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Association of cancer metabolism-related proteins
with oral carcinogenesis – indications for
chemoprevention and metabolic sensitizing of
oral squamous cell carcinoma?
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Abstract

Background: Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC).

Methods: Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial
enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions
(simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by
immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related
proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of
antibodies was confirmed by western blotting in cancer cell lines.

Results: Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes
(SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of
OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay).

Conclusions: This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1,
HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step
carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation
characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic
shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted
anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act
as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC.

Keywords: Oral squamous cell carcinoma, Tumor metabolism, Glycolysis-related proteins, Mitochondrial
oxidative phosphorylation, Carbohydrate-restricted diets, Targeted anti-mitochondrial therapy
Introduction
Cancer is regarded as an acquired genetic disease. The
genetic model of multistep carcinogenesis describes the
rise of malignant tumors from a single transformed cell
(monoclonal theory of carcinogenesis) and subsequent
development through morphologically and clinically de-
tectable precancerous stages [1]. The carcinogenesis of
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oral squamous cell carcinoma (OSCC) is a highly complex
multifocal process that occurs when squamous epithelium
is affected by several genetic alterations [2]. Understand-
ing the mechanistic basis await the availability of molecu-
lar tools to experimentally and selectively manipulate this
multistep process with subsequent clinical implications
for therapy of precursor lesions and OSCC.
OSCC is an aggressive tumor with low response to

chemotherapy and basic resistance to most standard of
care anticancer drugs [3,4]. Tumor metabolism [5] with
a special focus on increased hypoxia/glycolytic activity is
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regarded as a crucial factor for the carcinogenesis of OSCC
and is associated with radio- and, chemotherapy resistance,
as well as tumor recurrence [6-9].
Cancer can be considered as integrated metabolic eco-

system and includes several pathways of carcinogenesis
associated with metabolic phases of transformation [10].
Glycolysis [11], mitochondrial oxidative phosphorylation
(OXPHOS) [12], and glutaminolysis have been shown to
play key roles in tumor metabolism. Mitochondria have
an important role in carcinogenesis due to their roles in
mediating apoptosis [13]. They act as a major source of
endogenous reactive oxygen species (ROS) that escape
from the electron transport chain (ETC.) during OXPHOS
[14]. Although glycolysis is a major characteristic of tumor
cell metabolism this pathway alone cannot account for
energy usage in all types of cancer cells. Finally, the dom-
inant metabolic process can be either glycolysis or mito-
chondrial oxidative metabolism based on the tumor type
[15]. Both metabolic phenotypes have been associated with
subsequent nutritional consequences [16-19].
The generation of adenosine triphosphate (ATP) in gly-

colysis has a lower efficiency, but a faster rate than OXPHOS
[11,20]. This enhanced rate of ATP generation has been
Figure 1 Immunohistochemical analysis and staining of IGF-R1β in nor
SIN II, SIN III, and invasive OSCC. In comparison to normal tissue/hyperpla
expression of IGF-R1β is observed in OSCC. IGF-R1β expression is significantly
Test). Analysis refers to averaged scores. Red line indicates IGF-R1β expression
Analysis of significant statistically different single values is indicated in the tab
carcinoma in situ (CIS). IGF-1R, insulin-like growth factor-1 receptor; SIN, squam
staining shows representative images of IGF-R1β expression in N.T. (C), SIN (D
indicates positive staining, the blue color shows the nuclear countersta
interest (original magnification: x100-fold, left panel) which is also show
postulated to be beneficial for rapidly proliferating cells.
However, several studies have suggested that OXPHOS is
the major source of cellular ATP in proliferating and non-
proliferating [21] cancer cells [11,21-23].
A recent study by Vander Heiden [24] indicated that the

induction of the Warburg effect in cancer cells is more
the consequence of the activation of protooncogenes
(e.g., Myc), transcription factors (e.g., hypoxia-inducible
factor-1, HIF-1), and signaling pathways (e.g., PI3K), as
well as the inactivation of tumor suppressors (e.g. p53)
rather than the primary generation of much needed en-
ergy [11]. Moreover, it has been stated that tumor cells
profit from the enhanced glycolytic activity in glycolytic
intermediates, which are shunted into subsidiary pathways
(e.g. by the pentose phosphate pathway [PPP]) to fuel
metabolic pathways that generate de novo nucleotides,
lipids, amino acids, and nicotinamide adenine dinucleotide
phosphate (NADPH) [11,25,26]. Frezza et al. [12] showed
that defects in mitochondrial enzymes or complexes
within the electron transport chain are not frequently ob-
served in cancer. Therefore, investigation of OXPHOS
provides a clear rational for future anti-cancer therapy
strategies in OSCC [27].
mal oral mucosal tissue, oral precursor lesions - hyperplasia, SIN I,
sia a significantly (p < 0.05, Kruskal-Wallis Test; A and B) increased
increased in OSCC compared with SIN I-III (p < 0.0001, Mann–Whitney U
results during carcinogenesis. Grey lines show 95% confidence intervals.
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Today, it is estimated that more than 30% of all tumor
entities may be due to dietary factors [17]. Studies have
clearly linked diabetes and obesity to cancer [28]. Hyper-
insulinemia leads to increased production of insulin-like
growth factor-1 (IGF-1) [29], which activates insulin-like
growth factor-1 receptor (IGF-1R). IGF-1R is a receptor
tyrosine kinase (RTK) that stimulates protein synthesis by
activating the mammalian target of rapamycin (mTOR),
and in turn mTOR mediated upregulation of glycolytic
enzymes may promote tumor development [30,31]. There-
fore, the IGF-1R pathway is an emerging therapeutic target
in oncology [32-34] but has not yet been described for the
carcinogenesis of OSCC.
Hexokinase 2 (HK 2) is expressed in insulin-sensitive

tissues such as muscle and adipose [11], is one of the rate-
limiting enzymes of glucose catabolism in tumor cells, is
upregulated in many cancers [35,36], and was recently de-
scribed for OSCC [37]. Phosphofructokinase-1 (PFK-1)
[38] is a key enzyme in glycolysis where it forms a rate-
limiting step, but its expression has not been described for
OSCC. Among glycolytic enzymes PFK-1 has been more
Figure 2 Immunohistochemical analysis and staining of GLUT-1 in no
SIN II, SIN III, and invasive OSCC. In comparison to normal tissue/hyperpla
expression of GLUT-1 is observed in OSCC. GLUT-1 expression is significantl
U Test). Analysis refers to averaged scores. Red line indicates GLUT-1 expres
intervals. Analysis of significant statistically different single values is indicate
(sev. dysplasia) and carcinoma in situ (CIS). GLUT-1, glucose transporter-1; SIN, sq
staining shows representative images of GLUT-1 expression in N.T. (C), SIN (D
indicates positive staining, the blue color shows the nuclear countersta
interest (original magnification: x100-fold, left panel) which is also show
extensively studied than other enzymes, which is likely to
be due to its various regulatory mechanisms.
Recently, we have demonstrated glucose transporter 1

