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Abstract

Background: Today, many different tools are developed to execute and visualize physiological models that
represent the human physiology. Most of these tools run models written in very specific programming languages
which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run
models written in different programming languages. In addition, interoperability between such models remains an
unresolved issue.

Results: In this paper we present a simulation environment that allows, first, the execution of models developed in
different programming languages and second the communication of parameters to interconnect these models.
This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-
researchers and medical students understand the internal mechanisms of the human body through the use of
physiological models. This tool is composed of a graphical visualization environment, which is a web interface
through which the user can interact with the models, and a simulation workflow management system composed
of a control module and a data warehouse manager. The control module monitors the correct functioning of the
whole system. The data warehouse manager is responsible for managing the stored information and supporting its
flow among the different modules.

This simulation environment has been validated with the integration of three models: two deterministic, i.e. based

on linear and differential equations, and one probabilistic, i.e., based on probability theory. These models have
been selected based on the disease under study in this project, i.e., chronic obstructive pulmonary disease.
Conclusion: It has been proved that the simulation environment presented here allows the user to research and

study the internal mechanisms of the human physiology by the use of models via a graphical visualization
environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios.

Introduction

In the framework of systems medicine, data comes from
different biological or medical levels [1]. The aim of
researchers is to understand the causes of different pro-
cesses in the human body, with the support of mathe-
matical and computational models.

A model may be defined as a simplified representation of
the real world. Models describe systems employing para-
meter description and parameter interaction [1]. In this
work, we have considered two modelling paradigms: a
deterministic one, based on linear and ordinary differential
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equations, and a probabilistic one, based on probability
theory.

This SE has been developed within the Synergy-COPD
project under the 7th Framework Program [2-4]. The
objectives of the project are to integrate five existing com-
puter models and develop a simulation environment (SE)
which will allow and facilitate the development, implemen-
tation and deployment of systems medicine. A graphical
visualisation environment (GVE) will allow users to access
the knowledge base (KB) where all the information about
the models is stored, interact with them and carry out
simulations in a more intuitive way with respect to the
state of the art.

After a revision of the state of the art in the area of
simulation tools for physiological models (see Section

© 2014 Huertas-Miguelanez et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the

( BioMVed Central

Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


mailto:mmercedeshuertas@gmail.org
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Huertas-Miguelaiez et al. Journal of Translational Medicine 2014, 12(Suppl 2):57

http://www.translational-medicine.com/content/12/52/S7

state of the art), considering the kind of knowledge [5]
and the models included in the project [1,6-8], we devel-
oped this SE. The SE is able to run models written in dif-
ferent programming languages and communicate
parameters among models.

The paper is organized as follows. The state of the art
section contains a review of existing tools considering
their capability to run physiology models. The architec-
ture of the simulation environment section describes the
structure and functionalities of the two main modules
that compose the SE. The interoperability section
describes how the interoperability among modules is
reached. The workflow section describes the sequence
of actions to be carried out to run a simulation. The
validation section describes how this SE was validated
by the use of physiological models related to COPD,
and the conclusions and future work section adds con-
cluding remarks and the direction of future work.

State of the art

Mathematical models and simulations are widely used in
the study of physiological processes. Presently several tools
can be found in the literature with this aim. In this section,
the most relevant of these are reviewed. Table 1 shows the
evaluation of these tools based on three aspects: (1) para-
meter communication, (2) model description and model
execution result storage and (3) execution of models in
different programming languages.

+ JSim [9] is a tool developed within the National
Simulation Resource Physiome project to run models
written mainly in mathematical modelling language
(MML), systems biology markup language (SBML)
and CelIML markup language. The connection of
models written in Java or C++ requires the use of a
specific library developed in MML. JSim has its own
data base to store models but there is no support of
parameter communication between the models.

« PhysioDesigner [10] is a platform developed by the
University of Osaka. Models are developed in physiolo-
gical markup language (PHML). Flint is the simulation
tool developed within PhysioDesigner to run models

Table 1 Comparision of existing simulation tools.
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written in PHML/ISML, CellML and SBML. This
simulation environment does not run models in other
programming languages than PHML/ISML, CellML
and SBML.

+ Cytosolve [11] is a system that integrates dynamically
the computations of smaller models that can be run in
different machines. Models are mainly written in
SBML and CellML. The web services parse and detect
naming conflicts and common reaction pathways
among models. This information is stored in the ontol-
ogy of the data base. Once the user has specified the
models and the conflicts are solved, the integration of
the models can start. Cytosolve connects computa-
tional results after model execution using a messaging
passing system based on XML across the collaborative
models. This tool runs models mainly written in
SMBL and CellML.

