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Abstract

Purpose: An open-label Phase | study of recombinant prime-boost poxviruses targeting CEA and
MUC-1 in patients with advanced pancreatic cancer was conducted to determine safety, tolerability
and obtain preliminary data on immune response and survival.

Patients and methods: Ten patients with advanced pancreatic cancer were treated on a Phase
| clinical trial. The vaccination regimen consisted of vaccinia virus expressing tumor antigens
carcinoembryonic antigen (CEA) and mucin-1 (MUC-1) with three costimulatory molecules B7.1,
ICAM-1 and LFA-3 (TRICOM) (PANVAC-V) and fowlpox virus expressing the same antigens and
costimulatory molecules (PANVAC-F). Patients were primed with PANVAC-V followed by three
booster vaccinations using PANVAC-F. Granulocyte-macrophage colony-stimulating factor (GM-
CSF) was used as a local adjuvant after each vaccination and for 3 consecutive days thereafter.
Monthly booster vaccinations for up to 12 months were provided for patients without progressive
disease. Peripheral blood was collected before, during and after vaccinations for immune analysis.

Results: The most common treatment-related adverse events were mild injection-site reactions.
Antibody responses against vaccinia virus was observed in all 10 patients and antigen-specific T cell
responses were observed in 5 out of 8 evaluable patients (62.5%). Median overall survival was 6.3
months and a significant increase in overall survival was noted in patients who generated anti CEA-
and/or MUC- | -specific immune responses compared with those who did not (15.1 vs 3.9 months,
respectively; P = .002).

Conclusion: Poxvirus vaccination is safe, well tolerated, and capable of generating antigen-specific
immune responses in patients with advanced pancreatic cancer.

Introduction high mortality rate. An estimated 37,170 new cases will be
Pancreatic cancer is associated with a poor prognosis and  diagnosed in the United States in 2007 and 33,370
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patients will die from the disease [1]. The median overall
survival rate in patients with unresectable or metastatic
disease is typically 3-6 months [2]. Current treatment
options for pancreatic cancer include surgery, chemother-
apy, and radiotherapy but only complete surgical resec-
tion is associated with a favorable outcome [1,3]. Most
patients with pancreatic cancer, however, have unresecta-
ble disease at presentation. Gemcitabine-based therapy is
widely used in the treatment of advanced pancreatic can-
cer, although its benefits are primarily palliative with lim-
ited improvement in survival [4]. Thus, new therapeutic
options are needed for patients with advanced pancreatic
cancer.

There has been interest in using immunotherapy for pan-
creatic cancer based on the identification of mutated
oncogenes, such as KRAS, altered tumor suppressor genes,
such as TP53, CDKN2A, DPC4, BRCA2, and ERBB2, as
well as over-expression of tumor-associated antigens, such
as CEA and MUC-1, in pancreatic carcinoma cells [5]. The
carcinoembryonic antigen (CEA) is an oncofetal antigen
that is expressed at high levels in most pancreatic carcino-
mas. The mucin, MUC-1, is a highly glycosylated protein
that is also overexpressed in many adenocarcinomas,
including those of pancreatic origin. T cells from normal
donors and cancer patients have been shown to recognize
HLA-restricted epitopes derived from CEA and non-HLA-
restricted epitopes encoded by MUC-1 [6,7]. Targeting
two distinct tumor antigens in a single vaccination regi-
men may induce better anti-tumor effects since the gener-
ation of polyclonal T cell responses may prevent tumor
escape through antigen loss. Several preclinical models
have demonstrated that the T cell dependent therapeutic
effectiveness of using recombinant poxviruses expressing
CEA or MUC-1 in both transplantable and transgenic
model tumor systems [8-17].

The activation of T cells requires antigen-specific signals
that are delivered through the T cell receptor after recog-
nizing cognate peptides presented by major histocompat-
ibility complexes (MHC) on antigen-presenting cells. In
the face of weak antigenic stimuli, such as tumor antigens,
successful activation of T cells also depends on costimula-
tory signals, which cooperate with T cell signaling to
induce cytokine production and T-cell proliferation [17].
The co-expression of tumor antigens and costimulatory
molecules within poxviruses represents a strategy that has
demonstrated a significantly better anti-tumor effect in
murine models [16,18-25]. The combination of B7.1,
ICAM-1 and LFA-3 (TRICOM) appears to be particularly
useful for both in vitro stimulation of T cells and for
induction of tumor rejection in vivo [18,19,24,26].

