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Abstract

Epithelial ovarian cancer (EOC) represents the most frequent cause of death in the United States
from a cancer involving the female genital tract. Contributing to the overall poor outcome in EOC
patients, are the metastases to the peritoneum and stroma that are common in this cancer. In one
study, cDNA microarray analysis was performed on fresh tissue to profile gene expression in
patients with EOC. This study showed a number of genes with significantly altered expression in
the pelvic peritoneum and stroma, and in the vicinity of EOC implants. These genes included those
encoding coagulation factors and regulatory proteins in the coagulation cascade and genes encoding
proteins associated with inflammatory responses. In addition to promoting the formation of blood
clots, coagulation factors exhibit many other biologic functions as well as tumorigenic functions, the
later including tumor cell proliferation, angiogenesis, invasion, and metastasis. Coagulation pathway
proteins involved in tumorigenesis consist of factor Il (thrombin), thrombin receptor (protease-
activated receptors), factor Il (tissue factor), factor VII, factor X and factor | (fibrinogen), and fibrin
and factor XIII. In a recent study we conducted, we found that factor XI, factor XI, and several
coagulation regulatory proteins, including heparin cofactor-Il and epithelial protein C receptor
(EPCR), were also upregulated in the peritoneum of EOC.

In this review, we summarize evidence in support of a role for these factors in promoting tumor
cell progression and the formation of ascites. We also discuss the different roles of coagulation
factor pathways in the tumor and peritumoral microenvironments as they relate to angiogenesis,
proliferation, invasion, and metastasis. . Since inflammatory responses are another characteristic of
the peritoneum in EOC, we also discuss the linkage between the coagulation cascade and the
cytokines/chemokines involved in inflammation. Interleukin-8, which is considered an important
chemokine associated with tumor progression, appears to be a linkage point for coagulation and
inflammation in malignancy. Lastly, we review findings regarding the inflammatory process yielded
by certain clinical trials of agents that target members of the coagulation cascade in the treatment
of cancer. Current data suggest that disrupting certain elements of the coagulation and
inflammation processes in the tumor microenvironment could be a new biologic approach to
cancer therapeutics.
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Introduction

An estimated 22,220 new cases of and 16,210 deaths from
epithelial ovarian cancer (EOC) will occur in 2005 [1].
EOC is insidious: 75% of patients present at an advanced
stage, in which metastasis to the peritoneal cavity lining is
characteristic. Peritoneal and serosal involvement is asso-
ciated overall with a poor patient outcome. The mecha-
nism of peritoneal seeding, spreading, and progression is
poorly understood. Direct contact of free-floating ovarian
tumor cells in the peritoneal cavity may place the perito-
neum at risk for metastatic spread. Other evidence of met-
astatic spread points to a surface epithelium origin of EOC
[2] or genetic instability of the stroma [3].

Evidence is mounting that an inflammatory process con-
tributes to tumor growth and metastasis to the perito-
neum in EOC [4,5]. This process is facilitated by cross talk
between tumor cells and the surrounding cellular stroma
[6]. Surgical findings from EOC frequently include
enhanced tumor vascularity with or without malignant
ascites. Microscopic examination may reveal an inflam-
matory infiltrate comprising different leukocyte popula-
tions [6]. The stroma associated with tumors may
resemble granulation tissue formed during wound heal-
ing [7]. The interaction of cancer cells with their surround-
ings might influence phenotypic alterations in the tumor.
For example, the presence of human breast tumor stromal
explants in mice may determine the formation of breast
cancer-like lesions [8].

In a recent study, we compared the transcriptional profile
of normal-appearing peritoneum and its adherent and
subjacent stroma in EOC patients with that of patients
with pathologically benign ovarian disease [3]. In our
study, we identified 402 genes differentially expressed
between malignant and benign peritoneum and 663
genes differentially expressed between malignant and
benign stroma. No significant differences in gene expres-
sion between malignant peritoneum and malignant
stroma were observed, which suggests that the transcrip-
tional changes induced by the malignant condition over-
lapped at least partly. Our preliminary analysis indicated
that the gene profile of peritoneal structures might be
affected by the presence of EOC cells [3]. We found it
interesting that the genes included those linked to inflam-
matory processes and a number were linked to the coagu-
lation pathway. An examination of these two processes at
the gene transcript level suggests a number of possible
links between coagulation and inflammation. In this
paper, we discuss the different roles of coagulation factor
pathways as they relate to angiogenesis, proliferation,
invasion, and metastasis in the tumor and peritumoral
microenvironment.

http://www.translational-medicine.com/content/3/1/25

Coagulation and cancer development

The history of a known association between coagulation
and cancer dates back to 1865, when Armand Trousseau
observed that patients who presented with idiopathic
venous thromboembolism frequently had an underlying
occult cancer and vice versa [9]. The association has only
recently become more apparent. Previously, researchers
focused on how tumors activate blood coagulation and
how to overcome it. However, the underlying mechanism
by which coagulation factors promote tumor cell growth,
invasion, metastasis, and angiogenesis has become a hot
topic in the field of cancer research. Some coagulation fac-
tors that displaya role in tumor progression have been
reviewed [10]. The most frequent reports on coagulant
proteins and cancer interactions include factor III (tissue
factor; TF) [11], TF-factor VIIa [12,13], factor Xa [14], fac-
tor Ila (thrombin)-factorll receptors (also called proease-
activated receptors (PARs) [15], and factor XlIlIla-factor Ia
(fibrin) (Table 1) [16]. Two cascades, one intrinsic and the
other extrinsic, lead to the formation of a fibrin clot.
Although they are initiated by distinct events, the two cas-
cades converge on a common pathway that includes
thrombin, PARs, and fibrin and lead to clot formation.
The intrinsic cascade, which is initiated when contact is
made between blood and exposed endothelial cell (EC)
surface, requires the clotting factors VIII, IX, XI, and XII.
Also required are the proteins prekallikrein and high-
molecular-weight kininogen and Ca2+and phospholipids
secreted from platelets. The extrinsic coagulation cascade
is initiated at the site of injury in response to the release of
TF. Activated factor X is the site at which the intrinsic and
extrinsic coagulation cascades converge. TF and factor VIIa
contribute to the extrinsic cascade and possibly to the
development of cancer. Other factors from the intrinsic
pathway, such as factors XI and XII, have not yet been
directly implicated in cancer progression. Our recent anal-
ysis of the gene expression profile in EOC has revealed
increased levels of factor XI and factor XII transcripts in
the peritoneum of EOC patients [3]. These findings sug-
gest that the intrinsic cascade might promote ovarian can-
cer cell metastasis in the peritoneal cavity. We also showed
that the serine proteinase inhibitor D1 (SERPIND1),
which inhibits plasmin, tissue kallikrein, and factor XIa,
were downregulated [3].

Blood coagulation cascades can be activated by different
mechanisms and to different levels in cancer patients. The
alterations range from subtle abnormalities in laboratory
tests to clinically overt thrombosis and disseminated
intravascular coagulation [17]. Up to 50% of all cancer
patients and 90% of those with metastases exhibit hemo-
static abnormalities [17]. These abnormalities may be
reflected in the dominance of the tumor cell-associated
procoagulant pathway, which leads to thrombin genera-
tion and hypercoagulation. Similar observations were
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Table I: Coagulation factors and the associated regulatory proteins in EOC

Coagulation factors Effects

Tissue factor (TF) T

Promoting angiogenesis by activation of MAPK[73] and protein C kinase C-dependent signaling[76]; TF-

PAR?2 selectively synergizes with PDGF-BB to enhance to metastasis in lymphnodes[78].
Promoting invasion and metastasis by the activation of P21Ras and P42/P44 MAPK pathway to inhibit
apoptosis[ 14]; overexpressing growth factors and chemokines (i.e. IL-8)[13].

TF-VII-PAR2 T
inflammatory cytokines

Factor X T

Thrombin/PAR| T
expression[100].

Promoting angiogenesis, invasion, and metastasis by clotting-independent mechanism[77] in presence of

Forming complex with TF-Vlla to promote tumor angiogenesis and metastasis[14]
Promoting angiogenesis by inhibiting EC migration to collagen type IV or to laminin[99]; upregulating VEGF

Promoting invasion and metastasis depended on at least 6 mechanisms (text)

Fibrinogen/fibrin T
form ascites[129, 130, 132].