» The Cancer, Heart and Soft Tissue Environment
(Chaste) [12] supports the simulation of spatial mod-
els. It allows the visualization and post-processing of
simulation results. Chaste is only supported in Linux/
Unix platforms. Chaste supports models developed in
C++. It does not store data and there is no support of
parameter communication between the models.

« HumMod [13] is a simulation and modelling tool.
Models description is represented in XML. HumMod is
composed of two modules: model documentation,
which contains the XML files that correspond to mod-
els description, and model navigator, which displays the
relationships between variables. The knowledge base
contains 5000 variables obtained from peer reviewed
physiological papers. HumMod does not support mod-
els developed in other programming languages.

+ MoBi [14] is a tool to model biological processes and
drug actions. MoBi works by using PK-Sim another
package for physiologically-based pharmacokinetic
(PBPK) modelling. This tool allows building and simu-
lating physiology models, export and import to other
modelling languages and visualization of results. MoBi
can be integrated into MATLAB and R for sensitivity
and complex analysis. Models can only be defined in a
specific XML format.

Simulation tool Parameter communication Data storage

Integration of models in different compiled programming languages

JSim -
PhysioDesigner - -
Cytosolve + +

Chaste -

HumMod -
MoBi + +

This table compares the tools described in the section State of the Art in terms of communication of paramenters, data storgae and integration of models in

different programming languages.
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As presented in Table 1 some of the tools reviewed here
do not support some of the evaluation aspects stated in
the beginning of the section. The contributions of our SE
to the SoA are based on its capability to run models pro-
grammed in different compiled programming languages
allowing the exchange of parameters values between mod-
els. This SE is able to request and retrieve information
from a complex knowledge base (KB), where all the infor-
mation about the models is stored. The SE processes that
information to present it to the user via a web-based inter-
face which allows him to carry out simulations in a more
intuitive way with respect to the state of the art. Our SE
has also a data base to register and keep track on user’s
activity while logged in.

Architecture of the simulation environment
Considering the complexity of the models included in the
Synergy-COPD project, the complexity of the knowledge
involved and the necessity to communicate parameters
among models, the simulation environment was developed
to satisfy these requirements.

The SE described in this paper is composed of two main
modules as presented in Figure 1: the simulation workflow
management system (SWoMS) and the graphical visuali-
zation environment (GVE). The GVE is the visual part of
the system, through which the user can interact with the
models. The SWoMS is composed of two modules: the
data warehouse manager and the control module.

The SE interacts with an external module, the (KB)
[15], which stores all the information related to models
and cases. A case in the SE is defined as the necessary
information to accurately describe the (real or hypotheti-
cal) status of a human being. This information also corre-
sponds to a set of variables included in the models. Cases
can correspond to patients or can correspond to the
result of simulations in which the values of certain vari-
ables have been modified. Variables can be represented

/Sinf ulation Environment ]\

Graphical Visualization Environment

Workflow

System

Data Warehouse Manager

‘ Control Module

[+

SE Data Base

\

Knowledge Base Web services

Figure 1 Architecture of the SE.
A
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differently in different models and the KB includes the
mappings among these different representations, which
include the conversion of units. While details of the map-
ping are described elsewhere [5], we will briefly summar-
ise the KB status to facilitate the understanding of the
following sections. The KB represents knowledge as a
network and we applied this concept to explicitly state
our knowledge about a model, the model purpose, the
model parameters visible to the outside (input/output
parameters) as well as patient related parameters such as
age or blood pressure. We structure knowledge into
objects and their relations. These formal concepts
enables the use of controlled vocabularies to unambi-
gously describe the meaning and purpose of a parameter,
creating a semantic description. Based on these it is
possible to detect similarity between the described para-
meters and, after manual verification, store the connec-
tion explicitly. We can search for patient related data
that is relevant as input parameter value of a computa-
tional model. We can validate simulation outputs against
individual or aggregated clinical data.

The entire system is based in the model-view-control-
ler (MVC) architecture for web applications [16] and in
the following subsections we will describe the function-
alities and structure of the main modules of the SE.

The simulation workflow management system (SWoMS)
The SWoMS monitors the correct functioning of the
system and it is composed of two modules: The data
warehouse manager and the control module.

