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Abstract

such as protein—protein interactions (PPIs).

between essential genes.

Background: Human diseases frequently cause complications such as obesity-induced diabetes and share
numbers of pathological conditions, such as inflammation, by dysfunctions of common functional modules,

Methods: Our developed pipeline, ICod (Interaction analysis for disease Comorbidity), grades similarities between
pairs of disease-related PPIs including comorbid diseases and pathological conditions. ICod displayed a disease
similarity network consisting of nodes of disease PPIs and edges of similarity value. As a proof of concept, eight
complex diseases and pathological conditions, such as type 2 diabetes, obesity, inflammation, and cancers,

were examined to discover whether PPIs shared between diseases were associated with comorbidities.

Results: By comparing Medicare reports of disease co-occurrences from 31 million patients, the disease similarity
network shows that PPIs of pathological conditions, including insulin resistance, and inflammation, overlap
significantly with PPIs of various comorbid diseases, including diabetes, obesity, and cancers (p < 0.05). Interestingly,
maintaining connectivity between essential genes was more drastically perturbed by removing a node of a
disease-related gene rather than a pathological condition-related gene, such as one related to inflammations.

Conclusion: Thus, PPIs of pathological symptoms are underlying functional modules across diseases
accompanying comorbidity phenomena, whereas they contribute only marginally to maintaining interactions

Keywords: Comorbidity, Protein—protein interaction, Attack tolerance

Background

Most diseases are the result of the collapse of cellular
processes together with interaction networks among com-
ponents of the genome, proteome, and metabolome, and
these perturbed components are likely to be linked with
other diseases [1]. Indeed, disease comorbidities such that
the onset of one disease increases the likelihood of the
development of other diseases were correlated with the
breakdown of common functional modules of disease
pairs, such as metabolic and cellular networks [2,3]. There-
fore, exploring the biological network between diseases,
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such as protein—protein interactions (PPIs) of chronic
diseases and complications, might give us a more detailed
understanding of disease comorbidity and the functional
differences between complex diseases.

A number of previous attempts at “network analysis”
of diseases have revolutionized our knowledge about the
relationships between human diseases and comorbidity
[1,2,4-6]. For instance, disease-related genetic mutations
of genes tend to be peripheral nodes of the essential net-
work, while somatic mutations of genes related to cancers
were central nodes [1]. However, pathological phenotypes
linked with comorbid diseases and complications remain
unclear in the graph-theoretic frame. While distinct dis-
eases share pathological symptoms and various comorbidity
patterns, such as inflammations commonly associated with
obesity and diabetes, a network model to depict sharing of
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conditions between diseases remains uncertain. In
addition, network models to portray differences be-
tween diseases and pathological symptoms leading to
severe (or minor) abnormalities of vital functions have
been scarcely addressed, whereas distinct mortality issues
have been highlighted among cancer-like diseases and
pathological symptoms [7,8].

Here, we designed a novel method, ICod, to build simi-
larity networks among PPIs of disease and pathological
conditions to address relationships between comorbid
disease pairs and pathological symptoms. While there are
various patterns of disease comorbidity, we focused obes-
ity as one of leading risk factors contributing to the overall
burden of disease worldwide [9]. Among various obesity
related complications, we selected seven diseases and
pathological symptoms, which have been remarked as
obesity related diseases and manifestations [9,10]. Thus,
the disease studied are obesity, type 2 diabetes mellitus
(T2DM), breast cancer, colon cancer, and prostate cancer,
and pathological symptoms are inflammation, insulin
resistance, and immune response. The main assumption
of ICod is that dysfunctions of common protein interac-
tions between diseases might lead to disease comorbidi-
ties. To evaluate phenomic associations between network
similarities of diseases and comorbidity patterns, disease
co-occurrences in a human population were also inter-
rogated using onset co-occurrence relationships based on
31 million patients [11] (http://hudine.neu.edu/). Further-
more, we address the structural importance of disease-
and pathological condition-related genes in maintaining
connectivity in the network of essential genes to suggest
distinct network models for the dysfunction degrees under
diseases or pathological symptoms including inflam-
mation. The attack tolerance of the essential network was
determined by measuring alterations of network diameter
following removal of disease- and pathological symptom-
related essential genes, respectively. The network diam-
eter, defined as the average length of the shortest paths
between any two nodes in a network, represents the
ability to communicate between any two nodes within
the network [12].

