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Abstract

and fibrosis in cyclosporine (CsA)-induced kidney injury.

of the study.

ameliorated by OA treatment.

beneficial effects on inflammation and oxidative stress.

Background: Nuclear factor erythroid-2-related factor-2 (Nrf2) is known to protect against tissue injury by orchestrating
antioxidant and detoxification responses to oxidative stress. This study investigated whether upregulation of
Nrf2-dependent signaling by oleanolic acid (OA), which is known to activate Nrf2, could attenuate renal inflammation

Methods: Male ICR mice were divided into four treatment groups: Vehicle (VH, n=6), VH + OA (n =6), CsA (n=8), and
CsA+ OA (n=8). For the OA-treated groups, OA (25 mg/kg/day) was administered by intraperitoneal injection for the
final week of the 4-week experimental period. Renal function, morphologies and signaling were evaluated at the end

Results: Treatment with CsA resulted in decreased kidney function and urine osmolality and increased urine volume
and urinary albumin levels. The CsA-induced changes were improved by OA treatment. Specifically, administration of
OA decreased tubulointerstitial fibrosis and inflammation scores that were increased in CsA-treated mice. Furthermore,
OA treatment decreased urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-epi-prostaglandin F2a (8-iso-PGF2a)
levels. The beneficial effects of OA were attributed to an increased ratio of nuclear/total Nrf2 and subsequently
enhanced expression of heme oxygenase (HO)-1, as well as a stable level of Kelch-like ECH-associated protein 1 (Keap1)
expression, indicating that OA enhanced nuclear translocation of Nrf2. Increased apoptotic cell death and a high ratio
of B cell leukaemia/lymphoma 2 (Bcl-2)-associated X protein (Bax) to Bcl-2 in CsA-treated mice were also significantly

Conclusion: Our results suggest that OA activates Nrf2/HO-1 signaling in chronic CsA nephropathy, which may have
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Background

Cyclosporine A (CsA) is one of the most effective and
widely used immunosuppressants in solid organ trans-
plantation and autoimmune disease. Despite the benefi-
cial effects of CsA, its use in the clinic is limited by its
nephrotoxic potential. CsA-induced nephropathy is char-
acterized by progressive renal insufficiency, arteriopathy of
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the afferent arterioles, tubulointerstitial inflammation, and
striped fibrosis [1]. Although the exact mechanism of
CsA-induced nephrotoxicity remains obscure, oxidative
stress and apoptotic cell death can play a pivotal role in
producing structural and functional kidney impairment in
CsA-induced renal injury [2,3]. Therefore, it is necessary
to control inflammation, apoptosis, and fibrosis associated
with oxidative stress in order to delay progression of
chronic CsA nephropathy.

Studies on the renal protective response and pathways
responsible for activation of intracellular specific signal-
ing molecules or genes should aid in our understanding
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of oxidative stress and development of future therapeu-
tics. Recently, nuclear factor E2-related factor 2 (Nrf2) was
found to be a critical transcription factor that binds to anti-
oxidant response elements (AREs) present in the promoter
region of a number of genes encoding antioxidant and
phase 2 enzymes, including glutathione peroxidase, cata-
lase, and superoxide dismutase (SOD) [4,5]. Nrf2 appears
to function upon being released from its repressor Kelch-
like ECH-associated protein 1 (Keapl) by sensing cytoplas-
mic oxidative stress or other specific chemical agents [6,7].
Heme oxygenase (HO)-1, an important Nrf2 target gene,
catalyzes heme metabolism, yielding iron, carbon monoxide
and bilirubin. Likewise, HO-1 is recognized as a protective
gene in the kidney involved in degradation of pro-oxidant
heme, resulting in production of anti-inflammatory, anti-
oxidant, and anti-apoptotic metabolites [8].