The data warehouse manager is responsible for
executing all the requests to the SE Data-base or to the
KB, ensuring the correct and consistent information
flow among modules. This module requests and
retrieves information from the KB using a web service.
Information retrieved from the KB, or sent to the KB or
models, is codified under the communication language
specified in the interoperability section.

The control module, presented in Figure 2, controls
the correct functioning of the whole system. This mod-
ule is composed of controllers. They receive user’s
actions, executed through the GVE, and respond to
those actions. Controllers are divided in two groups:
view controllers and web-socket controller. The view
controllers receive those user’s actions corresponding to
requests to retrieve information from the data ware-
house manager. This sends the result of those queries to
be presented in the GVE. The web-socket controller
receives user’s actions to start or discard simulations. It
also receives notifications from the execution controller
to be sent to the GVE via a web-socket [17].

Among the information sent to the web-socket control-
ler to start a simulation, we have one or more models to
execute and one or more cases, both selected by the
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Figure 2 Control module structure.

user. With the information received, the execution compo-
nent creates a simulation object. The simulation object
contains the logics to allocate the cases with the models to
create a case simulation. A case simulation represents the
minimum execution unit composed of a reference to the
model to execute and the case, which contains the input
parameters for the model. For example, in Figure 3 the
user has selected a model called M6 Oxygen Transport
and a list of cases which includes Sea Level 1, Sea Level 2
and Sea Level 3. These are sent to the batch processor
which will forward them to the execution component. The
execution component will create the simulation object with
that model and that list of cases. The result of the execu-
tion of the M6 Oxygen Transport model with every case in
the list of cases is displayed in the GVE.

[ Web-socket controller ]

lstof cases | Sealevell | Sealevel2 | Sealevel3

List of models

‘ 15 Oxygen Transpert ‘

[ Execution compeonent ]

simulation object

( Simulation case Simulation case Simulation case M
e Crygen MG Cxpgen 6 Oxpgen
Transport Iransport Transport
Sea Level 1 | Sea Level 2 ‘ Sea Level 3 ‘

>/ /

[ Batch processor

fast queue ]

Figure 3 Sequence followed by the list of cases and models to
start a simulaiton from the web-socket controller to the batch
processor.
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Every simulation object has a complexity associated.
This complexity is calculated considering the number of
case simulation to execute by a model and the number
of models to run. The complexity tends to be higher as
the number of models and case simulation increase.

The batch processor is composed of two different
queues: the fast queue contains simulation objects whose
complexity is under a specific limit and the slow queue
contains those simulation objects whose complexity is
over a specific limit. For instance, the simulation object
presented in Figure 3 will be directed to the fast queue.

When the execution of a simulation object has finished
a finalization event is sent to the web-socket controller
which will send the appropriate notification to the GVE.

The graphical visualization environment (GVE)

The GVE, presented in Figure 4, is the front-end of the
SE. Only those who are registered in the system can
have access to the SE. The SE supports three different
user profiles:

o Administrator is the only profile that has full
access to all the possible actions that can be per-
formed in the SE.

+ Modeller is able to see pre-existing models, simulate
them and map models if they have a mapping para-
meter. He will be able to upload and publish his own
models following the standard described in Synergy-
COPD to keep consistency with the different modules
that are part of the Synergy-COPD project.

+ Doctor is able to see pre-existing or public models
included in the Synergy-COPD simulation environ-
ment, map models, if they have a mapping parameter,
and run simulations modifying data in the cases.

Table 2 presents all the actions that every profile can
perform in the SE.

Once the user is logged in, s/he can see the models
included in the system (see Figure 5), or search for models
in the KB by introducing a keyword that is present in the
models’ metadata. When the user selects a model to be
executed, another model can be added to the execution
queue provided that a mapped parameter exists between
them.

The next step is to select one or more cases to be exe-
cuted with that model or create a new one. If a case is
edited, the values assigned to the variables of that case
are shown. The user can: (1) change variables value or
(2) introduce a range of values, within the permitted
range of values (PRV) or (3) add the case into the queue
of cases to be executed. Figure 6 shows that the user
has selected M6 Oxygen Transport model and the cases
labeled Sea Level 1, Sea Level 2 and Sea Level 3. Once
the user has finished selecting cases to run, the launch
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Figure 4 Home of the simulation environment.

button is used to send the information to the correspon-
dent module as presented in Figure 3 and trigger the
execution of the model.