In addition to expression of costimulatory molecules in
poxvirus vectors, the use of a heterologous prime-boost
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vaccination schedule with replicating and non-replicating
vectors has shown superiority in generating tumor-spe-
cific T cell responses in animal models [14]. Furthermore,
pre- and clinical studies have shown that protection from
malaria was enhanced when using a prime-boost vaccinia-
fowlpox virus system expressing the P. falciparum circum-
sporozoite antigen (PfCSF) [27,28]. We have previously
shown that prime-boost vaccination with a prostate spe-
cific antigen (PSA) vaccinia-fowlpox virus regimen
induced a longer biochemical progression-free survival
than vaccination with fowlpox-PSA virus alone [22]. In
this study we tested the safety and feasibility of using pox-
viruses expressing CEA and MUC-1 with TRICOM as a vac-
cine treatment for patients with advanced pancreatic
carcinoma. A novel vaccinia virus vectors expressing both
tumor antigens CEA and MUC-1, and costimulatory mol-
ecules TRICOM (PANVAC-V) was constructed and used to
prime an initial T-cell response. Patients were then
boosted with a non-replicating fowlpox virus expressing
CEA, MUC-1 and TRICOM (PANVAC-F). The use of a
prime-boost vaccination approach with vaccinia virus fol-
lowed by fowlpox virus has been shown to increase the
generation of T cell immunity to expressed antigens and
may also improve therapeutic responses [14,22,29,30]. In
order to further improve the clinical effectiveness of the
vaccine, granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF) was used as a vaccine adjuvant to enhance
local antigen processing and presentation [31,32]. Thus,
this trial incorporated four distinct strategies to increase
the potency of anti-tumor immunity in pancreatic cancer
patients — targeting multiple tumor antigens, expression
of several T-cell costimulatory molecules, delivery using a
heterologous prime-boost poxvirus system and inclusion
of GM-CSF as a local adjuvant. We now report the safety
and tolerability of this approach as well as immune
responses and their correlation to overall patient survival.

Patients and methods

Patient eligibility

The study populations comprised 10 patients >18 years
old who had been previously vaccinated against smallpox
and had a histologically confirmed diagnosis of unresect-
able or metastatic pancreatic cancer; Karnofsky Perform-
ance Status (KPS) >80%; and anticipated survival of >4
months. Patients were required to use adequate contra-
ceptives during the study and for 3 months after the final
visit. Key exclusion criteria included: evidence of being
immunocompromised; past or present diagnosis of
autoimmune disease; steroid use within 28 days prior to
signing consent; inability to avoid close contact with chil-
dren <5 years old, pregnant women, individuals with
eczema or related skin conditions, and/or immunocom-
promised individuals for 3 weeks after the first vaccina-
tion; known egg or egg product allergy; positive for
hepatitis B or C infection; compromised hematopoietic
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function; hepatic or renal dysfunction; significant cardio-
vascular abnormalities or other uncontrolled diseases or
conditions; concurrent other malignancy, except non-
melanoma skin or in situ cervix carcinoma; prior malig-
nancy that had not been curatively treated or that had
recurred within 2 years; evidence of active, uncontrolled
infection; completion of prior chemotherapy <28 days
prior to the first vaccination; receipt of immunotherapy or
biotherapy; and pregnancy or breastfeeding.

The study was approved by the individual Institutional
Review Boards at each study site and was conducted in
accordance with the Declaration of Helsinki. Written
informed consent was obtained from all patients prior to
study entry. An independent Data Safety Monitoring
Board was established to ensure patient safety.

Study design and treatment

On Day 0, all patients were primed with rV-CEA/MUC-1/
TRICOM (PANVAC-V, 2 x 108 pfu). This was followed by
booster doses of rF-CEA/MUC-1/TRICOM (PANVAC-F, 1
x 10° pfu) on Days 14, 28, and 42. Each vaccine was
administered by subcutaneous injection. In addition,
GM-CSF 100 pg was administered at the vaccination site
after each immunization and for 3 consecutive days there-
after. Patients were eligible to enroll in an optional exten-
sion phase provided they completed the core phase of 4
vaccinations and experienced disease stabilization with
acceptable toxicity. For those patients enrolled in the
extension phase, additional monthly boosts in combina-
tion with GM-CSF were provided for up to 12 months.