The cytoprotective effects of Nrf2 are supported by
previous studies showing that Nrf2 gene ablation inten-
sifies inflammation, oxidative stress and histological
changes [9,10]. Oleanolic acid (OA), a known activator
of Nrf2, is a natural pentacyclic triterpenoid that has he-
patoprotective, anti-inflammatory, antioxidant, and anti-
cancer activities [11]. Recently, OA has been reported to
have renoprotective effects in experimental animals
using toxicants and streptozocin [12,13]. However, there
have been no studies on the renoprotective effects of
OA in a mouse model of chronic CsA nephropathy.
Thus, the aim of this study was to investigate whether
upregulation of Nrf2-depedent antioxidative signaling by
OA could attenuate renal oxidative stress and fibrosis in
CsA-induced nephropathy. In addition, we delayed ad-
ministration of OA to determine whether Nrf2 activated
by OA treatment confers renoprotective effects when
initiated after the onset of CsA-induced damage.

Materials and methods

Experimental design

Five-week-old male ICR mice (DBL, Chungcheongbuk-do,
Republic of Korea), initially weighing 15 to 20 g, were
housed in a temperature- and light-controlled environment
and allowed free access to a low-salt diet (0.01% sodium;
Research Diets, NJ, USA) and tap water. Mice were ran-
domized into four subgroups and treated daily for 28 days:
(1) Vehicle-treated control group (VH, n=6) was given a
daily subcutaneous injection of vehicle (olive oil 1 mL/kg,
Sigma-Aldrich, St. Louis, MO, USA); (2) Vehicle plus OA-
treated group (VH + OA, n =6) was given a daily subcuta-
neous injection of olive oil (1 mL/kg), and in this group,
OA (25 mg/kg; Sigma-Aldrich, St. Louis, MO, USA) was
injected intraperitoneally daily for one week; (3) CsA only-
treated group (CsA, n = 8) was given a daily subcutaneous
injection of CsA (30 mg/kg; Chong Kun Dang, Seoul,
Republic of Korea); and (4), the CsA plus OA-treated group
(CsA + OA, n = 8) was given a daily subcutaneous injection
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of CsA, and OA was given by daily intraperitoneal injec-
tion for the final week of the experimental period. The
doses of CsA [14,15] and OA [16] were selected based on
previous reports. The experimental protocol was approved
by the Institutional Animal Care and Use Committee of
The Catholic University of Korea (CUMC-2012-0093-02).

Measurement of basic parameters

Before sacrifice, animals were housed individually in meta-
bolic cages (Nalge, Rochester, NY, USA) for 24-hr urine col-
lection. Albuminuria and urine creatinine were measured
using ELISA kits (Exocell, Philadelphia, PA, USA). Measure-
ment of serum creatinine concentrations and urine osmo-
lality was performed at Samkwang Medical Laboratories
(Seoul, Korea) using enzymatic colorimetric methods
(Modular DPP system, Roche, Hamburg, Germany). Cre-
atinine clearance was calculated using a standard formula
(urine creatinine (mg/dL) x urine volume (mL/24 h)/serum
creatinine (mg/dL) x 1440 (min/24 h)). Whole-blood CsA
concentrations were quantified using liquid chromatog-
raphy-tandem mass spectrometry with an API3200 LC-MS
System (Applied Biosystems/MDS Sciex, Foster City, CA,
USA) equipped with an electrospray ionization interface to
generate negative ions [M + NH4]".

Histopathology

On the day of sacrifice, kidneys were retrieved, washed
with heparinized saline, fixed in a periodate-lysine-
paraformaldehyde solution, and embedded in wax. After
dewaxing, 4 pm sections were processed and stained
with hematoxylin-eosin (H&E), periodic acid Schiff
(PAS), and Masson’s trichrome. Tubulointerstitial fibro-
sis (TIF) was defined as a matrix-rich expansion of the
interstitium with tubular dilatation, atrophy, cast forma-
tion, and sloughing of tubular epithelial cells or thicken-
ing of the tubular basement membrane. At least 20
fields per section were assessed by counting the percent-
age of injured areas per field of cortex at 200x magnifi-
cation with a color-image analyzer (TDI Scope Eye
Version 3.5 for Windows; Olympus, Japan).

