pg TC-1 RNA/10¢ DCs (grey): mock electroporated (white). (D) Flow cytometry analysis of DC viability 24 hours after
electroporation at different conditions of voltage and capacitance. Electroporation was performed with 25 ug TC-1 RNA/10é
DCs. X-axis reflects propidium iodide (Pl) staining. (E) Flow cytometry analysis of intracellular E6 and E7 expression in CD | Ic*
cells 24 hours after electroporation with different amounts of TC-1 RNA at 300V and 150 pF. The experiment was repeated
two times with similar results. (F) Flow cytometry analysis of intracellular E6 and E7 expression in CD1 | c* cells 4 days after
electroporation with 50 pg of TC-1 RNA/108 DCs at 300V and 150 puF. RNA electroporated (white); mock electroporated
(grey). (G) Immunofluorescence of DCs stained with anti-HPV E7 antibody 24 hours after electroporation with TC-1 cell RNA
or mock electroporated. Cells were counterstained with DAPI. 200X magnification. All experiments were repeated twice with
similar results.
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troporation with 50 pg RNA/106 DCs also ensured high
expression of E7-antigen in DCs (Figure 1E). As shown in
Figure 1F, high expression of E6 and E7 protein was
detectable by flow cytometry for at least 4 days after RNA
electroporation with 50 pg of TC-1 RNA/10¢ DCs.
Immunofluorescence staining confirmed the presence of
E7 protein in the cytoplasm of DCs 24 hours after electro-
poration with 50 ug TC-1 RNA/10¢ DCs (Figure 1G).

Preparation of DCs pulsed with UV irradiated TC-1 cells
(UV-DCs)

We tested various doses of ultraviolet-B (UVB) light and
exposure times to identify UVB conditions that kill greater
than 95% of TC-1 cells (not shown). Irradiation with
1500 pW/cm?2 UVB for 10 min induced apoptosis in TC-1
cells as assessed by DNA fragmentation detectable by
TUNEL assay (Figure 2A) and DNA laddering (Figure 2B),
while by flow cytometry the majority of cells were
annexin-V positive or propidium iodide and annexin-V
double positive within 24 hours (Figure 2C).

To verify the uptake of UV-irradiated cells by DCs, UV-

irradiated TC-1 cells were labeled with PKH26 fluorescent
dye prior to pulsing of DCs. DCs and UV-irradiated tumor

A UVB irradiated B

'- ' -""" @
r.‘th.g

control

TC-1 cells

Figure 2
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cells were cocultured for 18 hours to allow the uptake of
tumor cell material by DCs. Cells were then stained with
antibody against CD11¢, and CD11c* DCs were analyzed
for PKH26 expression with flow cytometry. More than
60% of DCs had taken up fluorescent tumor cells (Figure
2D), compared with a background level of 1% in the con-
trol sample containing DCs and UV-irradiated cells
admixed just before analysis (not shown).

Maturation of RNA-DCs and UV-DCs

We assessed whether DCs prepared by RNA electropora-
tion or pulsing with UV-irradiated tumor cells respond
differently to maturation stimuli such as TNF-o and LPS.
Significant surface expression of CD86 and CD80 and
MHC-II molecules was noted in DCs 48 hours post-elec-
troporation with tumor cell RNA, as described above, in
the presence of TNF-a. and LPS (Figure 3A). Similarly,
immature DCs incubated with TC-1 cells exposed 24 hour
earlier to lethal dose of UVB radiation upregulated CD80,
CD86 and MHC-II 48 hours post-phagocytosis, in the
presence of TNF-a and LPS (Figure 3B).

Next, we assessed whether DCs electroporated with tumor
cell RNA (RNA-DCs) or pulsed with UV-irradiated tumor

TC-1 DNA C UVB irradiated TC-1 cells
o o
ANNEXIN V
D 2
o 19% 35%
5 .
@)
+ -
uvB
irradiated

UVB-induced apoptosis of TC-| cells and maturation of TC-I antigen-loaded DCs. (A) TUNEL assay of UVB-treated and con-
trol TC-I cells 24 hours post-irradiation. (B) DNA ladder assay of TC-1 cells 24 hours after irradiation with UVB light. (C)
Flow cytometry analysis of annexin V in UVB-treated cells 24 hours post-irradiation. (D) Percentage of DCs that have engulfed
tumor cells, as determined by flow cytometry. DCs were pulsed with cells killed by UVB. Apoptotic tumor cells were labeled
with PKH26 prior to pulsing. DCs were stained with antibody against CD| I c.
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(A) Expression of maturation markers in E7*CD | c* gated cells 72 hours after electroporation with TC-1 RNA (50 g/ 108
cells). LPS and TNF-a were added to the culture medium 24 hours after electroporation. (white): specific antibody; (grey): iso-
type control. The experiment was repeated two times with similar results. (B) Expression of markers in CD | I c* gated cells 72
hours after phagocytosis of UVB-irradiated TC-I cells. LPS and TNF-o were added to the culture medium after 24 hours of
coincubation. (white): specific antibody; (grey): isotype control. (C) Proliferation of allogeneic BALB/c splenocytes induced by
C57BL/6 DCs electroporated with TC-I cell RNA (RNA) or pulsed with UV-irradiated TC-1 cells (UVB). DCs were treated
with TNF-a and LPS. Data were obtained 48 hours after stimulation of splenocytes and are expressed as the mean + SEM of
two experiments with triplicate observations per experiment. (D) Migration of DCs towards MIP-3a. or MIP-3f3 72 hours after
electroporation with TC-1 RNA (RNA) or pulsing with UV-irradiated TC-1 cells (UVB). LPS and TNF-a were added to the
culture medium after 24 hours of coincubation. Chemotactic index is defined as the fold increase in cell migration caused by
the chemotactic factors. Data are expressed as the mean + SD of two experiments with quadruplicate observations per exper-
iment.