Adverse events were monitored throughout the trial by
physical examinations, laboratory tests (chemistries and
electrolytes, blood counts, coagulation parameters,
hepatic enzymes and urinalysis), and vital sign measure-
ments conducted on Days 0, 14, 28, 42, and 70 in the core
phase, and at each monthly boost visit in the extension
phase. Twelve-lead ECGs were performed on Days 28 and
70 in the core phase, and at monthly boost visits from
months 3 through 11 in the extension phase. Peripheral
blood was collected for immune studies on Days 0, 14,
28, 42, and 70 in the core phase, and at each monthly
boost visit in the extension phase.

A patient was withdrawn from the study if any of the fol-
lowing dose-limiting toxicities (DLT) were experienced:
grade 2 asymptomatic bronchospasm or generalized urti-
caria or any other grade >3 allergic reaction; grade >2
autoimmune response; or any grade >3 hematologic or
nonhematologic reaction, including injection-site reac-
tion.

http://www.translational-medicine.com/content/5/1/60

Vaccine preparation

PANVAC-V and PANVAC-F vaccines were prepared from
plaque-purified isolates from the Wyeth New York City
Board of Health (New York, NY) for vaccinia vectors and
from POXVAC-TC for fowlpox vectors. Virus for the vac-
cine was grown in primary chicken embryo dermal cells
and formulated in phosphate-buffered saline containing
10% glycerol. Each vial of PANVAC-V contained 1.29 x
107 pfu/0.3 mL, and PANVAC-F contained 8.93 x 10° pfu/
0.3 mL. All vials were stored at -70°C or lower until the
day of administration, at which time they were thawed at
room temperature and prepared in a sterile manner.

Evaluation of antibody responses

Serum was collected as mentioned above, stored at -20°C
and used to determine anti-vaccinia virus, anti-fowlpox
virus and anti-CEA antibody titers by standard ELISA, as
previously described [33]. Briefly, 96-well plates were
coated with the appropriate coating antigens overnight at
4°C. Wells were blocked for 1 hr at 37°C with 5% milk
solution. Serum samples were diluted in 5% milk solu-
tion, with the starting sample at a 1:100 dilution and sub-
sequent samples subjected to two-fold serial dilutions.
The diluted test samples and assay positive and negative
controls were added to the plates in duplicates. After incu-
bation and washing, HRP-goat anti-human IgG was
added and incubated for 1 hr at 37°C. Color was devel-
oped with Sure Blue TMB Microwell Peroxidase Substrate
and absorbance was measured using a SpectraMax plate
reader (Molecular Devices, CA). Antibody titers were
defined as the mean optical density (O.D) of the test sera
was >3 fold the mean O.D of the negative control at 1:100
dilution. A positive antibody response due to vaccination
was defined as a >2 fold increase in the post-immuniza-
tion titer as compared to the pre-immunization titer.

Evaluation of T cell responses

PBMCs were separated from whole blood over a Ficoll gra-
dient, and isolated PBMCs were frozen in liquid nitrogen
until analysis. T cell responses were evaluated using a
novel, research-grade, non-HLA-restricted cytokine secre-
tion assay in all patients [34]. This assay compared the
amount of IFN-y produced in response to monkey breast
cancer cells (CMMT 110/C1) infected with PANVAC-F
with that produced in response to cells infected with neg-
ative control viruses, TBC-F/TRICOM™ or PROSTVAC-F.
Briefly, frozen PBMC were thawed and incubated in
medium overnight at 37°C, 5% CO, prior to use. A
CMMT 110/C1 cell line was infected with one of three dif-
ferent recombinant fowlpox viruses at a multiplicity of
infection (MOI) of 40 pfu/cell: PANVAC-F, TBC-F/TRI-
COM (control fowlpox virus expressing TRICOM without
CEA or MUC-1; data not shown) and PROSTVAC-F (con-
trol vector expressing PSA and TRICOM). On Day 2, each
different infected CMMT 110/C1 preparation was mixed
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with patient PBMC at a ratio of 1:10 and co-cultured for
72 hours. At the end of the incubation period, superna-
tants were collected for IFN-y production by standard
ELISA assay using ELISA kit (R & D Systems). The limit of
quantitation of IFN-y in the ELISA was 50 pg/mL. When
the number of viable patient PBMC permitted, the PBMC
were also co-cultured with uninfected stimulator cells as
an additional control. Under these conditions, IFN-y pro-
duction was not observed (data not shown).