In situ TUNEL assay

Apoptosis was assessed using terminal deoxynucleotidyl
transferase-mediated biotin nick end-labeling (TUNEL)
assay. Detection of apoptotic cells in formalin-fixed,
paraffin-embedded tissue was performed by in situ
TUNEL using the ApopTag In Situ Apoptosis Detection
Kit (Chemicon-Millipore, Billerica, MA, USA) according
to the manufacturer’s protocol. TUNEL positive cells
were evaluated at 400x magnification.

Assessment of markers for renal oxidative stress
Twenty-four-hour urinary concentrations of 8-hydroxy-
2'-deoxyguanosine (8-OHdG; OXIS Health Products,
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Table 1 Biochemical and physical characteristics of the four groups at the end of the 4-week period

VH (n=6) VH+OA (n=6) CsA (n=6) CsA+OA (n=38)

Body weight (g) 3577+525 343+145 3397 +234 3278 £446
Kidney weight (g) 023+004 0.23+0.02 0.18+0.04 0224003
Urine volume (mL) 153+097 253+1.71 7.15+5.15° 14+1.96
Serum Cr (mg/dl) 0.21+0.02 0.26 £0.02 030+0.11 0.25+0.06

Cr Clearance (mL/min/100 g BW) 0.72+0.15 044 +0.09 026 +0.16° 052+0.19

24 hr albuminuria (ug/day) 2390+448 26.75+11.88 15099 + 57.42° 5734+744
Urine osmolality (mOsm/kg) 2088.67 + 96344 81067 +181.88 582.00 + 208.89° 2143.33 £ 547.01
CsA concentration (ng/mL) N/A N/A 179234 £ 63.08 1764.40 £ 28.56

Data are means + SEM. ®p < 0.05 compared with vehicle, ®°p < 0.05 compared with other groups. VH = vehicle-treated group; VH + OA = Vehicle plus oleanolic acid-
treated group; CsA = cyclosporine-treated group; CsA + OA = cyclosporine plus oleanolic acid-treated group; Cr = creatinine; BW = body weight; N/A = not available.

OR, USA) and 8-epi-prostaglandin F2a (8-epi-PGF2a;  bituric Acid Reactive Substance (TBARS) test (OxiSelect
OxisResearch, CA, USA) were measured using a com- MDA Adduct ELISA Kit, Cell Biolabs Inc., CA, USA).
petitive enzyme-linked immunosorbent assay according

to the manufacturer’s protocol. Lipid peroxidation as an  Immunohistochemistry for cleaved caspase-3 and a-SMA
index of oxidative stress was determined by assaying Presence of cleaved caspase-3 and a-smooth muscle
malondialdheyde (MDA) production with the thiobar- actin (a-SMA) was determined by immunohistochemistry.
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Figure 1 Effects of oleanolic acid (OA) on renal morphological changes. (A) Representative renal sections stained with periodic acid-Schiff
(PAS; original magnifications, x400), Masson-trichrome (M-T; original magnifications, x400), and a-smooth muscle actin (a-SMA; original
magnifications, x200). (B) Quantitative analyses of the results for the mesangial fractional area (%). (C) Quantitative analyses of the results for the
tubulointerstitial fibrosis area. *p <0.01 vs. other groups. (D) Quantitative analyses of the results for a-SMA. **p <0.05 vs. other groups.
VH = vehicle-treated group; VH + OA = vehicle plus oleanolic acid-treated group; CsA = cyclosporine-treated group; CsA + OA = cyclosporine plus
oleanolic acid-treated group.