cells (UV-DCs) and matured with TNF-o and LPS differ in
vitro in their ability to induce proliferation of allogeneic
lymphocytes or to migrate towards lymphoid organ
chemokines. Immature DCs were incubated for 48 with
TC-1 cells exposed 24 hours earlier to lethal UVB radia-
tion or were electroporated with tumor cell RNA, as
described above. To minimize differences in the amount
of original tumor antigen used with both loading proce-

dures, DCs were incubated with UVB-irradiated cells at
1:2 ratio (DC, tumor cells) or electroporated with an
equivalent amount of total RNA (50 ng RNA correspond-
ing to 2 x 106 tumor cells per 10° DCs). RNA-DCs stimu-
lated proliferation of allogeneic spleen lymphocytes in a
similar manner to UV-DCs. As expected, unpulsed imma-
ture DCs did not stimulate allogeneic reaction (Figure
30).
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A switch in chemokine receptors is a hallmark of DC mat-
uration. Among others, this entails upregulation of CCR7
and downregulation of CCR6 [35]. RNA-DCs and UV-
DCs matured with TNF-a. and LPS exhibited similar
migratory properties. As shown in Figure 3D, both DCs
lost the ability to migrate towards macrophage inflamma-
tory protein 3-alpha (MIP3-a), the ligand for CCR6, and
acquired the ability to migrate towards MIP-3, the ligand
for CCR7.

http://www.translational-medicine.com/content/6/1/21

Development of additional tumor targets expressing HPV-
16 E6 and E7

To further compare tumor vaccination with RNA-DCs and
UV-DCs, we engineered an additional tumor cell line
expressing HPV E6 and E7. We used the syngeneic C57BL/
6 murine ovarian cancer cell line ID8. ID8 cells trans-
duced with the retroviral vector LXSN16E6E7, which
encodes the HPV16 E6 and E7 genes, as well as the neo-
mycin phosphotransferase gene (ID8-E6/7) stably
expressed E6 and E7 mRNAs under genetecin pressure,
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Figure 4

Expression of HPV-16 E6 and E7 antigens in retrovirus-transduced D8 cells. (A) RT-PCR analysis for HPV-16 E6 and E7 tran-
scripts in ID8 cells transduced with HPV-16 E6 and E7 genes; ID8 cells transduced with empty vector (negative control); and
TC-1 cells (positive control). M: molecular markers. (B) Real-time quantitative PCR analysis of E6 and E7 transcripts in ID8
cells transduced with HPV-16 E6 and E7 genes and ID8 cells carrying empty vector. (C) Western blot analysis of cell lysate
showing presence of E6 protein in samples obtained from ID8 E6/7 cells but not in ID8 cells carrying empty vector. M: molec-
ular markers. (D) Flow cytometry analysis of intracellular E6 and E7 proteins in ID8 cells transduced with HPV-16 E6 and E7
genes. (grey): ID8 E6/7 cells; (white): ID8 cells transduced with empty vector, (dotted line): isotype control. (E) Expression of
MHC-I by ID8-E6/7 cells. (grey): ID8 E6/7 cells; (white): isotype control.
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compared to ID8 cells transduced with the empty vector
(ID8) (Figure 4A and 4B). Immunoprecipitation followed
by Western blot analysis revealed the presence of E6 pro-
tein in ID8-E6/7 cells but not in ID8 cells transduced with
empty vector (Figure 4C). Moreover, intracellular staining
of ID8 E6/7 cells showed the presence of HPV-16 E6 and
E7 proteins (Figure 4D). As the parental ID8 cell line [36],
ID8-E6/7 cell line expressed MHC class-I molecules (Fig-
ure 4E).