Factor XII/XI T

Factor XIIl T Form stable fibrin

Regulatory proteins

Heparin cofactor Il T

Endothelial protein C receptor T

Tissue factor pathway inhibitor |
signaling[81].

Tissue factor pathway inhibitor-2 |

Stimulating angiogenesis; the fibrin gel matrix facilitating tumor metastasis; increasing plasma exudates to

Positive feedback on human kallikreins system

Produce chemoattractant peptide for MAs migration.
Intensifying APC-PARI signal transduction [205] and contributing to antiapoptosis in tumor.
Loss of control of tumor growth and metastasis by activating Factor Xa and increasing Factor Xa-PAR2

Loss of Inhibiting TF-Vlla complex and various protease but not Factor Xa;

Loss of antiangiogenesis and antimetastasis.

made using in vitro ovarian cancer cells for the coagulation
process. Ovarian cancer cells may also express TFs and the
other coagulation components that generate local
thrombin, as indicated by the conversion of fibrinogen to
fibrin [18]. Fibrin has been found on ECs and the surface
of ovarian tumor cells and nodules [18]. Coagulation acti-
vation in malignancy may be triggered by direct or indi-
rect mechanisms. Direct activation of blood coagulation
by the induction of thrombin may occur through the
activity of tumor cell procoagulation, whereas indirect
activation may occur through the production of tumor-
associated cytokines that trigger TF production by host
macrophages (MAs) or ECs. The coagulation pathway
components may contribute to tumor cell proliferation,
invasion, and metastasis [10], although these alterations
could also be a consequence of advanced disease [19].

Factor Xl and the kallikrein family (positive feedback loop)

Factor XII is a procoagulant protein that participates
directly or indirectly in activating the intrinsic clotting
pathway. The structure of factor XII, which has been
inferred from its DNA and amino acid sequences, include
two epidermal growth factor (EGF) homologous domains
in the amino-terminal region [20]. This type of structure
suggests that factor XII might mimic EGF biological char-
acteristics and act as a growth factor. One study showed
that factor XII had mitogenic effects on the HepG2 human
hepatocellular carcinoma cell line and, similar to EGF,
stimulated tumor cell proliferation [20].

Assembly of contact phase components results in the con-
version of prekallikrein to kallikrein, which in turn acti-
vates factor XII to factor XlIIa. Factor XIIa then hydrolyzes
more prekallikrein to kallikrein, thereby establishing a
reciprocal activation loop. Factor XlIla also activates factor
XI to factor XIa and leads to the release of bradykinin, a
potent vasodilator, from high-molecular-weight kinino-
gen. The human kallikreins (hK) are a subfamily of the
serine protease enzyme family [21], which consists of pro-
teolytic enzymes important to various physiologic proc-
esses, such as digestion, coagulation, fibrinolysis,
apoptosis, cell migration, tissue remodeling, and inflam-
mation [21]. The hK gene family, which includes 15 mem-
bers (hK1-hK15) clustered in a 300-kb region on
chromosome 19q13.4, could be altered in cancer. A
number of studies have reported increased amounts of
kallikrein transcripts or proteins in cancer cells, particu-
larly adenocarcinomas derived from steroid hormone-reg-
ulated tissues [21]. At least 11 kallikrein genes or proteins
have been found to be overexpressed in EOC; they are hK4
[22], hK5 [23,24], hK6 [25,26], hK7 [27], hK8 [28,29],
hK9 [30], hK10 [31-33], hK11 [34-37], hK13 [38,39],
hK14 [40,41], and hK15 [42] mRNA or protein in ovarian
cancer tissue, cell lines, serum, and tumor ascites fluid
(Table 2). A recent gene microarray analysis on ovarian
cancer tissue found overexpression of hK2 and hK3 [43].
Overexpression of hK8 [28,29], hK9 [30], hK11 [34,35],
hK13 [38,39], and hK14 [41] have been reported as inde-
pendent variables associated with longer progression-free
and overall survival. Another study found hK11 to be an
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Table 2: Expression and clinical features of hK members in ovarian cancer

hK family Location Expression level and site Clinical feature Prognosis
member
hK4 Tumor cells Increased in EOC tissue Predictive marker for paclitaxel resistance[22] = Unfavorable
hK5 Serum, ascites, and tumor  Increased on tumor cells and in Potential biomarker for diagnosis Unfavorable
extracts [23, 24] serum and ascites
hKé Tumor cell[26] and High in early-stage and low-grade Overexpression is an early phenomenon in the  Unfavorable
serum[25] tumor tissue and in EOC serum development of ECO; serum level could be
used as a biomarker
hK7 Tumor tissue[27] High in late-stage EOC A potential biomarker for diagnosis Unfavorable
hK8 Tumor extract, serum, and  High in serum and ascites High level is associated with good prognosis[28, Favorable
ascites[29] 29]
hK9 Tumor cells[30] High in tumor tissue early-stage and  Associated with longer progression-free and Favorable
optimal debulking patients overall survival times
hK10 Serum[33] and tumor High in serum and on tumor cells High serum level is associated with increased Unfavorable
cells[31,32] risk for relapse and death; a potential
biomarker for diagnosis
hKI1 Serum, ascites[37], and Increased in tumor samples High level is an independent factor for favorable  Depends
tumor extract [34-36] prognosis and is associated with long
progression-free and overall survival times and
with slower disease progression[34, 35];
however, high level is also associated with poor
survival rate[36].
hK13 Tumor tissue[38] verexpressed in tumor tissue Associated with longer progression-free and Favorable
overall survival times
hK 14 Tumor cells[41] and Increased in tumor tissue and Associated with longer progression-free and Favorable
serum[40] serum overall survival times; an independent
prognostic factor
hK15 Tumor extract[42] Increased in tumor tissue Associated with short progression-free and Unfavorable

overall survival times; an independent
prognostic factor

unfavorable factor for EOC [36]. The other hKs have all
been linked to progression in EOC (Table 2). Although
many hKs are overexpressed in EOC tissues and in ascites,
it is unknown whether this phenomenon reflects
increased proteolytic activity because of the heterogeneity
of hK forms and the presence of active enzymes found in
the extracelluar matrix (ECM). This apparent paradox in
which the clinical outcome differs with different hKs
might be due to different biologic roles of hKs in the
tumor progression process, either stimulating or inhibit-
ing the development of the tumor and its microenviron-
ment. hK-mediated pericellular proteolysis in the ECM
might help regulate tumor cell growth, angiogenesis, inva-
sion, and metastasis, which could contribute to tumor
progression [21]. Some hKs are under steroid hormone
regulation and might represent downstream targets
through which hormones affect the initiation or progres-
sion of EOC.

Other data have shown that hK5-hK7 can contribute to
ECM remodeling through fibrinogen, collagen types I and
IV, laminin, and fibronectin and, in this fashion, facilitate
tumor angiogenesis, invasion, and metastasis [21]. Kal-
likreins might also promote angiogenesis by disrupting

ECM barriers. hK2 [44], hK3 [45], hK6 [46], hK7 [27], and
hK14 [41] directly catalyze the hydrolysis of certain ECM
proteins, enabling both EC and tumor cell migration and
invasion. The ECM may also be remodeled through acti-
vation of the uPA-PAR system [21]. For example, hK2 and
hK4 may remodel certain ECM components through plas-
min and release or activate certain pro-angiogenic growth
factors such as vascular endothelial growth factors
(VEGFs) and pro-matrix metalloproteins (MMPs) [47]. It
could be assumed that factor XII and kallikrein family
members might also participate together in the formation
of ascites and peritoneal implants in EOC. Furthermore,
hK1 is expressed in ECs and hK1-generated kinins, which
are multifunctional, biologically active peptides released
from low-molecular-weight kininogen that can stimulate
angiogenesis [48]. The remodeling effect of hKs on ECs
has been demonstrated in Matrigel in wvitro invasion
assays. For example, invasion of MDA-MB-231 human
breast cancer cells into Matrigel was suppressed by a syn-
thetic hK1 inhibitor [49], and invasion of LNCaP human
prostate cancer cells through Matrigel was attenuated by
hK3-neutralizing antibodies [45]. Conversely, hK3 has
been shown to have antimetastatic properties in mice
[45]. The antimetastatic effect might be due to an antian-
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giogenic effect, which is independent of serine protease
action. hKs might also be able to promote cancer cell inva-
sion through PAR signaling in a manner similar to
thrombin [50].