Statistical methods

Mean antibody titers against viral vectors, CEA and MUC-
1 were determined for all evaluable patients by ELISA. The
development of a specific cell-mediated immune
response to CEA and MUC-1 was determined by compar-
ing the amount of IFN-y produced in response to monkey
cells infected with PANVAC-F to the amount produced in
response to cells infected with the negative control
viruses, TBC-F/TRICOM or PROSTVAC-F. The Spearman
correlation was used to investigate potential associations
between response and clinical benefit. A P-value < 0.05
was considered significant.

Results

Patient characteristics

Eleven patients were enrolled in the trial since one patient
withdrew consent before completing the core phase and
was replaced. All patients were evaluated for toxicity but
only the 10 patients completing the study were use for
immune analysis. Patient demographics and baseline
characteristics are listed in Table 1. The majority of
patients were Caucasian, with a mean age of approxi-
mately 57.9 + 9.6 (43-74) years. All patients were heavily
pretreated with 60% had two or more prior chemotherapy
regimens. Over half of the patients had undergone surgi-
cal procedures for pancreatic cancer and the majority
(80%) had metastatic disease.

Safety

Toxicity was assessed using the National Cancer Institute
Common Toxicity Criteria. The majority of adverse events
were low grade injection site reactions or constitutional
symptoms (Table 2). The most frequently encountered
adverse events were grade 1 discomfort at the injection site
(pain, erythema, edema; n = 5), constitutional symptoms
(fatigue, mylagias, headache; n = 9), and gastrointestinal
(nausea, vomiting, anorexia; n = 12). There were no Grade
3 or greater adverse events related to vaccination. No
patients in the trial discontinued because of an adverse
event.

Antibody responses

Anti-poxvirus- and CEA-specific antibody responses were
monitored by ELISA at each sampling time point through-
out the trial and expressed as a titer (Table 3). All 10
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Table I: Patient demographics

Characteristics N=10

Mean (range) age, years 57.9 £ 9.6 (43-74)

Performance status™®, n (%)

80% 4 (40)
90% 3 (30)
100% 3 (30)
Sex, n (%)
Male 7 (70)
Female 3(30)
Race, n (%)
Caucasian 9 (90)
Blacks/Asians 1 (10)
Prior therapy, n (%)
Chemotherapy
| prior regimen 4 (40)
>2 prior regimens 6 (60)
Radiotherapy 5 (50)
Immunotherapy 0 (0)
Other I (10)
HLA-A2t, n (%)
Positive 3 (30)
Negative 7 (70)

Abbreviation: tHLA-A2, human leukocyte antigen-A2; * Karnofsky
Performance Status (KPS)

patients developed antibody responses against vaccinia
virus with 3 patients exhibiting titers >1000, although all
patients had received prior smallpox vaccine. Seven of 10
patients (70%) developed a significant increase in anti-
fowlpox virus titers by day 70 with one patient exhibiting
a 16-fold increase 42 days after completing the assigned
treatment. Similar to previous CEA-based vaccine trials,
the anti-CEA antibody titers were much lower than anti-
fowlpox virus titers [15,35]. Nonetheless, we detected an
increase in anti-CEA antibody titers in 5 of 10 (50%)
patients following vaccination with one patient demon-
strating persistent anti-CEA antibody titers up to 3
months after completing the core phase of the trial.