A visual alert is presented when a simulation has fin-
ished. The results after model execution may be presented
in tabular format (see Figure 7) or as a graphical plot (see
Figure 8). The results may be downloaded in various for-
mats including csv, spreadsheet and plain text format. The
GVE also supports case storage and case management.

For a live demo please visit the youtube channel of the
Synergy-COPD Simulation Environment (https://www.
youtube.com/watch?v=dZQO8qRYMac).

Interoperability
Interoperability in the SE is defined as the capability of
exchanging parameters between the SE, the KB and the
models in a consistent manner. This communication needs
to be done in a simplified way to allow model creators to
integrate the models descriptions in the KB facilitating the
communication of parameter values. To formalize such
communication, a communication language denominated
SE-TAB was defined.

This communication language has been developed after
reviewing existing model description languages and stan-
dards for minimum information reporting. Following the

success of simple tab-delimited formats for gene expres-
sion [18] and other omics data [19] we generated SE-TAB
which allows model creators to generate very simple
wrappers for their model parameter input/output values.
To add models description and model parameters to the
KB we can use the SE-TAB language or other formats.
Therefore the absolute minimum SE-TAB support for
integration into the SE is the parameter value file which
any model needs to be able to read and produce.

As models are uniquely identified within the SE, the
communication can be based on model parameter
names. Parameters, for which different values occur in
different spatio-temporal compartments, are listed only
once, the values being reported as array indexed by the
corresponding spatio-temporal compartment informa-
tion (which is specified in the corresponding model and
model parameter description), thus enabling an extre-
mely simple format as shown in Table 3.

Workflow

A typical workflow in the SE is shown in Figure 9. First
the user logins and credentials are verified. Next the view
controller pulls from the KB all the models, associated
description, the semantic meta-information and the mod-
els mapped parameters. This information is processed in

Table 2 actions and permission related to each user profile, where ‘Y’ stands for Yes and ‘N’ stands for No.

Actions

Profile: administrator

Profile: doctor Profile: modeller

Create a user Y
Assign a profile
Modify user data
View a model
Run pre-existing and public models
Run pre-existing and own models
Map models

< < < < < < <

Make a model available to the public

N

Z < Z < <<z Z
<~ < < < < =< Z
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Figure 5 Once the user has logged in, s/he can see the models available in the system or look for them introducing a keyword on
the top right side of the screen.
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Figure 6 On the left hand side of the image we can see the list of default cases associated to this model. In the center there is a table

with the list of variables included in the model and, on the right hand side, we can see the list of models that would be executed with the
model.
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Figure 7 On the left hand side of this image we can see the list of output cases generated after model executioni and, on the right
hand side, we can see the output variables with the values after model execution for every output case.
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plotted. Our user has selected VO2 and PvO2. On the right hand side, we can see the graphical representation of these two output variables.
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Table 3 Example of SE-TAB format.

Parameter name

Value (;delimited array)

Spatio temporal index

vcitSyn
cmal_o

2.31;240
0.53;0.65

[1:21:12:01
[1:21:12:01

Table 4 Table of definitions.

Concept Description

Interoperability

Capability of exchanging parameters between models in the SE

Ontology It is a way of storing information based on the relations of the different entities included in an ontology
Mapping Those parameters that have different representation in different models, although they are the same.
parameters
Semantic Description of a concept by meaning
description
Web service It is @ communication method to exchange data or information between applications
Web socket Makes possible the communication between a client application (web browser) and a server (remote machine). In this type of
communication a channel is open to send and receive data from both parts.
wrapper Piece of code that works as intermediary between two source codes written in different programming languages.

the view controller and presented to the user through
the GVE. When the user selects a model, the view con-
troller via the data warehouse manager pulls all the
associated cases from the KB and the SE Data-base.
This information is eventually presented to the user by
GVE.

Once the user has selected one or more cases, as
shown in Figure 10, the GVE will send the information,
via the web-socket controller, arriving at the execution
component to create a simulation object. This simulation
object will be inserted in one of the two queues of the
batch processor. When the simulation finishes, the user
will be notified.

Validation

The SE was validated by utilizing COPD-relevant physio-
logical models. The capabilities to execute models in dif-
ferent programming languages, to store cases and the
communication capabilities with the previously described
communication standard were extensively tested.