Materials and methods

ICod: Similarity of disease- and pathological
condition-related PPls

ICod used the following measures to grade the disease—
disease similarities based on disease-related PPIs. The
PPI network modules of each disease were explored
using the disease-related genes in our datasets. A
disease-related network was produced based on the first
neighboring nodes of each disease-related gene. The
distance between each pair of disease-related genes was
calculated based on the shortest path in the integrated
human PPI network. The distances were normalized by
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transforming them using the formula of Perlman et al.
[13]. The transformed distances of all the protein pairs
in the two disease-related networks were used to compute
the proportion of overlap by considering the size of each
corresponding network. The detailed equation is:

> S(Pu,Pu)

D(P,,P,)<C

u(NET;,NET;) = (1)

S(Py, Pw)
P, €NET;, P,, € NET;

where NET; and NET; denote the networks related to
diseases i and j, respectively, D(p,, p,,) is the length of the
shortest path between protein p,, and p,,, and S(p,, p,,)
are the transformed distances between the networks based
on the definition provided by Perlman et al. [13]:

S(pn’pm) :Aexp(_bD(pmpm)) (2)

We used A =0.9 and b = 1, as recommended by Perlman
et al. [13]. C is the threshold of D(p,,, p,,.), which indicates
sufficient proximity between two proteins. We used C=0
to consider directly overlapping proteins in two disease-
related networks. Thus, W(NET;, NET)) represents the nor-
malized proportion of the overlap based on the overall size
of the networks. The statistical significance of W(NET;
NET;) was measured as the p value based on the back-
ground distribution of p in 1000 randomly permuted tests.
With identical manner, we also determined similarities
between pathological conditions.

Preparation of datasets

List of seed genes

We used 317 genes related to five diseases (obesity,
T2DM, breast cancer, prostate cancer, and colon cancer)
and three pathological conditions (inflammation, immune
response, and insulin resistance). These genes were col-
lected from the public resource, GeneCards [14], which
was searched by using related keywords such as “breast
cancer”, “malignant neoplasm of breast”, “T2DM,” and
“insulin resistance” (Additional file 1: Table S1). All of
disease related keywords were manually selected from the
results of concept ID search on the largest biomedical
terminology database, UMLS (Unified Medical Language
System) [15]. In case of immune response, we combined
results of immune disorder to comprising immune re-
sponse related disease symptoms.

Protein-protein interaction (PPI) network

We integrated various well-known resources to prepare
human PPI networks: the Human Protein Reference
Database (HPRD) [16]; BioGrid (the Biological General
Repository for Interaction Datasets) [17]; IntAct [18];
the Molecular INTeraction database (MINT) [19]; and the
Database of Interacting Proteins (DIP) [20]. To produce
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valid PPI networks, we only used protein interactions with
physical evidence; ie., those with Proteomics Standard
Initiative —Molecular Interactions (PSI-MI) codes, such
as physical interactions (MIL: 0218), direct interactions
(MI: 0407), and physical associations (MIL: 0915).

Results

Overview of ICod pipeline

The starting point of ICod is the generation of seed
genes related to diseases or pathological conditions. A
search of GeneCards was made using 33 keywords, and
a total of 317 genes related to five diseases (obesity,
T2DM, prostate cancer, breast cancer, and colon cancer)
and three pathological symptoms (inflammation, insulin
resistance, and immune response) were prepared [21]
(Additional file 2: Table S2). Using these seed genes,
subnetworks of diseases of interest and pathological
conditions were prepared by exploring nearest neighbors
among integrated human PPIs over 11 K of nodes and
113 K of edges from five different databases [16-20]
(Figure 1A). Then, ICod computes disease—disease simi-
larities considering degrees of overlap between disease- or
pathological condition-related PPIs to produce a disease
similarity network graphically, as depicted in Figure 1B.
The disease similarity network consists of nodes for
disease PPIs and edges for degree of similarity between
the i-th and j-th PPIs (u(d; d;)). The detailed equations for
u(d;, d;) are described in the Methods section. Figure 1C
shows an example ICod pipeline to determine similarity,
, between obesity- and T2DM-related PPIs after building
subnetworks consisting of 3,969 obesity genes and 3,760
T2DM genes. For the statistical significance, p value of
W(dopesitys dropar ) Was assessed using random permu-
tation tests.

PPI similarity and comorbidity patterns among diseases
and pathological conditions
Figure 2A shows the p values of the disease—disease PPI
similarity (u(d;, d;)) matrix calculated by ICod. House-
keeping and essential gene networks, as controls for
nondisease networks, were built from 2,164 seed genes
and their neighbor nodes (2064 for housekeeping and
115 for essential genes) from previous attempts [22,23].
Figure 2B shows the background distribution of similarity
values to compute the p values of the disease—disease simi-
larity value, p. Based on these permutation test results, in-
flammation, insulin resistance, and immune response show
high similarity with multiple diseases (p < 0.05, Figure 2A).
As shown in Figure 2C, the similarity between obesity
and T2DM is significantly high (p=227E-03) and
pathological conditions significantly overlapped with vari-
ous diseases. Disease- and pathological condition - PPIs, ex-
cept inflammation, are significantly similar to the essential
network (p <0.05). Thus, insulin resistance- and immune
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response-related PPIs were commonly incorporated in
various disease and essential gene networks.