RNA-DCs and UV-DCs are immunogenic in vivo

We compared the efficacy of RNA-DCs and UV-DCs to
induce tumor vaccination. To minimize differences in the
amount of tumor antigen between pulsing procedures,
DCs were incubated with UV-irradiated cells at 1:2 ratio
(DC, tumor cell) or electroporated with an amount of
total RNA equivalent to two tumor cells per DC, as above.
DCs were matured with TNF-a and LPS. Mock DCs were
prepared by electroporation in the absence of tumor RNA
followed by maturation with TNF-a and LPS. Healthy ani-
mals were vaccinated with RNA-DCs or UV-DCs, while
control animals were vaccinated with mock DCs or left
unvaccinated (naive). Splenocytes isolated from the
above animals were tested for reactivity against E6 and E7
antigens by incubating them with apoptotic TC-1, ID8-
E6/7, ID8 or L-929 cells.

When incubated with TC-1 cells, splenocytes from ani-
mals vaccinated with RNA-DCs proliferated significantly
more than splenocytes from animals vaccinated with UV-
DCs (Figure 5A). No proliferation was detected in lym-
phocytes from animals vaccinated with mock-electropo-
rated DCs or naive animals (Figure 5A). Similar
proliferation was detected when splenocytes from mice
vaccinated with RNA-DCs were incubated with TC-1 or
ID8-E6/7 cells (Figure 5B), but no proliferation was
detected against control ID8 cells lacking E6 or E7, or L-
929 cells. This shows that the presence of HPV antigens
was critical for T cell proliferation (Figure 5B). Spleno-
cytes from all four groups of animals showed similar pro-
liferative response when stimulated with
phytohemagglutinin (not shown), indicating no func-
tional impairment.

We evaluated the frequency of tumor-reactive T cells
among splenocytes in each group of animals by IFN-y
ELISPOT analysis. We used ID8-E6/E7 cells as target cells.
A significantly higher frequency of tumor-reactive IFN-y
producing cells was found in spleens from animals vacci-
nated with RNA-DCs compared to animals vaccinated
with UV-DCs. No response was observed in splenocytes
from mock vaccinated or naive animals (Figure 5C). Sim-
ilar response was seen in splenocytes from mice vacci-
nated with RNA-DCs incubated with TC-1 or ID8-E6/7
cells, while no response was observed against ID8 pr L-
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929 cells (Figure 5D). Moreover, in the RNA vaccinated
group, IFN-y producing cells were mainly CD8+ cells, since
immunodepletion of CD8+ cells in vivo decreased the
number of IFN-y producing cells among isolated spleno-

cytes (Figure 5E).

Higher levels of cytotoxic lymphocyte activity were
detected in lymphocytes obtained from animals vacci-
nated with RNA-DCs relative to the UV-DCs group (Figure
5F). Moreover, CTL activity of splenocytes was abrogated
to control levels by immunodepletion of CD8* cells in
vivo (Figure 5F). No lytic activity was observed when con-
trol ID8 cells expressing no E6 or E7, or L-929 cells were
used as target cells, confirming the specificity of the reac-
tion (not shown).

TC-1 tumors express HPV E6 and E7, offering the oppor-
tunity to quantify T cell responses against tumor-associ-
ated HPV epitopes through well-characterized tetramers
[37]. We compared the ability of RNA-DCs and UV-DCs
to generate T cell response against the H2-Db-restricted
HPV E7 epitope RAHYNIVTF [34]. A four-fold higher fre-
quency of tetramer-positive CD3+ CD8+ cells was detected
in splenocytes from animals vaccinated with RNA-DCs
compared to animals vaccinated with UV-DCs (Figure
5G).

Vaccination with RNA-DCs or UV-DCs

To test the efficacy of RNA-DCs and UV-DCs in vivo,
healthy mice were vaccinated with three injections of
RNA-DCs or UV-DCs prepared as above and administered
one week apart. Seven days after the last DC vaccination,
animals were challenged with flank subcutaneous TC-1
tumors. Tumor growth was significantly delayed in ani-
mals vaccinated with RNA-DCs as well as animals vacci-
nated with UV-DCs (Figure 6A). Although the difference
in tumor growth between mice vaccinated with RNA-DCs
and mice vaccinated with UV-DCs was not large, tumors
were significantly smaller in mice vaccinated with RNA-
DCs. Similar results were obtained in three independent
experiments.

Tumors from mice vaccinated with RNA-DCs as well as
from animals vaccinated with UV-DCs exhibited signifi-
cantly higher frequency of CD3+ tumor-infiltrating cells
relative to mice vaccinated with mock DCs. A higher fre-
quency of CD3+ tumor-infiltrating cells was detected in
animals vaccinated with RNA-DCs compared to animals
vaccinated with UV-DCs (Figure 6B, C). Finally, a higher
proportion of CD3+ cells were CD8+*in animals vaccinated
with RNA-DCs compared to animals vaccinated with UV-
DCs or mock DCs (Figure 6D).
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Figure 5