(GLUT-1) (solute carrier family 2 [facilitated glucose
transporter], member 1 [SLC2A1]) [9], transketolase-like-1
(TKTL1) [7], and lactate dehydrogenase A (LDHA/LDH5)
[39] as adverse prognostic factors for the survival of pa-
tients with OSCC. However, the expression of GLUT-1,
HK 2, PFK-1, LDHA, and TKTL1 during a multi-step car-
cinogenesis has not been described yet.
More recently, characterization of OXPHOS in cancer

was performed by describing succinate dehydrogenase
SDHA, SDHB (respiratory complex II in mitochondria),
and ATP synthase (respiratory complex V in mitochon-
dria) [40,41]. None of these enzymes have yet been de-
scribed for OSCC.
The purpose of this study was to examine the relation-

ship between metabolism-related proteins [8] with a mul-
tistep carcinogenesis. This is the first study describing
glycolysis-related PFK-1, OXPHOS-related SDHA, SDHB,
and ATP synthase in OSCC.
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Materials and methods
Patients and tumor specimen
The records of healthy individuals (normal oral mucosal
tissues, n = 5), patients with oral precursor lesions (simple
hyperplasia, n = 11; squamous intraepithelial neoplasia
SIN I, n = 5; SIN II, n = 9; SIN III, severe dysplasia, n = 10;
SIN III, carcinoma in situ, n = 11), and patients with inva-
sive OSCC (n = 42) were retrospectively assessed from
January 2009 to December 2013. The diagnosis of normal
oral mucosal tissues, precursor lesions, and invasive squa-
mous cell carcinoma was confirmed by the department
of Pathology, University Hospital Tuebingen. The ma-
terial was archival formalin-fixed, paraffin-embedded
tissue from routine histopathological work-ups. The ma-
terial has been stored with permission of the local ethics
committee of the University Hospital Tuebingen (ap-
proval number: 562-2013BO2), after informed consent
obtained from the patients prior to surgical resection.
Tumor blocks of paraffin-embedded tissue were se-
lected by experienced pathologists, evaluating the rou-
tine H&E stained sections. Sections from all available
tissues underwent histopathological assessment, blinded
to the prior histopathology report. Serial tissue sections
Figure 3 Immunohistochemical analysis and staining of HK 2 in norm
SIN II, SIN III, and invasive OSCC. In comparison to normal tissue/hyperp
expression of HK 2 is observed in OSCC. HK 2 expression is significantly inc
Test). Analysis refers to averaged scores. Red line indicates HK 2 expression
Analysis of significant statistically different single values is indicated in the tab
carcinoma in situ (CIS). HK 2, hexokinase 2; SIN, squamous intraepithelial neo
representative images of HK 2 expression in N.T. (C), SIN (D), and OSCC
positive staining, the blue color shows the nuclear counterstaining by he
magnification: x100-fold, left panel) which is also shown in larger magnificatio
(2 μm thickness) were cut from formalin-fixed paraffin-
embedded (FFPE) blocks on a microtome and mounted
from warm water onto adhesive microscope slides. First,
we assessed H&E sections (Additional file 1: Figure S1)
from each tissue section to differentiate between nor-
mal tissue, precursor lesions, tumor cell areas, stro-
mal areas, and infiltrating immune cells. Oral precursor
lesions were classified according to WHO criteria [1].
Tumor staging was performed according to the 7th edi-
tion of the TNM staging system by the UICC/AJCC of
2010 [42]. Grading of OSCC was defined according to
WHO criteria [43].

Staining procedure and quantification of
immunohistochemistry
The antibodies used for immunohistochemistry are shown
in Additional file 2: Table S1. We stained for IGF-R1β,
glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA,
TKTL1, mitochondrial enzymes SDHA, SDHB, ATP syn-
thase, and proliferation characteristics Ki-67 in serial
sections (Additional file 2: Table S1). Staining was per-
formed on serial sections of 2 μm thickness as previously
described [39].
al oral mucosal tissue, oral precursor lesions - hyperplasia, SIN I,
lasia a significantly (p < 0.05, Kruskal-Wallis Test; A and B) increased
reased in OSCC compared with SIN I-III (p < 0.0397, Mann–Whitney U
results during carcinogenesis. Grey lines show 95% confidence intervals.
le below (B). SIN III is subdivided in severe dysplasia (sev. dysplasia) and
plasia; N.T., normal tissue. Immunohistochemical staining shows
(E). Brown chromogen color (3,3′-Diaminobenzidine) indicates

matoxylin. The square box demonstrates the area of interest (original
n (x200-fold, right panel).
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Five representative high power fields (1 HPF = 0.237 mm2,
original magnification: x200-fold) were analyzed for IGF-
R1β, GLUT-1, HK 2, PFK-1, LDHA, TKTL1, SDHA,
SDHB, and ATP synthase expression in normal tissue, oral
precursor lesions, tumor tissue and averaged, respect-
ively. The extent of the staining, defined as the per-
centage of positive staining areas of tumor cells in
relation to the whole tissue area, was semi-quantitatively
scored on a scale of 0 to 3 as the following: 0, <10%; 1,
10–30%; 2, 30–60%; 3, >60%. The intensities of the sig-
nals were scored as 1+ (weak), 2+ (intermediate), and
3+ (strong). Then, a combined score (0–9) for each
specimen was calculated by multiplying the values of
these two categories [44]. Cases were classified as
negative, 0 points, positive, 1–9 points. Two observers
blinded to the diagnosis performed scoring on identi-
cal sections marked by circling with a water-resistant
pencil and finally with diamond-tipped pencil on the
opposite side of the microscopic slide. Pictures were
analyzed using a Canon camera (Krefeld, Germany). The
photographed images were imported into the Microsoft
Office Picture Manager.
Figure 4 Immunohistochemical analysis and staining of TKTL1 in norm
SIN II, SIN III, and invasive OSCC. In comparison to normal tissue/hyperp
expression of TKTL1 is observed in OSCC. TKTL1 expression is significantly i
Test). Analysis refers to averaged scores. Red line indicates TKTL1 expression
intervals. Analysis of significant statistically different single values is indicate
dysplasia) and carcinoma in situ (CIS). TKTL1, transketolase-like-1; SIN, squam
staining shows representative images of TKTL1 expression in N.T. (C), SIN (D
indicates positive staining, the blue color shows the nuclear counterstainin
(original magnification: x100-fold, left panel) which is also shown in larger m
In situ detection of apoptosis
Apoptotic cells and bodies were detected by the terminal-
deoxynucleotidyl transferase-mediated deoxyuridinetripho-
sphate nick-end labeling (TUNEL) method (ApopTag® Plus
Peroxidase In Situ Apoptosis Kit, Chemicon, Planegg-
Muenchen, Germany). The TUNEL assay is regarded as
the ‘gold standard’ in apoptosis detection and was per-
formed as described previously [45-47].