According to a study conducted by Rehault, hK2 and hK3
could represent important regulators of insulin-like
growth factors (IGFs) in the proliferation of prostate can-
cer cells [51]; however, similar findings have not been
published on EOC. IGFs are mitogenic peptides that help
regulate normal and malignant cellular proliferation, dif-
ferentiation, apoptosis, and transformation. IGFs have to
be released from IGF-binding proteins (IGFBPs) before
their activation. hK1, hK2, and hK3 are IGFBP proteases
that collectively degrade IGFBPs 2-5 and could abrogate
their affinity for IGF1. In our microarray analysis of the
peritoneum of EOC patients, we detected overexpression
of IGF1 and decreased expression of SPINT2. These find-
ings are important because SPINT2 inhibits the produc-
tion of tissue kallikreins [3]; therefore, it could be deduced
that a high expression of hKs might result. In the mean-
time, IGF1 can stimulate the growth of normal, stromal,
and malignant prostate cells in vitro [51,52]. The IGF-
IGFBP systems can operate in many organs, suggesting
roles for them in cancer growth [53].

The blood coagulation and kallikrein-kinin systems con-
sist of plasmatic proteolytic cascades. These cascades par-
ticipate in the initial host response against foreign
components and in wound healing. The increased expres-
sion of factor XII in the peritoneum tissue of EOC patients
[3] suggests that the intrinsic coagulation cascade is being
activated and may be involved in ovarian carcinoma cell
progression. At least two mechanisms may be responsible
for activating the cascade: the molecular structure of factor
XII mimics the EGF motif and, thus, may have a growth
factor-like role on cancer cells, and because of the positive
feedback loop, the kallikrein system is capable of promot-
ing ovarian cancer cell growth, angiogenesis, metastasis,
and invasion.

Factor Xi

Factor XI is a component of the intrinsic coagulation path-
way and is activated after factor XII activation. Factor XI is
the zymogene (i.e., the gene associated with a proteolytic
enzyme) precursor of a plasma serine protease produced
primarily in the liver that contributes to blood coagula-
tion by activating factor IX by limited proteolysis [54].
Factor XI mRNA has been detected in human platelets
[55], but a link between factor XI and the stimulation or
inhibition of cancer cell proliferation and metastasis has
not been established. In our microarray analysis of the
peritoneum of EOC patients, we found a higher expres-
sion of factor XI mRNA in peritoneum and stroma tissue
in the general vicinity of ovarian cancer implants [3].

http://www.translational-medicine.com/content/3/1/25

Because factor XII expression also increased, factor XI
might be induced by the activation of factor XII. In addi-
tion, factor XI might have an indirect role in the pathogen-
esis of cancer by facilitating downstream factors in the
coagulation cascade, such as thrombin and its receptors.
These are discussed later.

Tissue factor

There is abundant evidence that TF plays an important
role in the pathogenesis of cancer. Human TF molecule is
a single-chain, 263-amino-acid, 47-kDa transmembrane
glycoprotein whose primary sequence indicates structural
similarity to members of the cytokine receptor family
[56]. TF is the principal surface receptor and cofactor for
the activated coagulation protease factor VIla and is a
receptor for its zymogen precursor. The extrinsic coagula-
tion cascade is triggered by the binding of factor VIIa to TF,
which creates a complex for the activation of the protease
factor X and its conversion to factor Xa. Generation of fac-
tor Xa and the TF-factor VIla complex triggers the proteo-
lytic conversion of factor II (prothrombin) to thrombin.

TF is expressed constitutively on the adventitia of unin-
jured blood vessels and other extravascular tissues [57].
Upregulation of TF gene expression occurs in malignant
cells and in normal host cells that respond to inflamma-
tory or remodeling signals, which might arise from ECs,
MAs, and fibroblasts [58]. Therefore, cytokines and
growth factors, such as platelet-derived growth factor
(PDGF), fibroblast growth factor (FGF), transforming
growth factor-f (TGF-B), and EGF [58], produced by
inflammatory and malignant cells might induce the
expression of TF in fibroblasts and ECs. Experimental evi-
dence has also shown that expression of TF by ECs can be
under the control of VEGF, which can be mediated by the
VEGF receptor fms-like tyrosine kinase (flt-1) and flt-1/
kinase insert domain-containing receptor [59]. Two
downstream components of the coagulation cascade,
thrombin [60] and fibrin [61], can also regulate TF expres-
sion by ECs. Both downregulation and inhibition of TF
expression can modulate tumor cell procoagulant activity.
Recent evidence suggests that TF expression might alter
the cancer cell phenotype and possibly contribute to ang-
iogenesis, proliferation, and metastasis [62-69]. Aberrant
TF expression has been detected in various human
tumors, including EOC [62-64], breast cancer [65], non-
small cell lung cancer [66], colon cancer [67], and pancre-
atic cancer [68] but is not usually found in normal tissues
from these sites. Elevated expression of TF in tumors has
been associated with certain unfavorable prognostic indi-
cators, such as angiogenesis, metastasis, advanced disease
stage, and multidrug resistance [69].
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TF and angiogenesis

The formation of new cellular masses at an organ site cre-
ates an obvious extra demand for oxygen, growth factors,
and metabolites and increases the need for tumor-associ-
ated blood vessels. The stimulators and inhibitors of ang-
iogenesis that can regulate new vessel formation include
VEGF, acidic and basic FGF, hepatocyte growth factor, and
TGF. Angiostatin, endostatin, and antiangiogenic anti-
thrombin might function as inhibitors of angiogenesis
[70].

Angiogenesis can be mediated by either coagulation-
dependent or-independent activation pathways [71].
Coagulation-dependent pathways always involve activa-
tion of the TF receptor to its ligand, followed by produc-
tion of thrombin and ensuing cot formation.
Coagulation-independent pathways appear to involve
phosphorylation of the cytoplasmic domain of the TF
receptor and subsequent downstream signaling events
that occur independently of thrombin production or clot
formation. Both pathways can contribute to angiogenesis
and tumor progression. Increased expression of TF in
tumors may contribute to angiogenesis in part by increas-
ing VEGF protein expression and downregulating the
expression of the antiangiogenic protein thrombospon-
din [11]. For example, TF-positive colorectal tumors have
higher levels of microvessel density and VEGF expression
than TF-negative colorectal tumors do [67]. Colocaliza-
tion of TF and VEGF mRNA and protein has been demon-
strated in breast cancer, malignant glioma, and
adenocarcinoma of the lung [72]. In the coagulation-
dependent pathway, the interaction of TF and factor VIla
induces Ca2+ oscillations and changes in gene expression,
and the formation of the TF-factor VIla complex leads to
the activation of the mitogen-activated protein kinase
(MAPK) pathway [73], which is a major inducer of VEGF
expression. The catalytic activity of the TF-factor VIla com-
plex contributes to the activation of factor X to factor Xa
and subsequently to thrombin. Factor Xa and thrombin)
can also exert signaling activities through PAR-2 and PAR-
1, respectively. Factor Xa activated by tumor cells may trig-
ger PAR-2 expression as well as formation of TF-factor VIIa
complexes on ECs and may induce intracellular signals;
however, factor Xa exerts the most critical effect in the TF-
factor VIla-factor Xa complex [74].

In the clotting-independent pathway, the cytoplasmic
domain of TF activates protein kinase C-dependent sign-
aling, in contrast to the ligand-binding extraplasmatic tail
of TF, which upregulates the synthesis of VEGF in
response to different stimuli [75,76]. The cytoplasmic tail
of TF appears to regulate non-clotting-dependent mecha-
nisms such as cytoskeletal reorganization, vascular
remodeling, angiogenesis, and cellular metastasis. Results
from a recent study provided an alternative explanation

http://www.translational-medicine.com/content/3/1/25

whereby TF can promote angiogenesis by a clotting-inde-
pendent mechanism [77]: the genetic deletion of the TF
cytoplasm domain involves the loss of negative regulatory
control with PAR-2 upregulation. Expression of TF and
PAR-2 and the function of TF-PAR-2 signaling pathway
require the presence of both angiogenic growth factors
and inflammatory cytokines. Inflammatory cytokines
produced by monocytes (MO) are important for angio-
genesis and collateral growth vessels. Colocalization of
upregulated PAR-2 with phosphorylated TF occurs only in
neovessels. The phosphorylation of TF appears to be the
mechanism that switches off the negative regulatory con-
trol that promotes pathologic PAR-2-dependent angio-
genesis [77].