Table 2: Adverse events related to vaccination

Toxicity Total Grade | Grade2 Grade3
Events
(N=10)
Injection site 5 5 0 0
reactions
Fever or chills 2 | | 0
Fatigue 6 3 3 0
Myalgia | | 0 0
Headache 2 0 2 0
Nausea 4 2 2 0
Vomiting 3 | 2 0
Anorexia 5 5 0 0
Page 4 of 10
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Table 3: Antibody responses to vaccine, fowlpox and CEA
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Patient No. Time point Titer
Anti-Vaccinia Anti-Fowlpox Anti-CEA

002-001 Day 0 1600 200 ND2
Day 14 6400 - <100

Day 28 - - <100

Day 42 - - <100

Day 70 - 3200 <100

Extension Phase Month [P - - <100

Extension Phase Month 2 - - <100

002-002 Day 0 1600 <100 ND
Day 14 3200 - <100

Day 28 - - <100

Day 42 - - <100

Day 63 - 1600 <100

002-003 Day 0 400 <100 ND
Day 14 1600 - <100

Day 28 - <100 <100

Day 36 - - ND

002-005 Day 0 200 <100 ND
Day 14 800 - <100

Day 28 - - <100

Day 42 - - 100

Day 70 - 400 <100

002-006 Day 0 200 <100 ND
Day 14 800 - <100

Day 28 - - <100

Day 42 - - 3200

Day 70 - 800 800

Extension Phase Month 2 - - 800

Extension Phase Month 3 - - 400

002-007 Day 0 <100 200 ND
Day 14 200 - <100

Day 28 - - <100

Day 42 - - 100

Day 70 - 800 100

Extension Phase Month 2 - - <100

Extension Phase Month 3 - - <100

Extension Phase Month 4 - - <100

Extension Phase Month 5 - - <100

Extension Phase Month 6 - - <100

Extension Phase Month 7 - - <100

Extension Phase Month 8 - - <100

Extension Phase Month 9 - - <100

001-008 Day 0 800 <100 ND
Day 14 6400 - <100

Day 28 - - <100

Day 42 - 3200 <100

001-009 Day 0 800 <100 ND
Day 14 800 - <100

Day 28 - <100 <100

001-010 Day 0 400 <100 ND
Day 14 1600 - <100

Day 28 - - <100

Day 42 - 100 100

001011 Day 0 1600 100 ND
Day 14 1600 - <100

Day 28 - - <100

Day 42 - - <100

Day 70 - 800 200

Extension Phase Month 2 - - 100

Bolded values indicate development of antibody response, which is defined as a 2-fold increase in titer of the post-immunization sample as compared to the

corresponding negative control sample. 2ND: not determined. Because the time 0 sample is the negative control sample for the CEA ELISA, a titer cannot be assigned
to this sample. bFor this patient, the sample collected approximately 2 weeks after the day 70 vaccination was labeled "Extension Phase Month |"; for all other patients,
the sample collected one month after the day 70 vaccination was labeled "Extension Phase Month 2".
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T cell responses

Antigen-specific immune responses were analyzed in
eight patients using thawed PBMCs directly without any
additional in vitro re-stimulation using a non-HLA-
restricted cytokine secretion assay. In this assay autolo-
gous T cells were co-cultured with CMMT 110/C1 cells
infected with PANVAC-F or a PSA-TRICOM expressing
fowlpox virus, PROSTVAC-F to determine responses to
the CEA and MUC-1 antigens in the PANVAC-F vaccine.
Among the 8 patients with enough cells for evaluation,
five patients (62.5%) developed a significant increase in
antigen-specific (CEA or MUC-1) immune responses,
which became detectable within 1-2 months of the first
vaccination and generally increased with repeated boost-
ing (Fig. 1). While no patients had detectable PANVAC-F
specific T cell responses prior to PANVAC-F immuniza-
tion, following prime-boost vaccination, positive
responses were detected in 5 patients following PANVAC-
F boosting. Two additional patients showed an initial
induction of PANVAC-F specific T cells but the responses
were not seen at later time points; these two patients were
not deemed to have statistically positive cellular
responses. The tumor antigen-specific nature of the T cell
responses was suggested by the increased recognition of
PANVAC-F compared to PROSTVAC-F, although two
patients did react to a lesser degree to PROSTVAC-F (Fig.
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1) likely representing recognition of fowlpox virus anti-
gens.