Cell culture, western blot and densitometric
quantification
BICR3 and BICR56 OSCC cell lines [9,48] were cultured
in DMEM F-12 medium (Invitrogen, Belgium) containing
10% fetal calf serum (Sigma-Aldrich, Germany), 1% fungi-
cide, and penicillin/streptomycin (Biochrom, Germany) at
37°C and 5% CO2.
IGF-R1β, HK 2, PFK-1, LDHA, SDHA, and SDHB

antibody specificity was confirmed by western blot ana-
lysis in BICR3, BICR56 cell lines. Specificity of GLUT-1
pAb (clone A 3536) [9], TKTL1 mAb (clone JFC12T10)
[49] and Ki-67 mAb (clone MIB-1) [50] have been previ-
ously demonstrated. Protein extraction from OSCC cell
al oral mucosal tissue, oral precursor lesions - hyperplasia, SIN I,
lasia a significantly (p < 0.05, Kruskal-Wallis Test; A and B) increased
ncreased in OSCC compared with SIN I-III (p < 0.0001, Mann–Whitney U
results during carcinogenesis. Grey lines show 95% confidence

d in the table below (B). SIN III is subdivided in severe dysplasia (sev.
ous intraepithelial neoplasia; N.T., normal tissue. Immunohistochemical
), and OSCC (E). Brown chromogen color (3,3′-Diaminobenzidine)
g by hematoxylin. The square box demonstrates the area of interest
agnification (x200-fold, right panel).
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lines BICR3 and BICR56 was performed as described pre-
viously [51]. Normal human oral mucosal tissue protein
was purchased from BioChain (Hayward, CA, USA) as con-
trol. The membranes were analyzed by immunoblotting
using IGF-R1β, HK 2, PFK-1, LDHA, SDHA, SDHB, and
ATP synthase antibodies (Additional file 2: Table S1), or
IgG control antibodies (BD Pharmingen, Heidelberg),
and monoclonal mouse anti-human GAPDH (Abcam,
Cambridge, UK, dilution: 1:5000) specific primary antibody
overnight at 4°C. Binding of the primary antibodies was de-
tected with HRP-conjugated goat anti-mouse or goat anti-
rabbit secondary antibody (Santa Cruz Biotechnology, CA,
USA) and visualized by the enhanced chemiluminescence
method (GE Healthcare, Freiburg, Germany).
Quantification of western blot bands was carried out by

using an automated densitometric quantification digitiz-
ing system (UN-SCAN-IT Gel software, version 6.1, Silk
Scientific, Inc., Utah, USA) [39].

Real-time polymerase chain reaction (qPCR) analysis
To analyze gene expression of IGF-R1, GLUT-1, HK 2,
PFK-1, TKTL1, SDHA, SDHB, and ATP synthase by RT-
PCR, we extracted total cellular RNA and performed cDNA
Figure 5 Immunohistochemical analysis and staining of LDHA in norm
SIN II, SIN III, and invasive OSCC. In comparison to normal tissue/hyperp
expression of LDHA is observed in OSCC. No difference of LDHA expression in
U Test). Analysis refers to averaged scores. Red line indicates LDHA expression
Analysis of significant statistically different single values is indicated in the table
carcinoma in situ (CIS). LDHA, lactate dehydrogenase; SIN, squamous intraepith
representative images of LDHA expression in N.T. (C), SIN (D), and OSCC (E). Br
the blue color shows the nuclear counterstaining by hematoxylin. The square
panel) which is also shown in larger magnification (x200-fold, right panel).
synthesis from OSCC cell lines (BICR3, BICR56) as previ-
ously described [52]. Gene expression of LDHA in OSCC
cell lines has been shown previously [39]. The amount of
total RNA was determined by measuring absorbance at
260 nm. The purity of the total RNA was established by
confirming that the 260 nm: 280 nm ratio was within a 1.8-
2.0 range, indicating that the RNA preparations were free
of contaminants. Normal human oral keratinocyte cDNA
(HOK cDNA) was purchased by ScienCell (Carlsbad, CA,
USA) as control. The reference genes GAPDH and beta-
actin were used for relative quantification and cDNA qual-
ity (integrity) control. To quantitate mRNA expression,
qPCR with the LightCycler System (Roche Applied Science,
Mannheim, Germany) was established as described before
[53]. Commercial primer kits were purchased from Search
LC (Heidelberg, Germany). Melt-curve analysis was be used
to identify specific reaction products. The relative quantifi-
cation value, fold difference, is expressed as 2−ΔΔCt as de-
scribed previously [54].

Statistical analysis
Statistical analysis was performed with MedCalc Software,
Version 13.1.1 (Mariakerke, Belgium). Data were analyzed
al oral mucosal tissue, oral precursor lesions - hyperplasia, SIN I,
lasia a significantly (p < 0.05, Kruskal-Wallis Test; A and B) increased
OSCC is observed in comparison with SIN I-III (p = 0.0822, Mann–Whitney
results during carcinogenesis. Grey lines show 95% confidence intervals.
below (B). SIN III is subdivided in severe dysplasia (sev. dysplasia) and
elial neoplasia; N.T., normal tissue. Immunohistochemical staining shows
own chromogen color (3,3′-Diaminobenzidine) indicates positive staining,
box demonstrates the area of interest (original magnification: x100-fold, left
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using the non-parametric Mann–Whitney U Test or
Kruskal-Wallis test when more than 2 groups were com-
pared. Correlation analysis of TUNEL assay or Ki-67 with
metabolism-related proteins was performed by the non-
parametric Spearman Rho rank correlation coefficient. All
p-values presented were 2-sided and p < 0.05 was consid-
ered statistically significant.