However, TF-PAR-2 signaling selectively synergizes with
the PDGF isoform BB but not with VEGF, basic FGF, and
the PDGF isoform AA. PDGF-BB is available through
release from activated platelets in the context of local
coagulation or by synthesis from sprouting ECs. PDGF-BB
also has a role in lymphoangiogenesis. PDGF-BB stimu-
lated MAPK activity and cell motility of isolated lymphatic
ECs in vitro and potently induced the growth of lymphatic
vessels in vivo [78]. Expression of PDGF-BB in murine fib-
rosarcoma cells induced tumor lymphoangiogenesis,
leading to enhanced metastasis in lymph nodes [78].

The cascade of TF-factor VIla to factor Xa and subse-
quently to thrombin can be inhibited by TF pathway
inhibitor (TFPI), which occurs when the TF-factor VIla
complex is combined with factor Xa and cell-bound TFPI.
Once this stable quaternary complex is formed, it is trans-
located to and internalized in caveolae (i.e., small vesicles
of the plasma membrane) [79]. Produced by ECs and
tumor cells, most TFPI is expressed on the cell surface,
although it can be detected peripherally in plasma [80]. In
tumor cells, the diminished expression of TFPI could
result in activated factor Xa and increase factor Xa-PAR-2
signaling [81]. Results from in vitro and in vivo studies
have suggested that therapeutic strategies that target an
increase in the expression of TFPI could inhibit tumor
angiogenesis [82], growth [83], and metastasis [53,84].

Another inhibitor of the TF-dependent pathway of blood
coagulation that was recently identified is TFPI-2, which,
in contrast to TFPI, inhibits the TF-factor VIla complex but
not factor Xa. TFPI-2 also inhibits various proteases [85].
Its expression was lower in laryngeal, breast, gastric,
colon, pancreatic, renal, and endometrial tumor tissues
and glial neoplasms than in normal counterpart tissue
[85]. Some studies have provided evidence of the antian-
giogenic and antimetastatic activity of TFPI-2 [86]. Epige-
netic inactivation of TFPI-2 also contributes to the
progression of pancreatic ductal adenocarcinoma. TFPI-2
mRNA was undetectable in many pancreatic cancer cell
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lines and in primary pancreatic ductal neoplasms. Hyper-
methylation of its promoter CpG island decreased TFPI-2
expression. However, expression of the TFPI-2 gene in
pancreatic cancer cells has resulted in markedly sup-
pressed proliferation, migration, and invasive potential in
vitro [86]. TFPI-2 exerts antitumor effects through antian-
giogenesis and antimetastatic mechanisms [87,88].

TF and metastasis

The role of TF-factor VIIa in metastasis has been exten-
sively investigated. Some recent studies have revealed that
TF can promote the invasion and metastasis of the A2780
human ovarian cancer cell line through the TF-factor VIIa
pathway. In turn, TF-factor VIla can upregulate the tran-
scription of uPA receptor expression and enhance tumor
invasion and metastasis [63,64]. Overexpression of TF of
up to a 1,000-fold greater level than normal is characteris-
tic of metastatic tumor cells relative to nonmetastatic cells
[89]. Inhibition of TF through antibodies or active site-
blocked factor Xlla interferes with experimental metasta-
sis [90], but how TF on tumor cells contributes to tumor
metastasis is unclear. TF-induced metastasis requires the
participation of the cytoplasmic tail of TF and the assem-
bly of an active TF-factor VIla complex, which is thought
to target G protein-coupled PAR-2. Factor VIla induces the
activation of p21Ras and p42/p44 MAPK, which further
induces the activation of the protein kinase B pathway in
TF-expressing cells and increases protein synthesis [91].
Both the p42/p44 MAPK and protein kinase B pathways
are able to inhibit apoptosis. Inhibition of apoptosis may
be related to adhesion-independent survival and thus may
be linked to metastasis. In one study, factor VIla inhibited
cell death and caspase 3 activation in Baby Hamster Kid-
ney cells induced by serum-deprivation and loss of adhe-
sion (lack of integrin signaling) when transfected with TF
genes [14]. The effects of factor VIIa on caspase 3 activity
are sensitive to inhibitors of the phosphatidylinositol 3'-
kinase and P42/P44 MAPK pathways; thus, factor VIla
appears to be a survival factor for TF-expressing cells and
seems to mediate the survival of tumor cells during metas-
tasis [14,92].

Another mechanism that links TF effects to metastasis is
mediated by the overexpression of growth factors and pro-
teins related to cellular reorganization. Interleukin (IL)-8,
a member of the CXC chemokine (CXCL8) and a chem-
oattractant for neutrophils and lymphocytes, can act mul-
tifunctionally to induce tumor growth and metastasis, and
IL-8 overexpression can occur through TF-FVIIa stimula-
tion. In contrast, FXa and thrombin cannot upregulate IL-
8 expression. IL-8 leads to increasing cell migration and
invasion, and these effects are attenuated when binding of
factor VIIa to TF is prevented [13]. In ovarian cancer stud-
ies, IL-8 has been suggested to be involved in the forma-
tion of ascites [93,94]. In our peritoneal gene transcript
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profile, we showed that IL-8 connects a number of path-
ways that might be linked to the pathogenesis of cancer by
cellspace analysis (Figure 1) [3]. IL-8 may induce other
immune cell-related modulators, such as the IL-13 recep-
tor, vascular cell adhesion molecule 1, chemokine
receptor 1, and other molecules associated with inflam-
matory function [95]. It is known that the inflammatory
response is involved in the progression of tumors and that
IL-8 might amplify inflammation in the tumor microenvi-
ronment to promote tumor cell proliferation, angiogen-
esis, and metastasis.

Thrombin and thrombin receptor

Generation of thrombin is the central step in blood coag-
ulation. Expression of thrombin has been detected in var-
ious tumor types, including ovarian cancer [18].
Thrombin's cellular effect is triggered by its binding to
PARs, which are G protein-coupled receptors, of which
four subtypes have been identified in human tissues. PAR-
1, PAR-3, and PAR-4 are activated mainly by thrombin,
whereas PAR-2 is activated by trypsin, tryptase, factor VIIa,
and factor Xa. PAR-1, the major prototype of the family, is
areceptor with seven transmembrane domains and is acti-
vated by cleavage of a specific site at the N-terminus of its
extracellular domain. The presence of PAR family mem-
bers has been demonstrated on many tumor cells, and it
appears to be positively correlated with metastasis [96].
Studies of proteins at the cellular level (in situ hybridiza-
tion and immunostaining) and studies of gene transcripts
(reverse-transcriptase polymerase chain reaction) have
demonstrated the differential expression pattern of PAR-1
gene in low-grade and high-grade EOC, but PAR-1 expres-
sion has not been shown on normal ovarian tissue even
though the gene was overexpressed in the peritoneum of
EOC patients [3,97]; thus PAR-1 signaling could be
involved in the initiation and pathogenesis of EOC.

Thrombin-PAR system and angiogenesis

Thrombin is a potent activator of angiogenesis and could
be the underlying mechanism for the promotion of tumor
progression after thrombosis. However, evidence suggests
that angiogenesis induced via thrombin is mediated via
PAR and is independent of fibrin formation, which can be
modulated without interfering with blood coagulation
[98]. Thrombin also stimulates the chemotaxis of inflam-
matory cells and thus possibly promotes tumor angiogen-
esis indirectly [98]. Furthermore, thrombin could induce
several cellular effects on ECs, thereby contributing to the
angiogenic cascade.

There are two possible mechanisms by which thrombin
may promote angiogenesis: (1) Thrombin at physiologic
concentrations can inhibit ECs' ability to adhere to colla-
gen type IV or to laminin [99], even after short exposure
of ECs to thrombin. The result is reversible and is medi-
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ated specifically through the thrombin receptor. The result
is detachment and migration of ECs from basement mem-
brane components, the initial step in the activation of
normally quiescent ECs. (2) Thrombin upregulates VEGF
expression via PAR activation on ECs or tumor cells [100]
and through release of platelets [101]. Thrombin antago-
nizes any blood vessel-stabilizing effects of angiopoietin 1
by production of angiopoietin 2 [102,103]. The ang-
iogenic effects of thrombin include causing the release of
basic FGF from ECs and the ECM [104]. Thrombin can
also markedly stimulate expression of the VEGF receptor
(kinase insert domain-containing receptor and flt-1). The
activation of protein C kinase and MAPK signaling path-
ways was confirmed in the process of VEGF and VEGF
receptor production [102]. Thrombin may thus contrib-
ute to new vessel formation by providing the pathologic
microenvironment for tumor cell implants and prolifera-
tion; VEGF production through thrombin activation
could facilitate this process. VEGF also increases the per-
meability of existing and new capillary vessels and results
in plasma protein leakage and the development of a
proangiogenic matrix [105]. A high expression level of
VEGF allows the formation of malignant ascites. Thus, the
thrombin-PAR system could play a role in the progression
of ascites in EOC patients by inducing VEGF production.