Immune response and overall survival

The median overall survival was 6.3 months (range,
1.5-21.1 months; Fig. 2). Of note was the 1 year survival
rate of 30%, although this trial was not designed to detect
clinical responses. To explore whether there was an asso-
ciation between T cell response and clinical outcome we
compared the overall survival of the five patients who
demonstrated an increase in T cell response to the five
who did not (Fig. 3). While these results must be inter-
preted cautiously, we did observe a significant increase in
overall survival in the patients who generated vaccine-spe-
cific T cell responses compared to those without T cell
reactivity (median survival 15.1 vs. 3.9 months, respec-
tively; P =.002).

Discussion

This Phase 1 clinical trial provides evidence that prime-
boost vaccination with recombinant vaccinia and fowlpox
viral vectors expressing CEA, MUC-1 and the TRICOM
costimulatory molecules administered with local GM-CSF
is safe and well tolerated. The most common treatment-
related adverse events were mild injection-site reactions
and no patients discontinued vaccination due to treat-

*

Patients

Cellular immune responses in vaccinated patients. Peripheral blood mononuclear cells were collected at the indicated day (D)
or month (M) following initial immunization. Peripheral blood mononuclear cells were co-cultured with CMMT [10/Cl1 cells
infected with a multiplicity of infection (MOI) of 40 plaque-forming units (pfu)/cell of fowlpox virus expressing CEA, MUC-|
and TRICOM (Black), or fowlpox virus expressing PSA and TRICOM; (Grey). *Denotes two-fold increase of CEA/MUC- | -spe-

cific T cell response compared to PSA control.
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Overall survival of patients enrolled in trial compared with historical control. Median overall survival = 6.30 months (Trial), and
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Figure 3

Overall survival of patients enrolled in the study. Positive indicates patients who had evidence of the development of a carci-
noembryonic antigen (CEA)- and/or mucin-1 (MUC-1)-specific immune response. Negative indicates patients who did not
develop an immune response (n = 3) or who were not assayed (n = 2).
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ment-related adverse events. The vaccination regimen was
also effective in generating antibody responses against the
viral vectors and five patients generated an increase in
anti-CEA antibody titers following vaccination. In agree-
ment with other CEA-based vaccine trials we noted a rela-
tively low titer of anti-CEA antibodies which may be
related to the low immunogenicity of CEA or the presence
of circulating CEA antigen-antibody complexes [33].
Nonetheless, even after subtracting background activity,
we could still detect an increase in titers in five patients
with one showing a dramatic increase at day 42, which
remained elevated for at least 3 months. All patients
developed anti-vaccinia antibody titers and some patients
had pre-existing titers presumably related to prior small-
pox vaccination, since immunity is known to persist for
decades, in some cases [35]. Whether these high titers
interfere with subsequent induction of T cell responses
cannot be determined from our study due to the limited
number of patients. In contrast, antibody titers against
fowlpox virus were lower and this is consistent with the
non-replicative nature of this virus.

We utilized a novel cytokine release assay using recom-
binant virus-infected CMMT 110/C1 cells as targets. This
assay has several advantages for monitoring viral vaccine
trials. The CMMT 110/C1 cell line represents a potentially
useful alternative APC for antigen-presentation when
autologous DC are limited or when multiple antigens
need to be tested. These cells are highly permissive to pox-
virus infection and human T cells are highly cross-reactive
with rhesus monkey cells. This is due, in part to the evolu-
tionary conservation of MHC-DR/peptide/T cell interac-
tions between humans and rhesus monkeys [36,37].
Furthermore, Geluk et al. demonstrated that human T
cells could proliferate in response to human hsp65 ;5
peptide when presented by rhesus APC Mhc-DRB1*03
[38]. In an experimental autoimmune encephalitis (EAE)
model, human whole myelin basic protein (MBP) or puri-
fied MBP induced pathologic CNS lesions in rhesus mon-
keys presumably mediated by rhesus CD4+ T cells [39].
These studies also suggested that the amplitude of the T
cell response was comparable to that induced by human
APC and confirmed that rhesus APC can efficiently proc-
ess human antigens and provide co-stimulatory signals to
human T cells. The permissiveness of the CMMT 110/C1
cell to poxvirus infection allows evaluation of T cell
response against a full range of putative antigenic epitopes
encoded by tumor antigens within the recombinant fowl-
poX virus vector.