Hong et al. Journal of Translational Medicine 2014, 12:50
http://www.translational-medicine.com/content/12/1/50

Briefly, small blocks of kidney were immediately fixed in
10% buffered formalin for 24 h before being embedded in
paraffin. Next, 4 uM thick sections of renal tissues were
incubated overnight with anti-cleaved caspase-3 (1:100;
Abcam, Cambridge, UK) or anti-a-SMA (1:500; Abcam,
Cambridge, UK) in a humidified chamber at 4°C. The
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primary antibodies were localized with a peroxidase-
conjugated secondary antibody and developed using the
Vector Impress kit (Vector Laboratories, Burlingame, CA,
USA) and 3, 3-diamninobenzidine substrate solution with
nickel chloride enhancement. Sections were then dehy-
drated in ethanol, cleared in xylene, and mounted without

Figure 2 Effects of oleanolic acid (OA) on nuclear/total Nrf2, Keap1, HO-1 and NQO1 expressions in chronic CsA nephropathy. (A)
Representative Western blot showing the effects of OA on nuclear/total Nrf2, Keap1, HO-1 and NQO1 expression in chronic CsA nephropathy.

(B) Quantitative analyses for total Nrf2/B-actin. There were no significant differences identified by quantitative analysis for immunoblotting of total
Nrf2 among the experimental groups. (C) Quantitative analyses for nuclear/total Nrf2. There was increased nuclear/total Nrf2 in the CsA + OA
compared with CsA. *p <0.05 vs. VH and CsA groups. (D) Quantitative analyses for Keap1/B-actin. *p <0.05 vs. other groups. (E) Quantitative
analyses for HO-1/B-actin. Quantification of HO-1 immunoblotting revealed a significant increase in CsA + OA mice compared with other groups.
*p <0.05 vs. other groups. (F) Quantitative analyses for NQO1/B-actin. There were no significant differences in the expression of NQO1 among

=NAD(P)H quinone oxidoreductase-1; VH = vehicle-treated group; VH + OA = vehicle plus oleanolic acid-treated group; CsA = cyclosporine-treated group;
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the experimental groups. Nrf2 = nuclear factor erythroid-2-related factor-2; Keap1 = Kelch-like ECH-associated protein
CsA + OA = cyclosporine plus oleanolic acid-treated group.
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counterstaining. All of these sections were examined in a
blinded manner using light microscopy (Olympus BX-
50, Olympus Optical, Tokyo, Japan). For the quantifica-
tion of the proportional areas of staining, approximately
20 views (400x magnifications) were randomly located
in the renal cortex and the corticomedullary junction of
each slide.

Western blotting

For Western blot analysis, total protein of renal cortical
tissues was extracted with a Pro-Prep Protein Extraction
Solution (Intron Biotechnology, Gyeonggi-do, Korea)
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Figure 3 Effect of oleanolic acid (OA) on expressions of SODs in
chronic CsA nephropathy. (A) Immunoblotting for the target
molecules of SOD1 and SOD2 showing the effects of OA in chronic
CsA nephropathy. (B) Quantitative analyses for SOD1/f3-actin. The
expression of SOD1 was significantly decreased in CsA but increased in
CsA 4+ OA mice. *p <0.05 vs. other groups. (C) Quantitative analyses for
SOD2/B-actin. There were no significant differences in the expression of
SOD2 among the experimental groups. SOD = superoxide dismutase;
VH = vehicle-treated group; VH + OA = vehicle plus oleanolic acid-treated
group; CsA = cyclosporine-treated group; CsA 4+ OA = cyclosporine plus
oleanolic acid-treated group.
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according to the manufacturer’s instructions. Nuclear
extracts, which were used for Nrf2 immunoblotting,
were prepared with the NE-PER nuclear kit as previously
described (Pierce Biotechnology, Rockford, IL) [17].
Western blotting was performed for nuclear Nrf2, total
Nrf2, Keapl, HO-1, NAD(P)H quinone oxidoreductase-1
(NQO1), B cell leukaemia/lymphoma 2 (Bcl-2), Bcl-2-
associated X protein (Bax), SOD1, SOD2, and catalase.
Specifically, proteins were separated by SDS-PAGE, trans-
ferred to nitrocellulose membranes, and detected with the
following antibody concentrations: Nrf2 (1:1000; Santa
Cruz Biotechnology Inc, Texas, USA), Keapl (1:1000;
Santa Cruz Biotechnology Inc, Texas, USA), HO-1 (1:1000;
BD Biosciences, California, USA), NQO1 (1:1000; Santa
Cruz Biotechnology Inc, Texas, USA), Bcl-2 (1:500; Santa
Cruz Biotechnology Inc, Texas, USA), Bax (1:500; Santa
Cruz Biotechnology Inc, Texas, USA), SOD1 (1:5000;
Assay Designs, MI, USA), SOD2 (1:10000; Abcam,
Cambridge, UK), Catalase (1:2000; Abcam, Cambridge,
UK), and B-actin (1:10000; Sigma-Aldrich, MO, USA).