Thrombin-PAR system in invasion and metastasis

In our peritoneal transcript profile study, we found that
PAR-1 was upregulated in peritoneal tissue, which sug-
gested that this receptor might be involved in EOC patho-
genesis, invasion, and metastasis [3]. Overexpression of
PAR-1 has been reported in malignant invasive melanoma
[106] and breast cancer in vivo [96] and in breast cancer
cell lines [107]. The increase in growth and metastatic
potential of tumor cells may be partly attributable to the
proangiogenic effects of thrombin. By mobilizing adhe-
sion molecules, such as o,f3; integrin [108], P-selectin
[109], and CD40 ligand [110], to the cell surface,
thrombin enhances adhesion between tumor cells, plate-
lets, ECs, and ECM and contributes to tumor progression.
Thrombin also triggers the release of growth factors,
chemokines, and ECM proteins that could promote the
proliferation and migration of tumor cells. Facilitation of
the metastatic activity of the thrombin-PAR complex has
been demonstrated in vivo with experimental lung cancer
[111], colon cancer [112], and breast cancer [15,96]. The
principal thrombin receptor, PAR-1, has been implicated
in promoting these effects. Most of the cellular effects elic-
ited by thrombin are mediated through the activation and
subsequent signal transduction cascades of members of
the PAR family. Likewise, thrombin and PAR inhibitors,
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such as argatroban [113], activating protein 1 [112], and
small interfering RNAs for PAR-1 [114], have been shown
to prevent tumor migration and metastasis. Thrombin can
also facilitate trans-basement membrane migration by
ECM remodeling after activation of collagen type IV-
degrading enzyme, MMP-2, and o3, integrin. However,
an immunostaining study on EOC found that focal adhe-
sion kinase (FAK), a major tyrosine phosphorylated pro-
tein of adherent cells, was abundantly expressed in
invasive EOC but not in normal ovarian tissues, which is
consistent with a high level of PAR1 expression [97]. Pos-
sibly, PAR1 in malignant ovarian carcinoma transmits sig-
nals leading to the phosphorylation of FAK and thereby to
alterations in integrin expression. Increased expression of
o, B integrin was also detected in our peritoneal profile
study [3]. Anticoagulants such as heparin and warfarin
have been shown to significantly decrease experimentally
induced pulmonary metastasis in vivo [115], and a similar
decrease in tumor cell metastasis was observed in vivo with
hirudin, a highly specific inhibitor for thrombin [15]. In
another study, hirudin inhibited tumor implantation and
growth of four different tumor cell lines (MDA-MB-231
human breast cancer, 4T1 human breast cancer, A549
human non-small cell lung cancer, and B16F10 murine
melanoma) in nude and syngeneic mice by inhibiting
spontaneous seeding of tumors through the blood to sus-
ceptible organs, including the lungs, liver, spleen, and
lymph nodes [15]. Overall, the interaction of endog-
enously generated thrombin and host thrombin receptors
enhances tumor angiogenesis by enhancing the expres-
sion of some genes that may be associated with an inva-
sive profile, and this interaction involves activation of
PAR and other tumor genes.

At least six signal transduction mechanisms based on
thrombin-PAR systems have been proposed to have a role
in invasion and metastasis: (1) PAR may induce phospho-
rylation of FAK and integrin expression [97,116], thereby
contributing to the modulation of cytoskeletal reorganiza-
tion. Changes in cell shape result from changes in actin
stress fibers and focal adhesion and are mediated through
the Rho family of GTPases [117]. Rho-Ras proteins down-
stream of PAR-1 are intermediates of the extracellular sig-
nal-regulated kinases 1 and 2 (ERK1/2)-MAPK pathway
and are implicated in cancer progression [118]. (2) Loss of
activator protein 2 (AP-2) results in the increased expres-
sion of PAR-1, which subsequently contributes to the met-
astatic phenotype of cancer by upregulating the
expression of angiogenic molecules, proteases, and adhe-
sion molecules, which are involved in tumor invasion and
metastasis [119]. This upregulation is based on MAPK sig-
naling. AP-2 is a 52-kDa protein transcription factor
mapped to the short term of chromosome 6, which is a
critical regulator of gene expression during mammalian
development, differentiation, and carcinogenesis. Loss of
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AP-2 may contribute to the development and progression
of many different types of cancers, including melanoma
and prostate, breast, and colorectal carcinoma [119]. AP-
2 is a negative regulator for PAR-1 signaling, and func-
tional AP-2-binding elements have been identified in
some genes, including c-erbB2, VEGF, TGF-B3, IGFBP-2, E-
cadherin, and c-myc [119]. (3) Overexpression of flotillin-
2, a highly conserved caveolae/lipid raft-associated pro-
tein, is associated with upregulation of PAR-1. Binding of
flotillin-2 to PAR-1 might stabilize it by blocking inactiva-
tion or degradation of an activated PAR-1. Cytoplasmic
flotillin-2 might also modulate PAR-1 trafficking of the
cell or stabilize PAR-1 mRNA, which could promote PAR-
1-induced constitutive signaling through the MAPK or
other signal transduction pathways [120]. (4) PAR-1
cooperates with o,f; integrin to promote cytoskeletal
reorganization. Activation of PAR-1 increased the phos-
phorylation of FAK and paxillin and induced the
formation of focal contact complexes. The activation of
PAR-1 may foster tumor cell invasion via a mechanism
involving cooperation with the o5 integrin [116]. (5)
The increased and persistent expression of PAR-1 is
induced by deregulated defective receptor trafficking,
which is correlated with the failure to efficiently downreg-
ulate activated PAR-1 by internalization and lysosomal
sorting [121]. (6) Coexpression of PAR-1 and PAR-2 has
been observed on some tumor cells and the cells of the
tumor microenvironment, such as fibroblasts, platelets,
and ECs. Simultaneous activation of PAR-1 and PAR-2 by
thrombin is required to cause the chemokinetic effect.
Thrombin-induced activation of PAR-2 could play a sub-
tle role in signaling induced by the thrombin-PAR-1 com-
plex and stimulate the motility of metastatic tumor cells
[122].

Platelets can act as bridges between ECs and lymphocytes
or MOs/MAs, and thrombin activation of platelets can
enhance hematogenous metastasis [123]. In addition,
platelet activation and fibrin formation are both impor-
tant mechanisms by which tumor cell-related "procoagu-
lant activity" promotes metastasis. Platelet activation
induced by thrombin is another possible mechanism for
metastasis, though some studies have shown that knock-
out of the PAR-1 and PAR-2 gene of mice does not affect
thrombin signaling in mouse platelets but might attenu-
ate signals in mouse ECs [124,125].

Factor XlII and fibrin

Factor XIII, fibrinogen, and fibrin contribute to the final
step in the coagulation cascade. They are involved in some
pathologic states, including solid tumor growth and the
formation of ascites. Fibrin is formed by thrombin cleav-
age of fibrinopeptides A and B from fibrinogen, exposure
of cryptic polymerization sites, and finally the cleavage of
plasma fibrinogen to fibrin by thrombin. A more stable

Page 9 of 20

(page number not for citation purposes)



Journal of Translational Medicine 2005, 3:25

clot is formed when active factor XIII, a transglutaminase,
is covalently cross-linked to fibrin o and v chains. Factor
XIII binds to integrin and might also exert antiapoptotic
effects on ECs [16]. In our peritoneal transcript profile
study, the factor XIII gene was upregulated in the perito-
neum and stroma in the vicinity of the tumor [3]. The fac-
tor Xllla subunit supports the adhesion of platelets
mediated by oy;,B5 integrin [126] and fibroblasts medi-
ated by o,f3; integrin and B,-containing integrins [127].
The o, f3; integrin, one of several integrins upregulated in
the peritoneal transcript profile study [3], is present on
vascular ECs and is a marker for angiogenesis. Factor XIII
might also participate in angiogenesis. Factor XIlla was
shown to be a mediator of cell adhesion and an inhibitor
of fibrin capillary tube formation in a dose-dependent
manner [16].