Figure 2D depicts onset co-occurrence of disease
groups interrogated from previous attempts utilizing the
medical records of 31 million patients [11]. Using the
network frame, we displayed statistical significances of
disease co-occurrences (i.e., comorbidities) based on
relative risk values [11]. In the presented comorbidity
network, nodes mean disease onsets and edges are rela-
tive risk values between nodes. As displayed in Figure 2D,
inflammation-related symptoms (gray nodes) are closely
associated with the onset of obesity (yellow nodes) and
T2DM (green nodes).

As Figure 2C and D depict, comorbidities showed
similar tendencies to PPI similarity networks of diseases.
The network analysis presented supports the hypothesis
that the collapse of common PPIs between disease
and pathological symptoms were closely associated
with comorbidity.

Topological role of disease- and pathological
condition-related genes for essential interactions
Irrespective of mortality rate, pathological symptom-
related PPIs overlap significantly with various diseases
including cancers and even networks of essential genes.
Using the measure of node degree (i.e, number of
nearest neighbors), a previous network-based attempt
suggested that disease-related genes were peripheral
nodes in the essential network [1]. Nevertheless, cancer-
like diseases are major causes of death in the world [7],
although models showing a severe impact on essential
gene networks remain imprecise. Here, except for node
degree, we compared topological importance between
disease- and pathological condition-related nodes through
measuring the collapsed connectivity of the essential net-
work by elimination of disease- or symptom-related essen-
tial genes.

By the definition of network diameter (mean of short-
est paths between all pairs of nodes in a network) [12], a
pattern of increasing the diameter by removing a node
denotes the breakage of network links and the vital role
of the removed node in maintaining information flows
in the network. According to Figure 3A and B, the net-
work diameters of disease PPIs, pathological condition
PPIs, housekeeping PPIs, and essential PPIs indicate a
diverse density of connectivity within each network
unrelated to the number of nodes or edges. Because the
PPI network of human essential genes is a scale-free
network, it is robust against network errors while it is vul-
nerable against attacks on high-degree nodes (Figure 3C).
“Network attack” means sequential removal of nodes
according to node rank (i.e., a hub-node attack), whereas
“network error” (i.e., random error) means withdrawing a
node randomly.
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Figure 1 Overview of ICod: network-based disease-disease similarity analysis. A. Generation of disease-related protein—protein interaction
(PPI) networks based on seed genes. B. Degree of network similarity (1) determines disease-disease similarity by analyzing the proportion of
intersections between disease-related PPIs. C. Detailed example of grading PPI-based similarity between type 2 diabetes mellitus (T2DM) and
obesity using ICod.

Interestingly, alteration of the essential network diam- of a disease-related essential gene (Figure 3E). The
eter by attacks on the pathological condition-related connectivity of the essential network (diameter 4.13) was
node was negligible (Figure 3D), whereas the connectivity =~ dramatically perturbed even under attack of a small
of the essential network collapsed dramatically on removal  fraction of nodes related to diseases (0.1% of nodes in
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Figure 2 Similarity of disease-related PPIs and disease-comorbidity network. A. p values of disease-disease PPI similarity (u(d; d;) matrix
computed by ICod. B. Generated background distribution of similarity values via random permutation tests. C. Disease similarity network
consisting of nodes of disease PPIs and edges of similarity values. In the present study, five diseases (T2DM, obesity, prostate cancer, colon cancer,
and breast cancer) and three pathological conditions (immune response, inflammation, and insulin resistance) were analyzed. Housekeeping and
essential gene-related PPIs were regarded as a control set of nondisease conditions. D. Phenomic-level disease and pathological symptom
co-occurring networks based on US Medicare data. Because the clinical records utilized diagnostic codes from ICD9-CM (International Classification of
Diseases, 9th Revision, Clinical Modification) to determine the disease or pathological state of patients, we manually assigned the relevant names of
diseases, such as prostate cancer and obesity, to the reported codes of ICD9-CM.

\

Figure 3E), such as T2DM, cancers, and obesity. However,
attacks on a larger fraction of nodes related to patho-
logical symptoms, including insulin resistance, inflamma-
tion, and immune response, showed subtle effects in
truncating interactions among essential genes (Figure 3D).