Statistical analysis

Data are expressed as the mean + SEM. Multiple com-
parisons between groups were performed by one-way
analysis of variance with post hoc tests. Statistical signifi-
cance was assumed as p < 0.05.
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Figure 4 Effect of oleanolic acid (OA) on catalase expression in
chronic CsA nephropathy. (A) Immunoblotting for the target
molecule catalase in chronic CsA nephropathy. (B) Quantitative
analyses for catalase/p-actin. There were no significant differences
in the expression of catalase among the experimental groups.

VH = vehicle-treated group; VH + OA = vehicle plus oleanolic
acid-treated group; CsA = cyclosporine-treated group; CsA +

OA = cyclosporine plus oleanolic acid-treated group.
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Figure 5 Assay for concentrations of the lipid peroxidation marker malonedialdehyde (MDA) in renal cortical tissue among the
experimental groups. *p <0.05 vs. other groups. VH = vehicle-treated group; VH + OA = vehicle plus oleanolic acid-treated group; CsA = cyclosporine-
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Results

Renal functional parameters

Table 1 shows the changes in functional parameters
among all groups at the end of the 4-week study period.
Compared with VH and VH + OA, the CsA-treated
groups CsA and CsA + OA had a slightly reduced body
weight, although the difference was not statistically sig-
nificant. Urine volume and 24-hour albuminuria were
significantly increased in the CsA group compared with
the VH and VH + OA groups. OA treatment improved
albuminuria and decreased urine volume to the level of
the control groups VH and VH + OA. There was a sig-
nificant decrease in urine osmolality in CsA mice com-
pared with those in the VH, and a significant increase in
CsA + OA group. We also observed decreased creatinine

clearance in mice given CsA compared to mice in the
VH group. However, administration of OA inhibited the
decline in creatinine clearance in CsA-treated mice.

Effects of oleanolic acid on renal morphological changes
There was no significant difference of fractional mesan-
gial area among all study groups (Figure 1A and 1B).
TIF was produced in the cortex of the kidney of CsA-
treated mice. Quantitative analysis showed that renal
fibrosis was significantly increased in mice given CsA
compared with VH and VH + OA mice. By contrast, OA
treatment significantly decreased TIF in CsA-treated
mice (Figure 1A and 1C). Administration of OA signifi-
cantly inhibited the CsA-induced increase in a-SMA ex-
pression (Figure 1A and 1D).

-
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Figure 6 Assessment of urinary markers for CsA-induced oxidative stress. (A) 24 hr urinary 8-iso-PGF2a concentrations from the experi-
mental groups is shown. *p <0.05 vs. other groups. (B) 24 hr urinary excretion of 8-OHdG from the experimental groups. *p <0.05 vs. other
groups. 8-iso-PGF2a = 8-epi-prostaglandin F2a; 8-OHdG = 8-hydroxy-2'-deoxyguanosine; VH = vehicle-treated group; VH + OA = vehicle plus
oleanolic acid-treated group; CsA = cyclosporine-treated group; CsA 4+ OA = cyclosporine plus oleanolic acid-treated group.
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Effects of oleanolic acid on renal expression of Nrf-2,
Keap1, and the antioxidant defense system