Fibrin accumulation within tumors might result from
increased permeability of tumor microvessels, which
would lead to the leakage of plasma proteins, such as
fibrinogen and plasminogen, and extravascular clotting
and the cross-linking of fibrin to factor XIII [7]. In EOC
ascites, high amounts of cross-linked fibrin degradation
products have been identified [128]. VEGF could contrib-
ute to extravascular fibrin clotting in a tumor environ-
ment because it encourages leakage of plasma fibrinogen
into extravascular spaces, where the fibrinogen clots
[128]. Fibrin in the tumor or elsewhere in the peritoneum
and serosa might help stimulate the new ingrowth of
blood vessels. This fibrin gel matrix might also help pro-
vide the matrix that facilitates the ingrowth of MAs and
fibroblasts and reorganizes the stroma, preparing it for
tumor metastasis to the abdominal cavity [129,130].
Ascitic tumor cells as well as tumor cells derived from peri-
toneal and serosal surfaces can retain their viability in sus-
pension cultures [131]. It is interesting that plasma
exudates that contribute to ascites generally remain fluid
and do not form an insoluble fibrin gel until removed
from the patient [131]. Earlier studies showed that hyper-
permeability of peritoneal lining vessels is required for
ascites development in EOC tumors grown in murine
models [132,133]. Cross-linked fibrin staining has not
been observed in the peritoneal wall, diaphragm, mesen-
tery, or bowel serosa of normal controls, but it has been
detected in the peritoneum of ascitic tumor-bearing ani-
mals. Inmunostaining revealed that adherent tumor cells
were enmeshed in the fibrin meshwork binding them to
each other and to peritoneal surfaces [129]. We also found
that expression of phospholipase glutaminase A2, which
mediates the first steps in the eicosanoid pathway, was
increased in the peritoneum [3]. Leukotriene products on
this pathway might contribute to capillary permeability
and ascites formation.
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Fibrin and angiogenesis

Fibrin-induced neovasculation is based on clotting-
related mechanisms that involve platelet activation and
fibrin deposition. Cross-linked fibrin has been found in
different human malignant tumors. It is present in the
endothelium of angiogenic vessels of invasive cancer spec-
imens but not in vessels of benign tumors [134]. Fibrin
can bind to inflammatory cells or to tumor cells and is
deposited around tumor cells as scaffolding that promotes
further angiogenesis. Fibrinogen and fibrin fragments,
such as fragment E, have been shown to stimulate angio-
genesis both in vitro and in vivo [135]. The presence of the
fibrin degradation product D-dimer is significantly associ-
ated with a poor prognosis in some cancer patients
[136,137].

The binding of ECs to fibrin with the involvement of the
adhesion molecule vascular endothelial cadherin may be
necessary for capillary tube formation, a critical step in
angiogenesis. The fibrin matrix that develops around
tumors provides a provisional proangiogenic environ-
ment that supports vessel formation and stimulates EC
proliferation and migration [138]. The fibrin matrix can
promote a proangiogenic response by upregulating the
expression of o, f3; integrin receptor to facilitate EC migra-
tion and capillary formation [139]. The o35 integrin pro-
vides survival signals to ECs during their interaction with
fibrin. Tumor-containing tissue has revealed increased
deposition of fibrin stimulated by VEGF-induced vessel
leakiness to sustain the proangiogeneic environment [7].
The fibrin matrix also stimulates the production of VEGF,
basic FGF, IGF1, and IL-8 to promote an autocrine
procoagulant loop by inducing TF expression in ECs [61].
The expression of IGF1 and o, 3, integrin genes is upregu-
lated in the peritoneum of EOGC; therefore, fibrin may
stimulate the production of these genes [3].

Regulatory proteins in the coagulation cascade

Two important regulatory proteins in the coagulation cas-
cade, serine proteinase inhibitor D1 (Serpins, also called
heparin cofactor II - HCII) and endothelial protein C
receptor (EPCR), were first detected as an upexpression in
a study we conducted [3], which suggests that there is
value in studying them further. Serpins are a protein
superfamily of which many members possess potent
activity as serine proteinase inhibitors [140]. Another very
important family of serpins is antithrombins. Both HCII
and antithrombins can inhibit the blood coagulation pro-
teinase thrombin.

HCII is a 480-amino-acid, single-chain glycoprotein with
a molecular weight of about 66 kDa that is synthesized by
the liver and circulates in the plasma. The human HCII
gene is located on chromosome 2211, spans 15.8 kb,
and includes 5 exons [141]. When HCII interacts with
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heparin and dermatan sulfate, the potential inhibition of
thrombin can be increased by more than 1,000-fold in
vivo [142]. HCII inactivates thrombin by forming a stable,
bimolecular complex in plasma. HCII does not inhibit
other proteases involved in coagulation or fibrinolysis. It
can also participate in wound healing by regulating the
mitogenic and chemotactic activities of thrombin [143].
Two recent clinical research studies demonstrated that
HCII is a very effective factor in combating heart and vas-
cular disease, which it does by inhibiting the action of
thrombin [144,145]. HCII is inactivated after cleavage of
its reactive site (Leu-444 through Ser-445) by elastase
from leukocytes during the inflammation process without
forming the stable thrombin-HCII complex [146].

HCII has a physiological role in the inflammation
response. An active peptide from the amino-terminal
region (corresponding to Asp-39 through Ile-66) with
chemoattractant action for both neutrophils and MOs is
proteolyzed by neutrophil elastase, and another leukocyte
migration peptide is derived from dodecapeptide from
Asp-49 through Tyr-60 of HCII. HCII-neutrophil protein-
ase products appear to have a role in the local inflamma-
tory response [147]. Leukocytes and MOs/MAs are
important cellular components of tissue injury, wound
healing, and the microenvironment of EOC tumors [6].
The detection of upregulated HCII in the peritoneum and
stroma of EOC patients is interesting because the degrada-
tion of HCII can produce a chemoattractant peptide for
MAs [3]. MOs/MAs have multifunctional roles in EOC
progression by releasing cytokines and chemokines, and
HCII may help induce MA migration from the endothe-
lium to extravascular tissue.

EPCR

EPCR is a 46-kDa type 1 transmembrane glycoprotein
with two domains in the extracellular region that are
homologous to the a1l and a2 domains of CD1/major
histocompatibility complex class I molecules [148]. In
humans, the EPCR gene is located on chromosome
20q11.2. Most EPCRs are expressed on the surface of ECs
of vessels. A 43-kDa soluble EPCR has recently been
found in the plasma of humans [149].

Downstream of coagulation, thrombin stimulates platelet
aggregation, promotes coagulation by cleavage of fibrino-
gen, and fosters fibrin formation and activation of factor
XIII. Thrombin is inhibited via the activated protein C
(APC)-EPCR system. When thrombin binds to thrombo-
modulin on the surface of ECs, it activates protein C
through EPCR to prevent coagulation. APC could inacti-
vate factors V and VIII. The catalytic reaction for protein C
activation by the thrombin-thrombomodulin complex is
inefficient; only after combining with EPCR is protein C
fully activated and does it acquire an anticoagulant role
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[150]. In addition to its anticoagulation role, APC inhibits
thrombin-induced proinflammatory activity, such as
platelet activation, cytokine-induced chemotaxis for MOs
and neutrophils, and upregulation of leukocyte adhesion
molecules. APC may prevent inflammation by downregu-
lating TF and tumor necrosis factor-o. (TNF-a), nuclear
factor xB translocation, and cytokine signaling from MAs
[151] and by inhibiting TNF-o-induced upregulation of
cell surface leukocyte adhesion molecules [152]. APC may
also protect the vasculature by blocking p53-mediated
apoptosis in ischemic cerebral vasculature [153]. Because
of its anti-inflammatory properties, APC is important in
controlling serious infections. The apoptotic function of
APC is independent of its anticoagulant function and
requires EPCR as a cofactor but is mediated via PAR-1
[154]. When complexed with APC, membrane EPCR,
which is expressed on the surface of ECs, could play a role
in anticoagulation, inhibition of inflammation, and
stimulation of cell proliferation (i.e., antiapoptosis)
[155]. In contrast, soluble EPCR combines with protein C
and APC with the same affinity but inhibits the anticoag-
ulant activity of APC and interferes with the protective
role of membrane EPCR and APC. Soluble EPCR may
bind to and interfere with the function of neutrophil
integrins, such as CD11b/CD18, which facilitates neu-
trophil adhesion to activated ECs and extravasation into
extravascular tissue [156]. Soluble EPCR seems to amplify
the inflammatory response [157,158]. High levels of sol-
uble EPCR have been detected in sepsis [159] and in
autoimmune disease [159]. Results from an animal
model study showed that EPCR expressed on
endothelium had a protective role in the cardiovascular
system [160].