Antitumor immune response in vaccinated animals. (A) Proliferation of splenocytes from animals vaccinated with DCs electro-
porated with TC-I RNA (RNA); pulsed with UV-irradiated TC-I cells (UVB); mock-electroporated DCs (mock), or naive ani-
mals. Splenocytes were stimulated in vitro with gamma-irradiated TC-1 cells for 5 days. Data are expressed as the mean + SD
(n =5). RNA vs. UVB: p < 0.01; RNA vs. mock: p < 0.001; RNA vs. naive: p < 0.001; UVB vs. mock: p < 0.001; UVB vs. naive: p
< 0.001 (ANOVA, Tukey-Kramer multicomparison post-test). (B) Proliferation of splenocytes from animals vaccinated with
DCs electroporated with TC-1 cell RNA. Splenocytes were stimulated in vitro for 5 days with gamma-irradiated TC-1 cells,
ID8-E6/E7 cells, ID8 cells carrying empty vector or L-929 cells. Data are expressed as the mean £ SD (n = 5). TC-1 vs. ID8-E6/
7: non significant (NS); TC-1 vs. ID8: p < 0.001; TC-1 vs. L-929: p < 0.001; ID8-E6/7 vs. ID8: p < 0.001; ID8-E6/7 vs. L-929: p <
0.001. The experiment was repeated two times with similar results. (C) Quantification of IFN-y producing tumor-reactive
splenocytes by ELISPOT from the same experimental groups as in A. Data are expressed as the mean = SD (n = 5). RNA vs.
UVB: p < 0.05; RNA vs. mock: p < 0.005; RNA vs. naive: p < 0.005; UVB vs. mock: p < 0.005; UVB vs. naive: p < 0.005. (D)
Quantification of IFN-y producing tumor-reactive splenocytes by ELISPOT from the same experimental groups as in B. Data
are expressed as the mean £ SD (n = 5). TC-1 vs. ID8-E6/7: non significant (NS); TC-1 vs. ID8: p < 0.001; TC-I vs. L-929: p <
0.001; ID8-E6/7 vs. ID8: p < 0.001; ID8-E6/7 vs. L-929: p < 0.001. (E) IFN-y producing cells from splenocytes of RNA vacci-
nated animals upon CD8 immunodepletion. p < 0.01. (F) Cytotoxic assay using TC-1| cells as targets. Tumor cells were incu-
bated at 3:| effector:target ratio with gradient-purified pooled splenic lymphocytes from animals vaccinated with DCs
electroporated with TC-1 cell RNA (RNA) or pulsed with UV-irradiated TC-1 cells (UVB). Some groups were immunode-
pleted of CD8" cells. Splenocytes were stimulated in vitro with gamma-irradiated TC-1 cells for 5 days. RNA vs. UVB: p < 0.05;
Student's t-test. The experiment was repeated two times with similar results. (G) Frequency of anti-E7 CD8* lymphocytes fol-
lowing DC vaccination. E7 tetramer-positive, CD3-gated CD8* precursors were quantified in splenocytes from animals vacci-
nated with DCs pulsed with UVB-irradiated TC-1 cells (UVB) or DCs electroporated with TC-1 cell RNA (RNA), p < 0.05.
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Figure 6

Antitumor efficacy of RNA electroporated DCs. (A) Growth of flank TC-1 tumors in animals previously vaccinated with DCs
electroporated with TC-1 cell RNA, UV-irradiated TC-1 cells, mock DCs or non-treated. Animals were challenged by injecting
2 x 10%tumor cells. (n = 5 each group). Data are representative of three independent experiments with similar results. Day 30:
RNA vs. UVB: p < 0.01; RNA vs. PBS: p < 0.01; RNA vs mock: p < 0.01; UVB vs. PBS: p <0.01; UVB vs. mock: p < 0.01; PBS vs.
mock: non significant. Mann-Whitney test. (B) CD3 and CD8 staining of tumors obtained from animals vaccinated with DCs
electroporated with TC-1 cell RNA (RNA), DCs pulsed with UVB-irradiated TC-1 cells (UVB), or mock electroporated DCs.
Magnification: 200X. (C) Counting of CD3 cells infiltrating TC-1 tumors. Experimental groups as in A. RNA vs. UVB: p < 0.001;
RNA vs. mock: p < 0.001; UVB vs. mock: p < 0.001. Kruskal-Wallis non parametric ANOVA test. Dunn's multiple comparisons
test. (D) Percentage of CD8* among CD3* cells infiltrating TC-1 tumors. Experimental groups as in A. RNA vs. UVB: p < 0.05;
RNA vs. mock: p < 0.001; UVB vs. mock: NS (Kruskal-Wallis non parametric ANOVA test. Dunn's multiple comparisons test).
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Discussion

The present work addressed the relative efficacy of tumor
vaccines prepared with DCs either electroporated with
tumor RNA or with dead tumor cells. We used total RNA
from tumor cells isolated with a common laboratory
method and UVB irradiated tumor cells and optimized
the conditions to minimize difference in amount of
tumor cell material used to pulse DCs. We used the E7
MHC-I-restricted epitope RAHYNIVTF to quantify the
intensity of CD8+T cell response against tumor-associated
antigens. The present results show that electroporation
with whole tumor cell RNA and pulsing with UVB-irradi-
ated tumor cells are both effective in eliciting antitumor
immune response, but RNA electroporation results in
more potent tumor vaccination. The efficacy of the vacci-
nation by RNA-electroporated DCs was dependent on the
presence of CD8+ cells, since in vivo depletion of these
cells abrogated the reported effect. Importantly, vaccina-
tion with RNA-electroporated DCs expressing E6 and E7
significantly enhanced infiltration of CD3+CD8* into the
tumors.