We next evaluated the effect of OA on the Nrf2/Keapl
signaling pathway (Figure 2A). The expressions of total
Nrf2 in the kidney were mildly decreased in VH + OA,
CsA and CsA + OA groups, but there was no significant
difference between those with or without OA treatment
(Figure 2B). On closer inspection, administration with
OA markedly increased the level of nuclear Nrf2 in the
kidneys of mice. Consequently, the intra-renal nuclear
Nrf2/total Nrf2 ratio was significantly increased in the
CsA + OA group compared with the CsA group (Figure 2C).
The expression of the Nrf2 repressor Keapl significantly in-
creased in the VH + OA, CsA and CsA + OA groups com-
pared with VH group (Figure 2D). Next, we measured the
expression of two Nrf2 target proteins, NQO1 and HO-1.
Administration of OA in CsA-treated mice resulted in a
significant increase in HO-1 expression compared with the
VH and CsA groups (Figure 2E). Conversely, there was no
statistically significant difference in NQO1 levels among
any of the groups (Figure 2F).

The protein levels of SOD1 and SOD2 were also evalu-
ated (Figure 3A). SOD1 levels were significantly lower in
the CsA group compared with VH and VH + OA groups.
In CsA-treated mice, administration of OA restored levels
of SOD1 to those found in the VH and VH + OA groups
(Figure 3B). However, the expression of SOD2 was not
different among groups (Figure 3C). Similarly, OA had no
effect on catalase levels (Figure 4).

We also observed increased levels of MDA, a stable
indicator of oxidative stress, in CsA-treated mice; how-
ever, administration of OA reversed the elevation of
MDA (Figure 5). In addition, the levels of 24-hour urin-
ary 8-iso-PGF2a and 8-OHdG were higher in the CsA
compared with control groups, and were attenuated by
treatment with OA (Figure 6).

Effects of oleanolic acid on renal apoptosis

CsA treatment suppressed the expression of anti-
apoptotic marker Bcl-2 and increased the expression
of pro-apoptotic markers Bax and cleaved caspase-3
(Figures 7 and 8). There was a significant increase in the
Bax/Bcl-2 protein ratio for the CsA group compared
with the VH and VH + OA groups. However, the ele-
vated Bax/Bcl-2 ratio was significantly attenuated in the
CsA + OA group (Figure 7). Furthermore, the number of
TUNEL-positive cells and the expression of cleaved
caspase-3 were significantly higher in the CsA group
compared with the VH and VH + OA groups (Figure 8A).
However, administration of OA to CsA-treated mice sig-
nificantly reduced the number of TUNEL-positive cells
by approximately 80% compared with the CsA group
without OA (Figure 8B). In addition, OA attenuated the
activation of cleaved caspase-3 (Figure 8C).
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Figure 7 Effect of oleanolic acid (OA) on Bax and Bcl-2 expres-
sions in chronic CsA nephropathy. (A) Representative Western
blot analysis of Bax and Bcl-2 levels. (B) Quantitative analyses of the
results of the Bax/Bcl-2 ratio. The Bax/Bcl-2 ratio was significantly re-
duced in the CsA + OA group compared with the CsA group. *p
<0.05 vs. other groups. VH = vehicle-treated group; VH + OA = vehicle
plus oleanolic acid-treated group; CsA = cyclosporine-treated group;

CsA

CsA + OA = cyclosporine plus oleanolic acid-treated group.

Discussion
The current study demonstrated that OA treatment ame-
liorated both renal dysfunction and histopathology in
chronic CsA-induced nephropathy. The renoprotective
mechanism of OA towards CsA-induced renal injury ap-
peared to be associated with improvement of interstitial
inflammation, fibrosis, and apoptotic cell death, as well as
attenuation of oxidant stress through association with en-
hanced nuclear translocation of Nrf2 and subsequent acti-
vation of downstream antioxidant enzyme targets.

Numerous studies have demonstrated the relationship
between pathogenesis and progression of renal diseases
and oxidative stress [18-21]. CsA treatment is known to
induce oxidative stress injury by increasing the produc-
tion of reactive oxygen species (ROS) and MDA and de-
creasing the activities of antioxidant enzymes such as
SOD and glutathione peroxidase [22,23]. Considering
the findings that impairment of Nrf2 activity and conse-
quent down-regulation of its antioxidant and detoxifying
target genes products play a major role in the pathogen-
esis and progression of kidney disease [24,25], pharma-
cological activation of Nrf2 may be useful for treating
CsA-induced renal injuries.