Only two studies relating to EPCR and cancer have been
published [161,162]. Both studies were performed on cell
lines. The membrane protein LMR42 was upregulated in
most multidrug-resistant tumor cells. Expression cloning
and sequence analysis showed LMR42 to be identical to
EPCR. Elevated EPCR expression occurred in 47% of the
primary tumor cell lines, including melanomas and renal
and colon carcinomas. The authors of one of the studies
concluded that elevated expression of EPCR may have a
role in the resistant phenotype of multidrug-resistant
tumor cells [161]. EPCR was also expressed on glioblast-
oma, leukemia, and most breast cancer cell lines;
increased levels of APC activation were observed in tumor
cells that express both EPCR and thrombomodulin [162].
Although the role of EPCR in cancer biology is poorly
understood, it appears that EPCR may contribute to
tumor progression. Our peritoneal transcript profile study
showed high expression of EPCR on EOC peritoneum and
its stroma [3]. PAR-1 is known to mediate a response in
ECs, including the production of platelet-activating factor
and chemokines (e.g., IL-8) and upregulation of adhesion
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molecules for neutrophils and platelets, which promote
inflammation, thrombosis, and tumor progression [163].
However, the interaction of APC and PAR-1 is mediated
by EPCR. At physiologic levels, APC is 10,000 times less
potent than thrombin in this PAR-1-mediated pathway.
When EPCR expression is upregulated, APC-PAR-1 signal
transduction is significantly intensified, although it is still
less potent than thrombin in this system [164].

The APC-EPCR interaction provides protection for ECs
through its antiapoptotic effects. Because high EPCR
expression occurs on tumors, EPCR might contribute to
antiapoptosis in tumor cells. Finally, APC can stimulate
PAR-1, whose activation depends on the EPCR concentra-
tion. A PAR-1-associated cellular response might contrib-
ute to tumor progression, possibly by producing IL-8,
which stimulates tumor cell proliferation and metastasis.

The connection between coagulation and inflammation in
the EOC peritoneum

There is substantial evidence of infiltrating immune cells
in EOC and the peritoneal environment. In a previous
study, we showed that about 70% of T cells within EOC
tumors were mononuclear cells [165]. Results from other
researchers' experiments have suggested that the presence
of these T cells is associated with an antigen-driven
immune response [166-168]. However, there is little evi-
dence to suggest there is a chronic cellular adaptive
immune response in vivo because interferon y message is
absent or present at low levels [169]. Expression of the
CD3( chain was absent or poor in another study [170]. A
recent study showed longer overall and progression-free
survival among EOC patients with intratumoral T cells
than among those lacking these cells [168]. In a more
recent study, CD4+CD25+ regulatory T cells present in
EOC tumors appeared to be associated with poor patient
survival. Regulatory T cells preferentially move to and
accumulate in tumors and ascites but rarely enter the
draining lymph nodes in later cancer stages [171]. Large
numbers of MOs/MAs are also present in ascites, where
they may make up 50% or more of mononuclear leuko-
cytes, whereas the proportion that consists of T lym-
phocytes is usually less than 40% [165]. In recent
preliminary studies, we found that pelvic peritoneal tissue
biopsied from patients with advanced-stage EOC had a
higher proportion of MOs/MAs than T cells even in the
absence of tumor involvement (unpublished data).

Cytokines, chemokines, adhesion molecules, and compo-
nents of the ECM may contribute to a tissue environment
that supports tumor proliferation and invasion. Chemok-
ines and certain cytokines may facilitate the migration of
immune cells, including T cells and MAs, into the tumor
environment (Tables 3 and 4). A network of CC (cysteines
with no intervening amino acid) and CXC chemokines
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has been found in solid tumors and in ascites [172]. For
example, CCL2, one of the ligands for CCR2, localizes to
epithelial areas of the tumor [173], and its expression
appears to correlate with the numbers of lymphocytes and
MAs at this site [174]. CCL5 localizes with tumor-infiltrat-
ing leukocytes, and CCL5 concentration may be associ-
ated with CD8+ T cell infiltration. Chemokines CCL2,
CC8, CCL4, CCL5, CCL8, CCL22, CXCL2, and CXCL12
have all been found in increased amounts in ascitic fluid
from EOC patients, and the presence of CCL5 in ascitic
fluid has been associated with the number of T cells in
ascites [175].

Adhesion molecules may also be involved in the implan-
tation of cancers cells onto the peritoneal lining. For
example, E-cadherins and P-cadherins are expressed dur-
ing EOC progression and may facilitate peritoneal inva-
sion because mesothelial cells express cadherin-binding
catenins [4]. Upregulation of discoidin domain receptor
1, claudin 3, and epithelial cell adhesion molecule occurs
early in the development of EOC [176]. Soluble intracel-
lular adhesion molecule 1 concentrations are elevated in
patients with ovarian malignant tumors but do not corre-
late with clinical status[177].

Depending on their degree of expression in the tissue
microenvironment, coagulation and inflammation might
influence each other. Furthermore, components gener-
ated from both the coagulation cascade and an inflamma-
tory response might be involved in heart disease, as
recently reviewed [178-181]. Normal hemostasis is
initiated when the blood vessels rupture, allowing blood
cells to interact with extravascular cells and the ECM
[182]. In one study, endotoxin, TNF-0, and IL-1c induced
TF expression, primarily on MO/MA [58]. Blood clotting
might thus be initiated when inflammatory cytokines and
endotoxin induce the synthesis of TF on migrating leuko-
cytes [183]. In this way, immune cells could help initiate
the coagulation cascade through damaged tissue or
cytokine production [184] (Table 5).

The complement system may also contribute to hemosta-
sis by activating the membrane attack complement path-
way, thereby contributing to phosphatidylserine
expression on the outer membrane of cells [185]. Expres-
sion of phosphatidylserine on the outer cell membrane is
necessary for the effective initiation and amplification of
the coagulation cascade. Our microarray analysis of the
peritoneum of EOC patients showed increased expression
of the C2 component [3]. In contrast, expression of com-
plement HF1, which blocks the membrane attack comple-
ment pathway, was increased and might have shifted the
complement activation pathway toward a proinflamma-
tory response with the recruitment of MO/MA. MO/MA
are also an important source of complement components.
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Table 3: Cytokines involved in inflammation in ovarian cancer

http://www.translational-medicine.com/content/3/1/25

Cytokine Effect
TGF-B Stimulates tumor cell attachment and invasion by upregulating plasminogen activator inhibitor type |
Deregulates expression of the major histocompatibility complex
Deregulates costimulatory antigen expression by dendritic cells
Suppresses Th1-Th2 cells and the conversion of pro-cytotoxic T lymphocytes to cytotoxic T lymphocytes
Suppresses the proliferation response to antigen-presenting cells
Inhibits natural killer and MA activation
IL-6 Upregulates tumor cell attachment
Interferes with macrophage maturation in dendritic cells
Inhibits cell proliferation through PI3K (phosphatidylinositol3-kinase)
Suppresses Thl-Th2 transformation
IL-10 Deregulates expression of major compatibility complex on T cells
Deregulates costimulatory antigen expression
Suppresses cytotoxic T lymphocyte activation and Th1-Th2 transformation
Inhibits interferon production
Inhibits T cell production
VEGF Increases neoangiogenesis, invasion, and metastasis
Increases prevalence of ascites
FGF-2 Increases tumor cell invasion and metastasis
TNF-ou Increases adhesion molecule expression