Results
Expression of IGF-R1β, glycolysis-related proteins GLUT-1,
HK 2, PFK-1, LDHA, TKTL1, mitochondrial enzymes SDHA,
SDHB, and ATP synthase in normal mucosa, oral precursor
lesions and OSCC
Invasive OSCC of immunohistochemical stained serial
sections was confirmed by H&E staining (Additional file 1:
Figure S1). In comparison to normal tissue and hyper-
plasia a significantly (p < 0.05) increased expression of
IGF-R1β (Figure 1), GLUT-1 (Figure 2), HK 2 (Figure 3),
TKTL1 (Figure 4), LDHA (Figure 5), SDHA (Figure 6),
SDHB (Figure 7), and ATP synthase (Figure 8) was ob-
served in cancer cells of OSCC. Compared with SIN I-III
PFK-1 expression (Figure 9) was significantly decreased
in OSCC.
Figure 6 Immunohistochemical analysis and staining of SDHA in norm
SIN II, SIN III, and invasive OSCC. In comparison to normal tissue/hyperp
expression of SDHA is observed in OSCC. SDHA expression is significantly i
U Test). Analysis refers to averaged scores. Red line indicates SDHA express
intervals. Analysis of significant statistically different single values is indicate
dysplasia) and carcinoma in situ (CIS). SDHA, succinate dehydrogenase A; SIN, sq
staining shows representative images of SDHA expression in N.T. (C), SIN (D)
indicates positive staining, the blue color shows the nuclear counterstaini
(original magnification: x100-fold, left panel) which is also shown in larger ma
Correlation of proliferation activity (Ki-67) with metabolic
markers (GLUT-1, HK 2, PFK-1, LDHA, TKTL1, SDHA, SDHB,
and ATP synthase) in OSCC serial sections
For investigation of proliferating cancer cells and its rela-
tion to metabolic characteristics, we performed correlation
analysis of Ki-67 with GLUT-1, HK 2, LDHA, TKTL1,
SDHA, SDHB, and ATP synthase in OSCC. Evaluation
of immunohistochemically stained FFPE slides were
measured by observer related semi-quantitative scoring
and showed a strong positive correlation of Ki-67+ ex-
pression with metabolic active cancer cells as observed
in OSCC serial sections. Significant correlation of prolif-
erating cancer cells was observed with GLUT-1, TKTL1
mitochondrial markers SDHA, SDHB, and ATP synthase:
GLUT-1 (rho = 0.370, 95% CI = 0.0750 to 0.606, p = 0.0157),
TKTL1 (rho = 0.460, 95% CI = 0.165 to 0.704, p =
0.0056), SDHA (rho = 0.485, 95% CI = 0.213 to 0.688,
p = 0.0011), SDHB (rho = 0.657, 95% CI = 0.441 to 0.801,
p < 0.001), and ATP synthase (rho = 0.413, 95% CI = 0.125
to 0.637, p = 0.0065). No significant correlation of pro-
liferation activity was found with HK 2 (rho = 0.152,
95% CI = −0.159 to 0.436, p = 0.3365) and LDHA (rho =
0.153, 95% CI = −0.158 to 0.437, p = 0.3336). Moreover,
al oral mucosal tissue, oral precursor lesions - hyperplasia, SIN I,
lasia a significantly (p < 0.05, Kruskal-Wallis Test; A and B) increased
ncreased in OSCC compared with SIN I-III (p = 0.0103, Mann–Whitney
ion results during carcinogenesis. Grey lines show 95% confidence
d in the table below (B). SDHA is subdivided in severe dysplasia (sev.
uamous intraepithelial neoplasia; N.T., normal tissue. Immunohistochemical
, and OSCC (E). Brown chromogen color (3,3′-Diaminobenzidine)
ng by hematoxylin. The square box demonstrates the area of interest
gnification (x200-fold, right panel).



Figure 7 Immunohistochemical analysis and staining of SDHB in normal oral mucosal tissue, oral precursor lesions - hyperplasia, SIN I,
SIN II, SIN III, and invasive OSCC. In comparison to normal tissue/hyperplasia a significantly (p < 0.05, Kruskal-Wallis Test; A and B) increased
expression of SDHB is observed in OSCC. SDHB expression is significantly increased in OSCC compared with SIN I-III (p = 0.0001, Mann–Whitney
U Test). Analysis refers to averaged scores. Red line indicates SDHB expression results during carcinogenesis. Grey lines show 95% confidence
intervals. Analysis of significant statistically different single values is indicated in the table below (B). SDHA is subdivided in severe dysplasia
(sev. dysplasia) and carcinoma in situ (CIS). SDHB, succinate dehydrogenase B; SIN, squamous intraepithelial neoplasia; N.T., normal tissue.
Immunohistochemical staining shows representative images of SDHB expression in N.T. (C), SIN (D), and OSCC (E). Brown chromogen color
(3,3′-Diaminobenzidine) indicates positive staining, the blue color shows the nuclear counterstaining by hematoxylin. The square box
demonstrates the area of interest (original magnification: x100-fold, left panel) which is also shown in larger magnification (x200-fold,
right panel).
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a significant correlation of GLUT-1 with TKTL1 in OSCC
was analyzed (rho = 0.419, 95% CI 0.131 to 0.641, p =
0.0058) as previously indicated by our work. There
was a significant inverse correlation of PFK-1 with
TKTL1 detected (rho = −0.475, 95% CI −0.619 to −0.301,
p < 0.0001).
Correlation of apoptotic activity (TUNEL assay) with
metabolic markers (GLUT-1, HK 2, PFK-1, LDHA, TKTL1,
SDHA, SDHB, and ATP synthase) in OSCC serial
sections
For the investigation of apoptotic properties in cancer
cells caused by OXPHOS (due to putative increased
free radical production) we performed TUNEL assays
in OSCC. Although tumor cells show increased OXPHOS-
related enzymes (SDHA, SDHB, ATP-synthase, Figures 6,
7 and 8) no apoptotic activity (AI < 10%) in cancer cells
was observed in those highly metabolic active regions
(Figure 10). In contrast, tumor-infiltrating leucocytes
adjacent to the tumor demonstrated increased apop-
totic activity (Figure 10).
IGF-R1β, HK 2, PFK-1, LDHA, SDHA, SDHB, ATP synthase
antibody specifity is confirmed by western blot analysis
Western Blot analysis of HK 2, IGF-R1β, PFK-1, SDHA, ATP
synthase, LDHA, and SDHB in BICR3 and BICR56 OSCC
cell lines confirmed immunohistochemical staining specifity
of antibodies used in immunohistochemistry (Figure 11).
Analysis of IGF-R1, GLUT-1, HK 2, PFK-1, TKTL1, SDHA,
SDHB, and ATP synthase gene expression
IGF-R1, GLUT-1, HK 2, PFK-1, TKTL1, SDHA, SDHB,
and ATP synthase gene expression in OSCC cell lines
was increased in comparison to normal human oral ker-
atinocytes (Table 1).
Discussion
In our study, we investigated cancer metabolism-related
proteins in the carcinogenesis of OSCC. For the first time,
we found increased expression of mitochondrial enzymes
(SDHA, SDHB, ATP synthase) in OSCC compared with
normal oral mucosa. However, very few data is available
describing a mitochondrial oxidative metabolism [27] in