To our knowledge this is the first direct comparison
between irradiated cells and whole RNA as a source of
whole tumor antigen to prepare DC based tumor vac-
cines. Because the same number of cells was used to derive
tumor antigen with both methodologies, the above find-
ings indicate that RNA electroporation is an efficient
methodology for loading DCs with tumor antigen. A pre-
vious report also found that apoptotic tumor cell pulsing
is not an efficient approach to tumor vaccination [38].
Several reasons may account for our findings. First, anti-
gen up-take may be less efficient with pulsing dying cells
compared to RNA electroporation. Since UVB irradiation
has been shown to result in a mixed population of apop-
totic and necrotic tumor cells [16], it is possible that either
process leads to degradation of important antigens [39],
resulting in suboptimal antigen processing or presenta-
tion. Second, apoptotic DNA may bind to MHC class mol-
ecules and interfere with antigen presentation [40]. Third,
although non-viral methods of DNA transfection of DCs
are inefficient, the efficiency of gene transfer with RNA
electroporation resembles that of transfection with
recombinant viruses [41]. Finally, another advantage of
RNA transfer of DC over pulsing DC with protein antigens
is that endogenously synthesized antigens have better
access to the class | MHC pathway [42].

It is noteworthy to comment that different maturation
protocols can modify the capability of DCs to effectively
present antigens upon RNA electroporation. In a series of
elegant studies, Zobylawski et al., have shown that human
DCs treated with a maturation cocktail formulated with
TNF, IL-1B, IFN-y, prostaglandin E2, and the Toll like
receptor (TLR) 8 agonist R848 were able to generate an

http://www.translational-medicine.com/content/6/1/21

efficient immune response upon RNA electroporation;
while addition of the TLR3 ligand poly(I:C) to the matu-
ration cocktail rendered DCs unable to express proteins
from electroporated RNA [43]. Indeed, the formulation of
appropriate maturation cocktails is one of the challenges
that faces the generation of effective DC-based vaccines
for clinical use [44]. Thus, the use of different activation
protocols might have produced different results in our
studies. Further, since in our studies we used murine bone
marrow-derived DCs, they may not directly translate to
human monocyte-derived dendritic cells used for clinical
studies. Additional studies with human monocyte-
derived dendritic cells must be performed in order to
determine the clinical relevance of our findings. Finally, it
should be noted that our work compared RNA to dead
tumor cells and our findings on superiority of RNA as a
source of whole tumor antigen may not be relevant to
alternate methods of preparing whole tumor cell protein,
such as tumor lysates [45], which may preserve tumor
antigens or do not interfere with antigen presentation.

Conclusion

Collectively, our data suggest that electroporation of
whole tumor RNA represents a direct and effective way of
delivering tumor antigen to DCs ex vivo. Coupled with
the easier procurement of tumor RNA compared to the
generation of tumor cell lines, these findings suggest that
RNA electroporation should be a preferred method of
loading DCs with whole tumor antigen in clinical trials.

Abbreviations

DCs: dendritic cells; DEPC: diethylpyrocarbonate; FACS:
fluorescence activated cell sorting; GM-CSF: granulocyte
macrophage-colony stimulation factor; HPV: human pap-
illoma virus; IFN: interferon; LPS: lipopolysaccharide;
MHC: major histocompatibility complex; MIP: macro-
phage inflammatory protein; PBS: phosphate buffered
saline; RNA: ribonucleic acid; RPMI: Rosewell Park
Memorial Institute — cell culture medium; TLR: Toll-like
receptor; TNF: tumor necrosis factor; UVB: ultraviolet-B

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

FB participated in study design, carried out the in vitro
and in vivo studies and drafted the manuscript and fig-
ures. MCC assisted with all the in vitro and in vivo exper-
iments. GC conceived of the study, participated in its
design and coordination, and finalized the manuscript.

Acknowledgements

This study was supported by NCI POI-CA83638 SPORE in Ovarian Cancer;
the Cooperative Ovarian Cancer Group for Immunotherapy (COGI) grant
by the Ovarian Cancer Research Fund (OCRF); and the National Ovarian
Cancer Coalition.

Page 12 of 14

(page number not for citation purposes)



Journal of Translational Medicine 2008, 6:21

References

l.
2.

Hsueh EC: Tumour cell-based vaccines for the treatment of
melanoma. BioDrugs 2001, 15(11):713-720.

Scanlan M), Jager D: Challenges to the development of antigen-
specific breast cancer vaccines. Breast Cancer Res 2001,
3(2):95-98.