In the current trial, we observed 5 of 8 (62.5%) patients in
the study developed evidence of increased antigen-specific
T cells within 2 months of vaccination and these persisted
during the booster phase of the clinical trial. Although
two patients also developed detectable levels of IFN-y
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(>200 pg/ml) at one or more time points, they were not
considered to have developed a significant responses to
PANVAC-VF based on our validation cutoff levels. None-
theless, this level of T cell response compares favorably
with other trials of CEA and MUC-1-based vaccines
[15,40]. Patients also developed T cell responses against
fowlpox virus, although at much lower frequencies (Fig.
1). The data in our trial represents a small sample size, but
these encouraging results suggest that our assay may be
promising for monitoring other studies using viral vac-
cines.

Patients with pancreatic cancer may exhibit signs of active
systemic immunosuppression due to prior chemotherapy
and radiotherapy. Several studies have observed that cyto-
toxic CD8+* T cells do not reach the tumor microenviron-
ment in significant numbers because most of the cells
aggregate in peritumoral tissues distant from the tumor
cells [41,42]. The inactivation of T cells due to down-reg-
ulation of the adhesion molecule ligand (CD103+) and
overexpression of immunosuppressive cytokines (TGF-f3)
observed in pancreatic cancer cells provide further evi-
dence of immunosuppression in this population [43-45].
In addition, many patients with pancreatic cancer are
heavily pretreated with chemotherapy, which may con-
tribute to the highly suppressive nature of this patient
population. In fact, all of our patients had been pre-
treated with the majority having two or more prior chem-
otherapy regimens. Thus, the pancreatic cancer patient
with advanced disease may represent a particularly diffi-
cult population to target with vaccines. Nonetheless, the
detection of CEA-specific T cells in 62.5% of the vacci-
nated patients in this study suggest that vaccines would be
more effective in induction of immunity in less immune
suppressive environment as in patients with less advanced
disease.

We also utilized local GM-CSF as a vaccine adjuvant in
this trial, which is thought to promote local dendritic cell
accumulation and presentation of virally-expressed anti-
gens. This may have also played a role in improving the
level of vaccine-specific immunity observe in our trial as
other studies of irradiated GM-CSF-secreting allogeneic
pancreatic tumor cell vaccines have also shown potent
immune responses and potential therapeutic activity in
early phase clinical trials [46]. Previous studies in patients
with pancreatic cancer suggested that survival was closely
correlated with the density of CD8* T cells within the
tumor microenvironment [47]. More recently clinical
investigation with poxviruses has similarly suggested an
association between the generation of CEA-specific
immunity and survival. Marshall and colleagues observed
a similar effect and demonstrated increased progression-
free survival in patients with CEA-expressing tumors who
developed CEA-specific T cell responses following vacci-
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nation with recombinant poxviruses expressing CEA and
costimulatory molecules [48]. The preliminary data from
our Phase 1 clinical trial found a similar survival benefit
in patients who developed CEA-specific T cell immunity
and survival (see Figure 3). The median overall survival
was nearly 4-fold longer in patients who exhibited evi-
dence of an increased CEA-specific T cell response.

The Phase 1 clinical trial reported here establishes the pre-
liminary safety and efficacy profiles of targeted cancer
immunotherapy using a prime-boost vaccinia/fowl poxvi-
rus vaccine regimen in patients with advanced pancreatic
cancer. All patients developed anti-viral antibody titers
and five patients developed anti-CEA antibody titers after
vaccination. We also observed an increase in tumor anti-
gen-specific T cell responses in 62.5% of the patients using
a modified IFN-y release assay with another two patients
showing a non-significant increase. Importantly, we also
documented an association between these T cell responses
and overall survival, although this trial was not designed
to detect such responses and therefore these results should
be viewed as exploratory. In conclusion, vaccination with
recombinant poxviruses generates meaningful antigen-
specific immune responses even in heavily pre-treated
pancreatic cancer patients. Future studies need to evaluate
vaccine therapy in patients with less advanced disease, in
those with less prior exposure to chemotherapy, and in
combination with therapeutic strategies aimed at block-
ing immunosuppressive mechanisms. Such studies
should help define the role of vaccine therapy for patients
with pancreatic cancer.
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