Figure 8 Immunohistochemical analysis and staining of ATP synthase in normal oral mucosal tissue, oral precursor lesions - hyperplasia,
SIN I, SIN II, SIN III, and invasive OSCC. In comparison to normal tissue/hyperplasia a significantly (p < 0.05, Kruskal-Wallis Test; A and B) increased
expression of ATP synthase is observed in OSCC. ATP synthase expression is significantly increased in OSCC compared with SIN I-III (p < 0.0001,
Mann–Whitney U Test). Analysis refers to averaged scores. Red line indicates ATP synthase expression results during carcinogenesis. Grey lines
show 95% confidence intervals. Analysis of significant statistically different single values is indicated in the table below (B). ATP synthase is
subdivided in severe dysplasia (sev. dysplasia) and carcinoma in situ (CIS). SIN, squamous intraepithelial neoplasia; N.T., normal tissue.
Immunohistochemical staining shows representative images of ATP synthase expression in N.T. (C), SIN (D), and OSCC (E). Brown chromogen color
(3,3′-Diaminobenzidine) indicates positive staining, the blue color shows the nuclear counterstaining by hematoxylin. The square box demonstrates
the area of interest (original magnification: x100-fold, left panel) which is also shown in larger magnification (x200-fold, right panel).
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OSCC. Authors assume that OXPHOS is an important
pathway for the generation of ATP [11,22,23] and ROS
[18,55-58] during the carcinogenesis of OSCC. The TUNEL
assay demonstrated that tumor cells do not undergo apop-
tosis and therefore, increased ROS generation by OXPHOS
does not reach toxic levels. Based on our results and as
currently stated by Whitaker-Menezes et al. [57] in the
context of breast cancer we assume that mitochondria are
the ‘Achilles heel’ and ‘powerhouse’ in the carcinogenesis
of OSCC [23,56-59]. Increased levels of ROS in tumor
cells are generated by altered metabolic activity, onco-
gene activation, and deregulated proliferation [60]. Onco-
genic transformation promotes the production of excessive
ROS, which would become toxic if not counteracted, while
low levels of ROS can help to promote cell prolifera-
tion. This is the reason why many cancer cells may
show an increased expression of antioxidant proteins [26]
such as LDHA [39] and TKTL1 [7] as indicated by our
observation, which contribute to the survival and success
of the tumor. Indeed, this dependence on antioxidants
can make cancer cells more vulnerable to the inhibition
of these detoxifying systems than normal cells, which do
not harbor such a high burden of oxidative stress [61-63].
On the other hand, an increase in ATP production by
OXPHOS has been shown in response to hypoxic stress
and protects cells from a critical energy crisis [64]. How-
ever, we do not know which metabolic pathway (glycolysis
vs. OXPHOS) has been upregulated in carcinogenesis of
OSCC as first.
In the literature, bioactive food components [5,17,65,66]

have been demonstrated to mediate the reversal of a
glycolytic phenotype in cancer cells, thus leading to
growth inhibition and induction of apoptosis (Table 2).
The reprogramming of energy metabolism [67-70] has
been suggested for targeting of mitochondria [18,19,
21,23,55,58,61-63,71-74] and subsequent induction of
apoptosis [71] as a valid anti-cancer strategy [18] for which
bioactive food components [19] have been suggested. Rap-
idly proliferating cells are more sensitive to radio-, and
chemotherapy, which have been shown to be less effective
in non-dividing cancer cells [75]. Activation of mitochon-
drial OXPHOS [58,61] and other mechanisms in cancer
cells by natural compounds may induce apoptosis even in
therapy resistant cancer cells [55]. Because OXPHOS is the
predominant supplier of ATP in (proliferating and) non-
proliferating cancer cells [21] targeted anti-mitochondrial



Figure 9 Immunohistochemical analysis and staining of PFK-1 in normal oral mucosal tissue, oral precursor lesions - hyperplasia, SIN I,
SIN II, SIN III, and invasive OSCC. In comparison with normal tissue a significantly increased expression of PFK-1 expression is observed in SIN I
and SIN II lesions (p < 0.05, Kruskal-Wallis Test; A and B). In comparison with SIN I, SIN II, and SIN III (sev. dysplasia) a significantly decreased expression
of PFK-1 expression is observed in OSCC. PFK-1 expression is significantly decreased in OSCC compared with SIN I-III (p < 0.0001, Mann–Whitney U Test).
Analysis refers to averaged scores. Red line indicates PFK-1 expression results during carcinogenesis. Grey lines show 95% confidence intervals. Analysis
of significant statistically different single values is indicated in the table below (B). SIN III is subdivided in severe dysplasia and carcinoma in situ (CIS).
PFK-1, phosphofructokinase-1; SIN, squamous intraepithelial neoplasia; N.T., normal tissue. Immunohistochemical staining shows representative images
of PFK-1 expression in N.T. (C), SIN (D), and OSCC (E). Brown chromogen color (3,3′-Diaminobenzidine) indicates positive staining, the blue color shows
the nuclear counterstaining by hematoxylin. The square box demonstrates the area of interest (original magnification: x100-fold, left panel) which is
also shown in larger magnification (x200-fold, right panel).
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therapies could be of interest for apoptosis induction in
quiescent (non-proliferating) but metabolically active can-
cer cells, which rely on mitochondrial lipid β-oxidation
[76]. Therefore, bioactive food components inducing apop-
tosis by ROS generation (Table 2) and other mechanisms
play an emerging role in cancer therapy. According to other
tumor entities several other natural compounds have been
shown to activate ROS [58,61] in OSCC [77-81] and subse-
quent apoptosis in cancer cells and may therefore provide
a clear rational to study them in further pre-clinical and
clinical trials (Table 2). Moreover, phytochemicals [82]
and vitamins have different hypoxia-inducible factor-1
(HIF-1) binding capacities (inhibitory activity: lycopene >
curcumin > tocopherol > ascorbic acid) suggestive for their
impact on the decrease in tumor hypoxia and antioxida-
tive properties in normal tissue [83].
Lactate, pyruvate, gluthathione, and NADPH generated