Based on these distinct topological roles of disease- and
symptom-related nodes in the essential network, we
suggest that disease-related nodes are vital nodes of infor-
mation flow in the essential network, whereas nodes of
pathological symptom play a less pivotal role.
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Figure 3 Disease- and pathological condition-related nodes in the essential network. A. Bar charts of network diameters for five diseases,
three pathological conditions, and nondisease gene-related PPIs (i.e, housekeeping and essential genes). B. Numbers of edges and nodes in the
five disease- and three pathological conditions-related PPIs in log scale. In addition, the numbers of nodes and edges in the housekeeping and
essential networks are also presented. C, D, E. Alteration of the diameter of the essential network by removing nodes. As a scale-free network, the
essential network was robust against random errors (blue line in panel C), but was vulnerable to high-degree node attacks (red line in C). While
an attack of pathological conditions showed random error-like effects on the essential network (cyan, black and violet lines in D), attacks on
disease-related essential genes caused dramatic perturbations to the linkages within the essential network (green, pink and orange lines in E).
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Discussion
In summary, using ICod, we determined relationships among
five diseases (prostate cancer, breast cancer, colon cancer,
T2DM, and obesity), three pathological conditions (inflam-
mation, insulin resistance, and immune response), and the
essential gene network. As expected from pathological symp-
toms in complex diseases sharing common phenotypic sig-
nals including inflammation, the results of ICod support our
knowledge at the network level. The pathological condition
network is closely associated with various disease networks.
Our findings are the first attempt at uncovering the
differences in topological role between each disease- and
symptom-related network within the essential gene network
using analysis of attack tolerance. Although PPIs of patho-
logical conditions significantly overlapped with disease PPIs,
the patterns of collapsing the essential network by removing
the condition-related nodes were clearly distinct from attacks
on disease-related nodes. While our network analysis cov-
ered partial sets of human diseases and symptoms, our con-
ceptual approach successfully modeled functional roles of
pathological states in disease etiology and maintenance of
the essential network. Typical pathological symptoms, such
as inflammation and immune responses, are widely spread
mechanisms behind complex diseases with subtle impacts
that can cause severe dysfunctions of the essential network.

Since our network model focused topological similarity,
our method suggested network relationships between
disease pairs, or disease-pathological symptoms without
causal understandings and functional significance. To ad-
dress network related functional impact (ie., complete
node removal and partial mutation), Zhong et al. attempted
computational and experimental validation using Yeast-
Two-Hybrid system (Y2H) [24]. In our previous study, we
analyzed gene expression patterns in diet induced obese
mice [25]. Interestingly, diet-induced obese mice displayed
differentially expressed genes, which were related inflam-
mation, immune response and insulin resistance as we
suggested our network similarity analysis. While our
previous work suggested enriched functional signatures
under induced obesity condition without node-removal
effect, significantly depict obesity derived pathological
phenotype in time-resolving frame. Based on theses
attempts, we suggest an approach combining Zhong et al’s
Y2H and time-resolving frame of ours for further func-
tional understanding. Owing to the utilization of model
organisms, Zhang et al. and our mouse data analysis give
us limited understandings to depict underlying mecha-
nisms of human diseases. Thus, as we conducted in our
previous attempt [26], large-scale human cohort based
analysis might shed light shared genetic and functional
features, which lead disease comorbidity.

While cancers have shown high mortality rates [7],
obesity and T2DM have low attributes for viability issues. In
stark contrast with our expectation, topological roles for the
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interactions within the essential gene network are homoge-
neous between lethal diseases (cancers) and other chronic
diseases. Therefore, further study is necessary on the associ-
ations between disease mortality and aspects of network
structure, such as “bottleneckness” [27]. In addition, our
keyword-based approach to preparing disease and patho-
logical symptom related genes were introduced for the
proof-of-concept. Thus, it is necessary for advanced valid-
ation of disease related genes using various approaches, such
as scrutinizing gene expression databases [28].

As shown in our network analysis of disease PPI
similarity and US Medicare data, disease onset and
comorbidity are closely associated with the breakage of
common functional modules. Complex diseases and
pathological conditions share molecular mechanisms
such as PPIs, whereas mortalities are heterogeneous. We
distinguished network models of complex diseases and
pathological conditions using our analysis of attack
tolerance of the essential network to find the different
impacts on mortality issues.

One of our contributions is computing quantitative de-
gree of overlapping between disease PPIs involving across
similarity among diseases and related clinical manifesta-
tions considering connectivity of compared PPI pairs
(Figure 2). Since ICod utilized public repository of PPI
networks and list of disease related genes, our method can
be a streamlined route to visualize similarity between dis-
eases and pathological phenotypes, which are associated
disease comorbidity [2]. In addition, our network-based
disease similarity might present drug targets related vari-
ous diseases as presented by Suthram et al. [29]. For ex-
ample, ICod remarks a probability for the repositioning of
drugs related pathological symptoms, such as inflamma-
tion, for the therapy of PPI overlapped diseases including
obesity; The anti-inflammation drug, amlexanox, elevate
energy expenditure and produce weigh loss in mice [30].

Conclusion

Therefore, analysis of ICod network similarity and attack
tolerance has successfully modeled existing knowledge
for disease comorbidities and the co-occurrence of patho-
logical symptoms, and we have identified perturbation
models for disease-related essential genes through the
network frame.
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