The models utilized belong to two different paradigms:
deterministic and probabilistic. The first of the two deter-
ministic mathematical models considered in the Synergy-
COPD project have been recently extended from a prior
model describing O2 transport from air to mitochondria
as an integrated system limiting maximal oxygen uptake
Vo,max [6,20] to also include the contribution to overall



Huertas-Miguelaiez et al. Journal of Translational Medicine 2014, 12(Suppl 2):57

http://www.translational-medicine.com/content/12/52/S7

Page 8 of 11

2]
<
im
E S
ém
5 =
5

user identification '

B

request for user information

Warehouse KB
manager

data
SE data base

user exists

'
requestuser information

1

'
user information

request for models

models, descriptions and mappings

models information

models, descriptions and mappingg

selected model

B
User selects a model

request for cases

cases stored

cases stored in the KB

cases stored

cases storeq in SE Data Base

L 4

|
casps stored
- !

list of cases

Figure 9 View controller sequence diagram.

impedance to O2 flow from the above-zero mitochondrial
oxygenation levels (Py,,) required to drive mitochondrial
respiration [7]. This has enabled the prediction of Py, as
a balance between the capacities for muscle O2 transport
and utilization [7]. This model has been recently expanded
to allow functional heterogeneity in both lungs and mus-
cle. This was done to enable application to disease states.
This model, called M6 Oxygen Transport, is currently pro-
grammed using Java programming language.

The second deterministic model considered in Synergy-
COPD provides a conceptual basis for the abnormally
high reactive oxygen species (ROS) production observed
both in hyperoxia [21,22] and hypoxia [23-26] and has the
ability to predict the quantitative relationship between
ROS generation and Py,,. Recent modeling and experi-
mental studies on mitochondrial ROS production under
hypoxia and re-oxygenation [8,27,28] have proposed an
inherent bi-stability of Complex III, i.e. coexistence of two
different steady states at the same external conditions: one
state corresponding to low ROS production, and a second
potentially dangerous state with high ROS production.

madels 10 szecuts snd ot cases |

b sect
on
Gase o cases st !
|
nalication of simulation ended

Figure 10 Web-socket simulation launch sequence diagram.

Temporary deprivation of oxygen could switch the system
from low to high ROS production, thus explaining the
damaging effects of hypoxia-re-oxygenation. This model,
called M7 Cell bioenergetics, mitochondrial respiration
and ROS generation, was developed in the C++ program-
ming language.

With the aim to offer the researcher a more COPD and
patient specific approach, a Bayesian network was devel-
oped [1] to approach parameter specification. The creation
of a Bayesian network requires a lot of data in order to
validate it. Due to the lack of data to validate this network,
we have proposed a Bayesian network for those research-
ers who want to apply expert knowledge or new data. The
Bayesian network was developed in the C++ programming
language.

Cases, such as Sea Level and SE, visible on the left
hand side of Figure 6, are stored in the KB. New cases
can be created using the two as a starting point, and
can be stored in the SE Data-base whose schema is pre-
sented in Figure 11.

Conclusions and future work

In this work we have presented a web-based simulation
environment composed of two main modules: a user
interface and a simulation engine responsible for con-
trolling the correct functioning and flow of information
among the different actors included in the system.
These actors are: the user, the KB and the physiology
models. The SE was validated with physiology models
related to COPD.
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Figure 11 SE data base schema.

In the current status of the SE the integration among
static models was achieved although it does not allow
running models with different temporal dimensions
therefore we plan to extend the SE to support this
feature.

An objective that was originally planned was the per-
sonalization of the results thanks to the use of the prob-
abilistic model that could use patient specific data.
However, this personalization was not achieved due to
the lack of evidences that could allow the connection
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among the probabilistic model and the deterministic
models in a consistent manner.

A feature added recently to the SE is the possibility to
upload new models in the system turning the SE into a
collaborative platform. A user with modeler permissions
can upload a model and test it. By making it public
other modelers registered in the system could use it and
build other models if there are existing mappings
between models. Making the SE available to the general
public will allow users to share results and models.

The specialization of the tool to be employed as an
educational tool is also under consideration so that the
SE can be utilized by medicine students who have a
clear interest in research about the respiratory chain.

A co-operation is planned with related projects that may
benefit from this SE. A specific case is the AirPROM FP7
project [29] which is developing VPH models for lungs at
cell and organ levels. Those models might be a great
extension of those developed in the Synergy-COPD pro-
ject and a co-operation between both projects has been
initiated. This is an opportunity to allow the SE to con-
tinue its evolution in the framework of AirPROM.

The source code for the SE is available under Lesser
General Public License in a public repository. [30]
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