OA is widely distributed in the plant kingdom as a
free acid or an aglycone of tripenoid saponins [26]. OA
can be easily obtained in high yield from olive pulp
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Figure 8 Effect of oleanolic acid (OA) on apoptosis in chronic CsA nephropathy. (A) TUNEL assay and immunohistochemical stain of active
caspase-3 in kidney tissues of the experimental groups. (B) Quantitative analysis of TUNEL-positive nuclei in the experimental groups. The number
of TUNEL-positive nuclei was significantly reduced in the CsA + OA group compared with the CsA group. *p <0.01 vs. other groups. (C) Quantita-
tive analysis of the cleaved caspase-3 results. Cleaved caspase-3, a pro-apoptotic marker, was significantly decreased in CsA + OA compared with
CsA. *p <0.01 vs. other groups. TUNEL = terminal deoxynucleotidyl transferase-mediated biotin nick end-labeling; VH = vehicle-treated group; VH
+ OA = Vehicle plus oleanolic acid-treated group; CsA = cyclosporine-treated group; CsA + OA = cyclosporine plus oleanolic acid-treated group.
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remaining after the oil is pressed from the olive fruit, as
well as from olive leaves that are usually discarded after
trees are pruned [27]. Previous studies have shown that
OA has potent antioxidant activity and may protect sev-
eral types of cells and tissues against oxidative stress
[28]. The antioxidant effects of OA appear to be medi-
ated to a great extent through activation of Nrf2 [16,17].
Nrf2 is a basic leucine zipper transcription factor that
regulates many genes encoding detoxifying and antio-
xidant enzymes, including NQO1, GSH S-transferase,
HO-1, glutamate cysteine ligase, peroxiredoxin, and
GSH peroxidase, all of which contribute to cellular pro-
tection by removing ROS including superoxide anions,
hydrogen peroxide, and hydroxyl radicals [29]. The in-
active form of Nrf2 is localized in the cytoplasm bound
to Keapl, a cytoskeleton-associated protein. Nrf2 activa-
tion appears to occur by various mechanisms including
release of Nrf2 from Keapl, downregulation of Keapl
expression, disruption of the Keapl-Cullin-3 complex,
and nuclear translocation of Nrf2 [30]. Upon exposure
to oxidative stress, Nrf2 dissociates from Keapl and
translocates into the nucleus where it dimerizes with
small Maf binding protein [31]. In our study, we found
that administration of OA in CsA-treated mice did not
result in an increase in Keapl expression, but did in-
crease the ratio of nuclear/total Nrf2 in CsA-treated

kidneys. Although Nrf2 activation is an initial cellular
adaptive response that occurs as soon as cells are
challenged by oxidative stress [31], prolonged oxidative
stress and inflammation appears to disturb nuclear
translocation of Nrf2 in chronic CsA nephropathy. Based
on the findings of our study, OA may be considered as a
facilitator of nuclear translocation of cytoplasmic Nrf2
released from Keapl following oxidative stress resulting
from CsA treatment.