in glycolysis and/or the PPP effectively scavenge free radi-
cals and ROS, thereby protecting the tumor cell from free
radical-mediated DNA damage [26] (e.g. radiation ther-
apy) or other ROS-inducing therapies by natural com-
pounds leading to apoptosis. Most likely, modulation of
one pathway will be not effective in most cases [17].
Therefore, synchronous [59] targeting of glycolysis
(e.g. carbohydrate-restricted diets [16,204-217] or natural
compounds, Table 2) with anti-mitochondrial therapies
[18,19,21,23,55,58,61-63,71-74] increasing ROS (Table 2)
may act as sensitizer for adjuvant therapies in OSCC or
could be useful for chemoprevention. Based on the litera-
ture a synergistic effect of a carbohydrate-restricted diet
with an anti-mitochondrial therapy can be concluded,
since carbohydrate-restricted diets may induce enhanced
OXPHOS and lead to inhibition of mTOR [218], which is
responsible for synthesis of glycolytic enzymes [30,31].
Specifically observed in patients with head and neck can-
cer a ketogenic diet decreased the in vivo production of
lactate in tumor cells [213].
However, it must be stated that natural compounds

like phytochemicals [65,219-225] and vitamins may also
prevent ROS-mediated carcinogenicity in cancer chemo-
prevention. During carcinogenesis ROS may act as a
double-edged sword [226]. ROS are important interme-
diates of cellular signaling that suppress and promote
tumorigenesis at once. They make both mitochondrial



Figure 10 In situ detection of DNA fragmentation by
TUNEL-staining in OSCC. In metabolic highly active regions as
demonstrated by markers IGF-R1β, HK 2, TKTL1, PFK-1, LDHA,
SDHA, SDHB, and ATP synthase cancer cells do not undergo
apoptosis (serial section, asterisk, A). In contrast, tumor-infiltrating
leucocytes adjacent to the tumor demonstrate increased apoptotic
activity (arrow, B). Brown chromogen color (3,3′-Diaminobenzidine)
indicates positive staining, the blue color shows the nuclear
counterstaining by hematoxylin. Original magnification: x200-fold.
TUNEL, terminaldeoxynucleotidyl transferase-mediated
deoxyuridinetriphosphate nick-end labeling.
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DNA and nuclear DNA susceptible to damage, and muta-
tions in these two DNA pools are reported to lead to car-
cinogenesis [227]. However, targeted anti-mitochondrial
therapies inducing apoptosis probably require functional
active mitochondria without mutations that may respond
to radiotherapy/chemo-radiotherapy in OSCC [228].
With specific regard to SDHA and SDHB, vitamin E

(α-tocopheryl succinat, target: respiratory complex II in
mitochondria) [229] and resveratrol (target: respiratory
complex V in mitochondria, ATP synthase) [230] were
shown to induce apoptosis in cancer cells. Metformin has
been demonstrated to block respiratory complex I in mito-
chondria [231] as an effective anti-cancer agent [232] and
prevented the development of OSCC from carcinogen-
induced premalignant lesions [233]. More recently, a syn-
thetic modified thiamine analog oxybenfotiamine [195]
specifically inhibits TKTL1 in the PPP [87], of which ele-
vated levels have been detected in the carcinogenesis of
OSCC [7]. Targeting the PPP [87] as a detoxifying system
[26] may revise tumor hypoxia and resistance to radio-
and chemotherapy [7,9]. Therefore, small molecules like
oxybenfotiamine [195] provide new opportunities for tar-
geted therapies in cancer and specifically OSCC. Neverthe-
less, the cytoprotective function of the PPP is not limited
to defending against ROS but also expands to helping
DNA damage repair [70].
However, it remains unclear whether phytochemicals are

standardized effective for chemoprevention [2,17,65,66,84,
88,115,120,219,221,223,234,235] in the treatment of pre-
cursor lesions or OSCC development as suggested for
multistep carcinogenesis [2] but they provide a clear ra-
tional for further in-vitro, in-vivo, and clinical studies in
the carcinogenesis of OSCC (Table 2) [2,84,88,115,120,
219,234-236]. Polyphenols like flavonoids and antho-
cyanidins have been well investigated in pre-clinical
and clinical trials for the treatment of oral precursor
lesions and OSCC [84,115,234]. For example, in 1999
Li et al. have already been reported of the chemopre-
ventive impact of green tea on oral leukoplakia with
increased rate of partial regression (systemically, oral cap-
sules with 1.2 g polyphenols, and topical tea extract in gly-
cerine over a period of 6 months) [236].
Proliferating cells have intrinsic increased metabolic ac-

tivities compared to non-proliferating cells [21,69]. This is
supported by our data showing a significantly correlation
of proliferating cancer cells with both glycolysis-related
proteins (GLUT-1, TKTL1), and OXPHOS-related en-
zymes (SDHA, SDHB, ATP synthase). In this context
glycolysis-related proteins may act as detoxifying sys-
tem [26] (LDHA, TKTL1) of increased ATP producing
(and ROS generating) OXPHOS-related proliferating can-
cer cells. These findings can be clinically addressed by
differentiating cancer patients into metabolic responders
and non-responders for malignancies such as SCC of
the esophagus or head and neck squamous cell car-
cinoma [237-239].
As for OSCC, there are several reports for glycolysis

[9] as the predominant energy metabolism pathway. Gly-
colysis is involved in aggressive tumor behavior because
it causes radio-, and chemotherapy resistance, creates a
tumor microenvironment favorable for tumor cell mi-
gration, induces angiogenesis, and contributes to the