Chen W, Wang ], Shao C, Liu S, Yu Y, Wang Q, Cao X: Efficient
induction of antitumor T cell immunity by exosomes derived
from heat-shocked lymphoma cells. European journal of immunol-
ogy 2006, 36(6):1598-1607.

Chen Z, Moyana T, Saxena A, Warrington R, Jia Z, Xiang J: Efficient
antitumor immunity derived from maturation of dendritic
cells that had phagocytosed apoptotic/necrotic tumor cells.
International journal of cancer 2001, 93(4):539-548.

Henry F, Boisteau O, Bretaudeau L, Lieubeau B, Meflah K, Gregoire
M: Antigen-presenting cells that phagocytose apoptotic
tumor-derived cells are potent tumor vaccines. Cancer
research 1999, 59(14):3329-3332.

Hoffmann TK, Meidenbauer N, Dworacki G, Kanaya H, Whiteside TL:
Generation of tumor-specific T-lymphocytes by cross-prim-
ing with human dendritic cells ingesting apoptotic tumor
cells. Cancer research 2000, 60(13):3542-3549.

Russo V, Tanzarella S, Dalerba P, Rigatti D, Rovere P, Villa A, Bordi-
gnon C, Traversari C: Dendritic cells acquire the MAGE-3
human tumor antigen from apoptotic cells and induce a class
I-restricted T cell response. Proceedings of the National Academy
of Sciences of the United States of America 2000, 97(5):2185-2190.
Shaif-Muthana M, Mcintyre C, Sisley K, Rennie I, Murray A: Dead or
alive: immunogenicity of human melanoma cells when pre-
sented by dendritic cells. Cancer  research 2000,
60(22):6441-6447.

Schnurr M, Scholz C, Rothenfusser S, Galambos P, Dauer M, Robe |,
Endres S, Eigler A: Apoptotic pancreatic tumor cells are supe-
rior to cell lysates in promoting cross-priming of cytotoxic T
cells and activate NK and gammadelta T cells. Cancer research
2002, 62(8):2347-2352.

Scheffer SR, Nave H, Korangy F, Schlote K, Pabst R, Jaffee EM, Manns
MP, Greten TF: Apoptotic, but not necrotic, tumor cell vac-
cines induce a potent immune response in vivo. International
journal of cancer 2003, 103(2):205-211.

von Euw EM, Barrio MM, Furman D, Levy EM, Bianchini M, Peguillet |,
Lantz O, Vellice A, Kohan A, Chacon M, Yee C, Wainstok R, Mordoh
J: A phase I clinical study of vaccination of melanoma patients
with dendritic cells loaded with allogeneic apoptotic/
necrotic melanoma cells. Analysis of toxicity and immune
response to the vaccine and of IL-10 -1082 promoter geno-
type as predictor of disease progression. | Trans| Med 2008,
6(1):6.

von Euw EM, Barrio MM, Furman D, Bianchini M, Levy EM, Yee C, Li
Y, Wainstok R, Mordoh J: Monocyte-derived dendritic cells
loaded with a mixture of apoptotic/necrotic melanoma cells
efficiently cross-present gp100 and MART-1 antigens to spe-
cific CD8+ T lymphocytes. | Transl Med 2007, 5:19.

Gallucci S, Lolkema M, Matzinger P: Natural adjuvants: endog-
enous activators of dendritic cells. Nature medicine 1999,
5(11):1249-1255.

Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK: Necrotic
but not apoptotic cell death releases heat shock proteins,
which deliver a partial maturation signal to dendritic cells
and activate the NF-kappa B pathway. International immunology
2000, 12(11):1539-1546.

Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj
N: Consequences of cell death: exposure to necrotic tumor
cells, but not primary tissue cells or apoptotic cells, induces
the maturation of immunostimulatory dendritic cells. The
Journal of experimental medicine 2000, 191(3):423-434.

Kotera Y, Shimizu K, Mule JJ: Comparative analysis of necrotic
and apoptotic tumor cells as a source of antigen(s) in den-
dritic cell-based immunization. Cancer research 2001,
61(22):8105-8109.

Schlienger K, Chu CS, Woo EY, Rivers PM, Toll AJ, Hudson B, Maus
MV, Riley JL, Choi Y, Coukos G, Kaiser LR, Rubin SC, Levine BL, Car-
roll RG, June CH: TRANCE- and CD40 ligand-matured den-
dritic cells reveal MHC class I-restricted T cells specific for
autologous tumor in late-stage ovarian cancer patients. Clin
Cancer Res 2003, 9(4):1517-1527.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

http://www.translational-medicine.com/content/6/1/21

Boczkowski D, Nair SK, Snyder D, Gilboa E: Dendritic cells pulsed
with RNA are potent antigen-presenting cells in vitro and in
vivo. The Journal of experimental medicine 1996, 184(2):465-472.
Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E: Bone
marrow-generated dendritic cells pulsed with tumor
extracts or tumor RNA induce antitumor immunity against
central nervous system tumors. The Journal of experimental med-
icine 1997, 186(7):1177-1182.