After translocating to the nucleus, Nrf2 is involved
with protection of the cell against oxidative stress
through ARE-mediated induction of several phase 2 de-
toxifying and antioxidant enzymes such as HO-1 [32,33].
HO-1 is expressed at low levels within normal kidneys
and is induced in response to tubulointerstitial injury.
In proteinuric human kidney disease, HO-1 protein is
induced in tubular epithelial cells, more prominently
in distal tubules than proximal tubules, but is not
expressed in resident glomerular cells. However, expres-
sion of HO-1 protein in proximal tubules, but not in dis-
tal tubules, correlates with proteinuria, hematuria, and
tubulointerstitial disease [34,35]. A previous study sug-
gested that downregulation of HO-1 by CsA may be an
underlying mechanism of CsA-induced nephrotoxicity
[31]. The propensity for upregulation of HO-1 protein
to occur in renal tubules but not in glomerular cells in
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kidney disease may be related to the differential sensitiv-
ity and response to oxidant stress exhibited by these
cells. Consistent with the results of previous studies, our
results showed that administration of OA in chronic
CsA nephropathy shifted Nrf2 localization from the
cytoplasm to the nucleus in kidneys and subsequently
activated HO-1 expression compared with the CsA only-
treated group. Unlike previous studies [17,28,36], we did
not observe an increase in renal expressions of NQOI,
SOD2 and catalase induced by OA in our model of CsA
nephropathy. It has been reported that the total cellular
balance of pro-oxidants and anti-oxidant intermediates
determines how signaling mechanisms respond to vari-
ous insults [37]. Therefore, the degree of oxidative stress
or the innate antioxidant system’s response to insults
may determine the detailed induction of specific antioxi-
dant genes regulated by Nrf2.

Apoptosis is an essential process in the development
and tissue homeostasis of most multicellular organisms,
and deregulation of apoptosis has been implicated in the
pathogenesis of CsA-induced nephropathy [38,39]. CsA
induces Bax aggregation and translocation to the mito-
chondria causing activation of caspase-9, which in turn
cleaves and activates caspase-3, an effector caspase,
resulting in loss of the mitochondrial transmembrane
potential and apoptotic cell death [38]. In the present
study, OA administration appeared to protect renal
interstitial cells against apoptosis induced by CsA. Not-
ably, the Bax/Bcl-2 ratio, which corresponds with cell
survival in response to apoptotic stimuli, returned to
normal levels compared with the control group after ad-
ministration of OA in CsA-treated mice.

There are some apparent discrepancies in the literature
regarding whether the synthetic pentacyclic oleanane de-
rived from OA has anti-apoptotic or pro-apoptotic effects.
In an experiment using mouse hepatoma and human
hepatopblastoma cells, Nrf2 was shown to control cell
apoptosis via upregulation of Bcl-2 transcription and
downregulation of Bax [40]. On the contrary, synthetic
pentacyclic oleananes have been reported to induce apop-
tosis in vitro in human and rodent cancer cells including
cells derived from myelomas, leukemia, and sarcomas
[27]. These differences can be better understood by con-
sidering the specific triterpenoids and cell types studied
[27]. Depending on the circumstances, Nrf2 activated by
OA appears to be involved in regulating the balance be-
tween anti-apoptotic and pro-apoptotic signaling rather
than centralizing the direction of a sole signaling pathway.

There were several interesting aspects of this study in
addition to those described above. Although administra-
tion of OA in normal control mice increased the nu-
clear/total Nrf2 ratio as well as elevated the level of
Keapl, the levels of antioxidant enzymes were not sig-
nificantly altered. This observation suggested that other
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factors must function in parallel to mediate proper regu-
lation of the downstream targets of Nrf2. In addition,
the optimal dose and treatment period of OA for pre-
venting CsA-induced injury has not yet been deter-
mined. In our preliminary studies, several additional
experiments were performed. First, mice were treated
with CsA in the absence or presence of OA for four
weeks in order to evaluate its potential as an early or
preventative treatment. However, the early treatment
schedule was suspended two weeks after starting admin-
istration of OA because of significant weight loss and
high mortality in mice treated with both CsA and OA.
Furthermore, a high dose of OA (50 mg/kg/day) also re-
sulted in significant weight loss and decreased activity in
mice 4-5 days after starting administration of OA. To-
gether, these findings suggested that mice do not tolerate
high-dose or long-term treatment of OA in a model of
CsA-induced nephropathy.

Conclusions

In conclusion, the results of the present study demon-
strated that delayed administration of OA could provide
renoprotective effects against CsA-induced renal injury.
The antioxidant potential of OA might be directly corre-
lated with the increased expression of nuclear Nrf2 and
subsequently HO-1, which in turn may have surmounted
the oxidative stress generated by CsA. In this way, Nrf2
activated by OA may be an important therapeutic target
for controlling CsA-induced nephrotoxicity.
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