Figure 11 Western blot analysis in normal tissue, BICR3 and BICR56 OSCC cell lines. Western Blot of HK 2, IGF-R1β, PFK-1, SDHA, ATP
synthase, LDHA, and SDHB in BICR3 and BICR56 OSCC cell lines confirm immunohistochemical staining specifity of antibodies (left panel, A).
Western blot analysis shows increased HK 2 (~102 kDa), IGF-R1β (~97 kDa), PFK-1 (~85 kDa), SDHA (~70 kDa), ATP synthase (~53 kDa),
LDHA (~37 kDa), and SDHB (~32 kDa) expression compared to normal tissue. GAPDH (loading control) is shown as a band of approximately
35 kDa. Densitometric quantification (B) of western blot protein bands (pixel total) is given in the right panel (B). IGF-1R, insulin-like growth factor-1
receptor; HK 2, hexokinase 2; PFK-1, phosphofructokinase-1; LDHA, lactate dehydrogenase A; SDH, succinate dehydrogenase; GAPDH, glycerinaldehyd-
3-phosphat-dehydrogenase; N.T., normal tissue.
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immunologic escape of tumors [26]. However, a previ-
ous study by Yi et al. demonstrated that inhibition of the
glycolysis-related PFK-1 activity redirects the glucose flux
through the PPP [240], thereby conferring a selective
growth advantage on cancer cells. Our results are well in
line with this hypothesis showing increased TKTL1 ex-
pression and decreased PFK-1 expression in OSCC (sig-
nificant inverse correlation). Zhang et al. [8] presented a
similar mechanism describing a metabolic shift from
glycolysis into the PPP [67] in OSCC. The authors con-
clude that the highly robust nature of OSCC metabolism
implies that a systematic medical approach targeting
multiple metabolic pathways is needed to improve cancer
treatment. Downregulation of PFK-1 as observed in our
study can be explained by an increase of natural inhibi-
tors such as ATP, which is generated by OXPHOS,
and citrate (from the citric acid cycle) that inhibits PFK-1
expression [241]. Therefore, we assume a metabolic shift
Table 1 Increased gene expression analysis (qPCR) of cancer
with normal human oral keratinocytes (x-fold difference)

IGF-1R GLUT-1 HK 2 PFK-1

BICR3 12.6-fold 22.4-fold 13.6-fold 2.8-fold

BICR56 18.2-fold 25.3-fold 11.9-fold 8.4-fold
[8,67,240,241] of glucose from glycolysis towards the PPP
mediated by the increased presence of PFK-1 inhibi-
tors like ATP/citrate generated in OXPHOS (indicated
by SDHA, SDHB, ATP synthase expression) during the
carcinogenesis of OSCC.
If not provided by glycolysis, metabolites (pyruvate) for

lactate production are available from amino acids [242].
Amino acid catabolism from the citric acid cycle (e.g. glu-
taminolysis) supports pyruvate anabolism leading to lac-
tate and NADPH production [69,242]. NADPH, pyruvate,
and lactate itself have been proven to scavenge free
radicals, thus protecting cancer cells from apoptosis [26].
However, this hypothesis of lactate anabolism through
amino acids catabolism requires further studies in OSCC.
Glutamine metabolism is also a cancer cell metabolic
pathway important for both ATP production and pro-
viding intermediates for macromolecular synthesis. How-
ever, Glucose, not glutamine, was described as the dominant
metabolism-related proteins in OSCC cell lines compared

TKTL1 SDHA SDHB ATP synthase

3.3-fold 14.7-fold 7.7-fold 10.3-fold

4.9-fold 16.0-fold 6.6-fold 14.1-fold



Table 2 Bioactive food components (natural or synthetic compounds/vitamin derivatives) targeting mitochondria (ROS generation) and/or glycolysis that may
act as sensitizer for chemoprevention and (neo-)adjuvant therapies in cancer treatment

Tumor entity In-vitro/in-vivo mechanism on tumor cells
(OSCC/HNSCC/other tumor entities)

Pre-clinical (in-vitro/in-vivo)
chemoprevention in cancer

development

Clinical data

Compounds (polyphenols*, isothiocyanates,
terpen/carotinoid** vitamins, derivates,

fatty acids)

OSCC [66,84]/HNSCC other Apoptosis↑ (ROS↑
[18,23], Caspasen↑)

Glykolysis↓ [17] (mTOR↓
[31,85,86], HIF-1↓ [83],

enzymes↓)

PPP↓ [87]
(e.g. TKTL1↓)

Successful [88],*** approach
in prospective clinical trials

natural synthetic OSCC [66,84]/
HNSCC

other OSCC [66,84]/
HNSCC

Other

Curcumin* (turmeric)
[83,85,88-102]

X - Yes [92-95,101] Yes Yes [96] (ROS↑)
[93]

Yes (mTOR↓ [85,94,102];
HIF-1↓ [83,100])

n.d. Yes [92-94,101] Yes Yes (phase I)
[95,97]

Yes
(phase II)

Resveratrol* (grapes)
[85,103-114]

X - Yes [104] Yes Yes, (ROS↑ [107]) Yes [109] (mTOR↓
[85,103,110,111];
HIF-1↓ [109])

n.d. Yes [107,112] Yes n.d. Yes

EGCG* (green tea)
[66,84,85,88,104,115-119]

X - Yes [66,104,117] Yes Yes, (ROS↑ [117]) Yes (mTOR↓ [85];
HIF-1↓ [118,119])

n.d. Yes [66,104,116] Yes Yes (phase II)
[66,84,115]

Yes
(phase II)

Ellagic acid*, (Pro-)
Anthocyanins* (berrys)
[66,84,120-127]

X - Yes [66,84] Yes Yes, (ROS↑
[122-124])

Yes (mTOR↓ [124,125];
HIF-1↓ [126])

n.d. Yes
[66,84,120,121,127]

Yes Yes (phase II)
[66,84]

Yes

Genistein* (soyabeans)
[85,88,128-133]

X - Yes [128,129] Yes Yes, (ROS↑ [130]) Yes (mTOR↓ [85,131];
HIF-1↓ [132,133])

n.d. Yes [128,129] Yes n.d. Yes
(phase II)

Apigenin* (parsley)
[134-141]

X - Yes [134-137] Yes Yes, (ROS↑
[135])

Yes (mTOR↓ [138];
HIF-1↓ [139,140])

n.d. Yes [134-136] Yes n.d. Yes

No [137]