Nair SK, Morse M, Boczkowski D, Cumming Rl, Vasovic L, Gilboa E,
Lyerly HK: Induction of tumor-specific cytotoxic T lym-
phocytes in cancer patients by autologous tumor RNA-
transfected dendritic cells. Annals  of surgery 2002,
235(4):540-549.

Ponsaerts P, Van den Bosch G, Cools N, Van Driessche A, Nijs G,
Lenjou M, Lardon F, Van Broeckhoven C, Van Bockstaele DR,
Berneman ZN, Van Tendeloo VF: Messenger RNA electropora-
tion of human monocytes, followed by rapid in vitro differen-
tiation, leads to highly stimulatory antigen-loaded mature
dendritic cells. | Immunol 2002, 169(4):1669-1675.

Geiger C, Regn S, Weinzierl A, Noessner E, Schendel D): A generic
RNA-pulsed dendritic cell vaccine strategy for renal cell car-
cinoma. | Transl Med 2005, 3:29.

Markovic SN, Dietz AB, Greiner CW, Maas ML, Butler GW, Padley
DJ, Bulur PA, Allred B, Creagan ET, Ingle N, Gastineau DA, Vuk-Pav-
lovic S: Preparing clinical-grade myeloid dendritic cells by
electroporation-mediated transfection of in vitro amplified
tumor-derived mRNA and safety testing in stage IV malig-
nant melanoma. | Transl Med 2006, 4:35.

Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O, Per-
sons DL, Smith PG, Terranova PF: Development of a syngeneic
mouse model for events related to ovarian cancer. Carcino-
genesis 2000, 21(4):585-591.

Halbert CL, Demers GW, Galloway DA: The E7 gene of human
papillomavirus type 16 is sufficient for immortalization of
human epithelial cells. journal of virology 1991, 65(1):473-478.
Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N,
Schuler G: An advanced culture method for generating large
quantities of highly pure dendritic cells from mouse bone
marrow. | Immunol Methods 1999, 223(1):77-92.

Pan ZK, Ikonomidis G, Lazenby A, Pardoll D, Paterson Y: A recom-
binant Listeria monocytogenes vaccine expressing a model
tumour antigen protects mice against lethal tumour cell
challenge and causes regression of established tumours.
Nature medicine 1995, 1(5):471-477.

Courreges MC, Benencia F, Conejo-Garcia JR, Zhang L, Coukos G:
Preparation of apoptotic tumor cells with replication-incom-
petent HSV augments the efficacy of dendritic cell vaccines.
Cancer gene therapy 2006, 13(2):182-193.

Ogata M, Zhang Y, Wang Y, Itakura M, Zhang YY, Harada A, Hashim-
oto S, Matsushima K: Chemotactic response toward chemok-
ines and its regulation by transforming growth factor-betal
of murine bone marrow hematopoietic progenitor cell-
derived different subset of dendritic cells. Blood 1999,
93(10):3225-3232.

Conejo-Garcia JR, Benencia F, Courreges MC, Khang E, Zhang L,
Mohamed-Hadley A, Vinocur JM, Buckanovich R, Thompson CB, Lev-
ine B, Coukos G: Letal, A tumor-associated NKG2D immu-
noreceptor ligand, induces activation and expansion of
effector immune cells. Cancer Biol Ther 2003, 2(4):446-451.

Lin KY, Guarnieri FG, Staveley-O'Carroll KF, Levitsky HI, August JT,
Pardoll DM, Wu TC: Treatment of established tumors with a
novel vaccine that enhances major histocompatibility class Il
presentation of tumor antigen. Cancer research 1996,
56(1):21-26.

Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y: Two Lis-
teria monocytogenes vaccine vectors that express different
molecular forms of human papilloma virus-16 (HPV-16) E7
induce qualitatively different T cell immunity that correlates
with their ability to induce regression of established tumors
immortalized by HPV-16. | Immunol 2001, 167(1 1):6471-6479.
Hussain SF, Paterson Y: CD4+CD25+ regulatory T cells that
secrete TGFbeta and IL-10 are preferentially induced by a
vaccine vector. | Immunother 2004, 27(5):339-346.

Lamikanra A, Pan ZK, Isaacs SN, Wu TC, Paterson Y: Regression of
established human papillomavirus type 16 (HPV-16) immor-
talized tumors in vivo by vaccinia viruses expressing differ-

Page 13 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11250753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11250753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16708399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16708399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16708399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10416588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10416588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10910067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10910067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10910067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10681453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10681453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10681453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11103811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11103811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11103811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11956095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11956095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11956095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18221542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18221542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18221542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17448240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17448240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17448240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10545990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10545990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11058573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11058573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11058573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10662788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10662788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10662788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12684428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12684428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12684428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8760800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8760800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8760800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9314567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9314567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9314567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11923611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11923611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11923611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12165485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12165485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12165485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16045799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16045799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16045799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16911798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16911798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16911798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10753190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10753190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1845902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1845902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1845902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10037236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10037236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10037236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7585097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7585097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16138121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16138121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10233873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10233873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10233873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14508119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14508119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14508119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8548765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8548765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8548765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11714814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11714814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11714814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15314542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15314542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15314542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11559797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11559797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11559797

Journal of Translational Medicine 2008, 6:21

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,
45,

ent forms of HPV-16 E7 correlates with enhanced CD8(+) T-
cell responses that home to the tumor site. Journal of virology
2001, 75(20):9654-9664.