Induces tumor cell apoptosis
Increases tissue factor expression

Decreases the expression of thrombomodulin and EPCR

Table 4: Chemokines involved in ovarian pathogenesis

Chemokine Receptor Cells targeted Comments

CCL22 CCR4 CD25*CD4* regulatory T cells Forster tumor immune escape

CCL2 CCR2 Activated T cells, monocytes, and Deregulate CD8* T cells and
DC CDé68* macrophage

CCL3 CCR2 Activated T, NK, MO, Eosinophils  Inflammatory cells migration

CCL4 CCR5 DC, MO, NK Inflammatory cells migration

CCL5 CCR2 Activated T, NK, MO, Eosinophils  Inflammatory cells migration

CCL7 CCR2 Activated T, NK, MO, Eosinophils  Inflammatory cells migration

CCLI8 Unknown MOs/MAs MA produced but not induced in

EOC
CXCL8 CXCRI, CXCR2 Neutrophils and resting T cells Angiogenesis, metastasis
CXCLI12 CXCR4 Neutrophils, resting T cells, CXCR4 is preferentially expressed

activated T and B cells, and on EOC cells

macrophages

Chemokines can influence coagulation by activating
platelets indirectly. Three main chemokines are involved
in this process, CXCL12 (the ligand for CXCR4), CCL17
(the ligand for CCR4), and CCR22 (the ligand for CCR4)
[186]. Platelets are an important link in the inflammation
and coagulation processes. Inflammatory mediators,
cytokines, and chemokines do not increase platelet pro-
duction, but the platelets generated are more thrombo-
genic and thus are more sensitive to platelet agonists such

as thrombin. Platelets contain high concentrations of the
proinflammatory mediator CD40 [187] and certain
chemokines [188]. When CD40 and these chemokines are
released, they can induce TF synthesis and increase the
production of inflammatory cytokines such as IL-6 and IL-
8. Of the naturally occurring anticoagulants, protein C is
the most negatively influenced by inflammation. Throm-
bomodulin and EPCR are both downregulated by inflam-
matory cytokines such as TNF-a. [189] and IL-1 [190].
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Table 5: Procoagulant effects of inflammation products

Product Procoagulant effect

Leukocytes or MAs Activate platelets

Induce microvascular occlusion

Release neutrophil elastase

Induce thrombomodulin release from the
endothelium

Inactivate antithrombin

Increase procoagulant factors production
Provide membrane surfaces

Augment TF expression

Increase TF production

Decrease thrombin, EPCR, and protein S
levels

Increase C-reactive protein production
Increase complement activation

Increase platelet count and reactivity
Activate platelet aggregation and adhesion
Attract more leukocytes

Complements

Inflammatory Cytokines

Chemokines

Thrombin has a variety of effects on cells that can enhance
the inflammatory response. For example, it augments leu-
kocyte adhesion and activation, which amplifies the
inflammatory response, and induces endothelium and
platelet activation. The activation of platelets can produce
cytokines (IL-6) and chemokines (IL-8), which are
involved in inflammatory responses [ 186]. Thrombin also
acts as a direct mitogen for fibroblasts, inducing PDGF
and TGF from platelets and ECs. PDGF and TGF-f are
important cytokines for stimulating neovessel formation,
and TGF-B may contribute to an environment conducive
to tumor escape from immune system surveillance. Nota-
bly, PDGF and TGF-} 3 receptor expression were increased
in our peritoneal transcript profile study [3]; this finding
provides additional evidence that thrombin could foster
tumor cell growth and proliferation via PDGF and TGF
release from platelets and ECs.

Anticancer therapy based on targeting the coagulation
cascade

Coagulation factors have a profound effect on tumor cell
behavior in both in vivo and in vitro studies. These factors
could enhance tumor cell proliferation, invasion, angio-
genesis, and metastasis. Hence, targeting activated coagu-
lation factors might provide a viable cancer treatment
strategy.

Heparins are the most extensively used anticoagulants in
clinics. In blood coagulation, unfractionated heparin and
low-molecular-weight heparins potentiate the activity of
antithrombin III, thus inhibiting the activation of coagu-
lation factors I and X [191]. They also release TFPI, a
physiologic inhibitor of the TF pathway that prevents pul-
monary embolism and is used to treat deep vein thrombo-

http://www.translational-medicine.com/content/3/1/25

sis [192]. Retrospective and meta-analytic studies of deep
vein thrombosis treatment have shown longer survival
among cancer patients with thrombosis who were treated
with unfractionated heparin and low-molecular-weight
heparins than among patients treated without heparin
[193-198]. Thus, the use of anticoagulants might allow
them to live longer.

There is a higher incidence of venous thromboembolism
in patients with melanoma or small cell lung cancer. In
2003, a pilot study of enoxaprin, a low-molecular-weight
heparin for the treatment of advanced melanoma was
reported [199], but the clinical outcome was not clear.
Then, a phase II trial of combination chemotherapy and
anticoagulant therapy (docetaxel plus enoxaparin) was
performed in chemotherapy-naive patients with meta-
static non-small cell lung cancer [200]. The median time
to progression was 5 months, and the median survival
time was 11 months. The most frequent toxic effects were
neutropenia and asthenia; no clinically significant bleed-
ing or thrombotic events were observed. Treatment was
well tolerated in patients with advanced small cell lung
cancer, and the results suggested that enoxaparin could
prolong the time to disease progression [200]. Both the
oral anticoagulant warfarin and unfractionated heparin
have been shown to prolong survival time among patients
with small cell carcinoma [201].

In 2004, a prospective, randomized, controlled trial
enrolled 385 cancer patients into two arms, placebo and
dalteparin (another low-molecular-weight heparin).
Types of cancer included breast, colorectal, ovarian, and
pancreatic [202]. Thirty-four percent of the dalteparin
group and 31% of the placebo group received chemother-
apy alone; 8% of each group received radiation therapy
alone. Estimated overall survival at 1, 2, and 3 years did
not differ significantly between groups overall. However,
the estimated overall survival among patients with a bet-
ter prognosis at enrollment (55 patients in the dalteparin
group and 47 patients in the placebo group) was signifi-
cantly longer in the dalteparin group at 2 years (78% and
60%; P = 0.03) and at 3 years (55% and 36%; P = 0.03).
In 2005, another study confirmed these antineoplastic
effects of dalteparin [203]. During the 12-month follow-
up period of the study, 602 patients with solid tumors and
venous thromboembolism were randomly assigned to a
dalteparin or coumarin-derivative treatment group.
Among patients without metastatic disease, the
probability of death at 12 months was 20% in the
dalteparin group compared with 36% in the oral antico-
agulant group (P = .03). In patients with metastatic can-
cer, no difference was observed in mortality between the
treatment groups (72% and 69%, P = .46). However, the
observed effects of dalteparin on survival were statistically
significantly different between patients with and without
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metastatic disease (P = .02). Clinical trials are warranted
to investigate these findings. The exact mechanism by
which heparin mediates antitumor or antimetastatic activ-
ity is unknown but also merits further study.

Conclusion

Factors from the extrinsic and intrinsic coagulation cas-
cades play complex and important roles in cancer progres-
sion by promoting blood clottingg in the
microenvironment of cancer (e.g., ECs, platelets, fibrob-
lasts, leukocytes, and the ECM), altered gene expression
affects key intracellular signaling events. Certain signaling
pathways may facilitate thrombus formation in the peri-
tumoral environment and promote localized angiogen-
esis. In our study of transcript profiles of the peritoneum,
several factors that are part of the intrinsic coagulation
cascade were overexpressed at the transcript level in the
peritoneum in the vicinity of but beyond the periphery of
the tumor [3]. Overall, the extrinsic and intrinsic path-
ways favor clot formation. Thus, products of the perito-
neal environment, which include chemokines, cytokines,
and coagulation factors or their receptors, are evolving as
potential targets for biologic therapy or in vivo diagnostic
tools. The number of humanized monoclonal antibodies
applicable to cancer treatment is increasing as more tar-
gets are discovered. Other approaches to treatment might
include inhibitory oligonucleotides packaged to avoid
degradation and small molecules that block specific path-
ways. Retrospective studies have shown that antithrom-
botic therapy may be associated with a lower incidence of
certain types of cancer [204]. Clinical trials need to be
expanded to target the production of certain coagulation
factors or receptors in the coagulation cascade of
advanced ovarian cancer. Such studies may reveal new
approaches for chemoprevention or combination therapy
that include chemotherapy to control tumor prolifera-
tion, angiogenesis, and metastasis.
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