Sallusto F, Kremmer E, Palermo B, Hoy A, Ponath P, Qin S, Forster R,
Lipp M, Lanzavecchia A: Switch in chemokine receptor expres-
sion upon TCR stimulation reveals novel homing potential
for recently activated T cells. European journal of immunology
1999, 29(6):2037-2045.

Zhang L, Yang N, Garcia JR, Mohamed A, Benencia F, Rubin SC, All-
man D, Coukos G: Generation of a syngeneic mouse model to
study the effects of vascular endothelial growth factor in
ovarian carcinoma. Am J Pathol 2002, 161(6):2295-2309.

Ji H, Chang EY, Lin KY, Kurman R}, Pardoll DM, Wu TC: Antigen-
specific immunotherapy for murine lung metastatic tumors
expressing human papillomavirus type 16 E7 oncoprotein.
International journal of cancer 1998, 78(1):41-45.

Galea-Lauri J, Darling D, Mufti G, Harrison P, Farzaneh F: Eliciting
cytotoxic T lymphocytes against acute myeloid leukemia-
derived antigens: evaluation of dendritic cell-leukemia cell
hybrids and other antigen-loading strategies for dendritic
cell-based vaccination.  Cancer Immunol Immunother 2002,
51(6):299-310.

Labarriere N, Bretaudeau L, Gervois N, Bodinier M, Bougras G, Diez
E, Lang F, Gregoire M, Jotereau F: Apoptotic body-loaded den-
dritic cells efficiently cross-prime cytotoxic T lymphocytes
specific for NAI7-A antigen but not for Melan-A/MART-I
antigen. International journal of cancer 2002, 101(3):280-286.

Filaci G, Contini P, Fravega M, Fenoglio D, Azzarone B, Julien-Giron
M, Fiocca R, Boggio M, Necchi V, De Lerma Barbaro A, Merlo A, Rizzi
M, Ghio M, Setti M, Puppo F, Zanetti M, Indiveri F: Apoptotic DNA
binds to HLA class Il molecules inhibiting antigen presenta-
tion and participating in the development of anti-inflamma-
tory functional behavior of phagocytic macrophages. Human
immunology 2003, 64(1):9-20.

Kim CJ, Prevette T, Cormier |, Overwijk W, Roden M, Restifo NP,
Rosenberg SA, Marincola FM: Dendritic cells infected with pox-
viruses encoding MART-1/Melan A sensitize T lymphocytes
in vitro. | Immunother (1997) 1997, 20(4):276-286.

Rea D, Johnson ME, Havenga M], Melief CJ, Offringa R: Strategies
for improved antigen delivery into dendritic cells. Trends in
molecular medicine 2001, 7(3):91-94.

Zobywalski A, Javorovic M, Frankenberger B, Pohla H, Kremmer E,
Bigalke I, Schendel D): Generation of clinical grade dendritic
cells with capacity to produce biologically active IL-12p70. |
Transl Med 2007, 5:18.

Gilboa E: DC-based cancer vaccines. The Journal of clinical investi-
gation 2007, 117(5):1195-1203.

Ridolfi R, Petrini M, Fiammenghi L, Stefanelli M, Ridolfi L, Ballardini M,
Migliori G, Riccobon A: Improved overall survival in dendritic
cell vaccination-induced immunoreactive subgroup of
advanced melanoma patients. | Transl Med 2006, 4:36.

http://www.translational-medicine.com/content/6/1/21

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 14 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11559797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11559797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10382767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10382767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10382767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12111118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12111118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12111118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12507810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12507810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12507810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11286763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11286763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17430585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17430585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17476349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16914047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16914047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16914047
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Introduction
	Materials and methods
	Cell lines
	Animals and tumors
	Generation of bone marrow-derived DCs
	DC electroporation with tumor RNA
	DC pulsing with apoptotic tumor cells
	Animal vaccination
	Flow cytometry
	Proliferation assays
	Chemotaxis assay
	IFN-g ELISPOT
	Immunostaining
	Immunoprecipitation and Western blot
	RT-PCR and Real-Time Quantitative Reverse Transcription-PCR
	Statistical analysis

	Results
	Preparation of DCs electroporated with TC-1 cell RNA (RNA-DCs)
	Preparation of DCs pulsed with UV irradiated TC-1 cells (UV-DCs)
	Maturation of RNA-DCs and UV-DCs
	Development of additional tumor targets expressing HPV- 16 E6 and E7
	RNA-DCs and UV-DCs are immunogenic in vivo
	Vaccination with RNA-DCs or UV-DCs

	Discussion
	Conclusion
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