Quercetin* (fruits/
vegetables) [141-150]

X - Yes
[142-144,149,150]

Yes Yes, (ROS↑
[144,145])

Yes (mTOR↓ [146,147];
HIF-1↓ [147,148])

n.d. Yes [142-144,149] Yes Yes [150] Yes

ITC, glucosinolates
(cruciferous vegetables)
[85,151-157]

X - Yes [152-154,157] Yes Yes, (ROS↑ [155]) Yes (mTOR↓ [85,151];
HIF-1↓ [157])

n.d. Yes [152-154,157] Yes n.d. Yes
(phase I)

Lycopene** (tomato)
[83,158-169]

X Yes [158,163,164] Yes Yes (ROS↑↓)
[160-162]

Yes (mTOR↓ [167-169];
HIF-1↓ [83])

n.d. Yes [158,163,164] Yes
[163]

n.d. [163] Yes
(phase II)

Vit. A** (retinoids)
[101,170-175]

X - Yes
[101,170,171,174,175]

Yes Yes, (ROS↑ [172]) Yes (mTOR↓ [173];
HIF-1 n.d.)

n.d. Yes [101] Yes Yes [174,175]; No
(phase III) [170,171]

Yes

Vit. D [176-181] X X [179] Yes [177,178] Yes Yes, (ROS↑ [181]) Yes (mTOR↓ [179];
HIF-1↓ [180])

n.d. Yes [177,178] Yes n.d. Yes

Vit. E (γ-T3)
[83,176,182-185]

X - n.d. Yes Yes, (ROS↑ [183]) Yes (mTOR↓ [184];
HIF-1↓ [182,185])

n.d. n.d. Yes n.d. n.d.

Vit. C + K [83,186-194] X X Yes [186] Yes Yes (ROS↑ [191]) Yes (mTOR↓ [192];
HIF-1↓ [83,187,193])

n.d. Yes [186] Yes n.d. Yes
(Phase I/II)

Oxybenfotiamine [195] - X n.d. Yes Yes n.d. Yes n.d. n.d. n.d. n.d.
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Table 2 Bioactive food components (natural or synthetic compounds/vitamin derivatives) targeting mitochondria (ROS generation) and/or glycolysis that may
act as sensitizer for chemoprevention and (neo-)adjuvant therapies in cancer treatment (Continued)

Benzoquinone (wheat
germ extract) [196-198]

X - Yes [197] Yes Yes (Caspasen↑
[197], ROS n.d.)

Yes [198] (mTOR n.d.;
HIF-1 n.d.)

Yes
[197,198]

n.d. Yes Yes (Phase II/III)
[197]

Yes
(Phase II/III)

PUFAs (n-3/n-6 family)
[199-203]

X - Yes [200,201] Yes Yes (ROS↑ [202]) Yes [199] (mTOR↓ [202];
HIF-1↓ [199,203])

n.d. Yes [200] Yes Yes (Phase II) [201] Yes
(Phase II)

Most compounds may decrease glycolytic activity by targeting mTOR/HIF-1 pathway and increase apoptotic activity by ROS generation in cancer cells. Focused on OSCC most experience is available for polyphenols
(flavonoids: EGCG, anthocyanins, in bold).
ROS, reactive oxygen species; Caspasen, cysteinyl-aspartate specific protease; OSCC, oral squamous cell carcinoma; HNSCC, head and neck squamous cell carcinoma; HIF, Hypoxia-inducible factor; mTOR, mammalian
target of rapamycin; EGCG, epigallocatechin-3-gallate; ITC, isothiocyanate; γ-T3, gamma-tocotrienol; Vit., vitamin; PUFAs, polyunsaturated fatty acids; n.d., no data; ***chemopreventive outcome: decrease of precursor
lesions or decrease of cancer biomarkers or decrease of secondary malignancies or increase in patient survival or increase in quality of life or reduction of toxic side effects of radio- and/or chemotherapy. The arrow
indicates an increase (↑) or decrease (↓) in levels, phosphorylation status or activity of the different signals.
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energy source required for proliferation and survival
of head and neck squamous carcinoma cells [243]. This
result does not automatically exclude lactate generation by
amino acid catabolism, as the glutamine pathway has not
been described for OSCC and has yet to be revealed. Fi-
nally, focusing on combination strategies [116,158,186,244]
(Table 2) with different signaling pathways (e.g. mTOR)
[245] that have the potential to eradicate malignant and
premalignant clones are warranted [245,246].
For the first time, our study provides evidence of in-

creased IGF-1R in OSCC. The expression of IGF-1R has
been described for in-vitro analysis of an OSCC cell line
[247] but not for carcinogenesis of OSCC yet. The authors
state that IGF-1R activation is associated with resistance of
EGFR-tyrosine-kinase inhibitor (TKI) treatment. Therefore,
targeting IGF-1R pathway, reversal of hyperinsulinemia and
IGF by dietry recommendations [16,34,199,204-217,248]
or metformin [232] may decrease resistance of EGFR-TKI
as well as reduce the risk of cancer recurrence in tumor
patients [34].

Conclusions
This study provides the first evidence of the expression of
glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA,
TKTL1 and mitochondrial enzymes SDHA, SDHB, ATP
synthase in the multi-step carcinogenesis of OSCC. It
seems that both, hypoxia-related glucose metabolism and
mitochondrial oxidative phosphorylation characteristics
are associated with the carcinogenesis of OSCC. Acidosis
and OXPHOS may drive a metabolic shift towards the
PPP [67]. Therefore, inhibition of the PPP and glycolysis,
as well as targeted anti-mitochondrial therapies (ROS gen-
eration) by natural compounds (polyphenol mix, selective
vitamins) or synthetic vitamin derivatives (e.g. oxybenfo-
tiamine) may act as sensitizer for apoptosis in cancer cells
mediated by adjuvant therapies in OSCC. Summarizing in
other words, targeting detoxifying systems (e.g. TKTL1,
LDHA) make cancer cells or (oral) precursor lesions more
vulnerable to apoptosis.

Additional files

Additional file 1: Figure S1. Hematoxylin-Eosin (H&E) staining. H&E
staining shows representative images of normal tissue (A), squamous
intraepithelial neoplasia SIN I (B), SIN II (C), SIN III carcinoma in situ (D)
and invasive OSCC (E). Original magnification: x100-fold. N.T., normal tissue.

Additional file 2: Table S1. Clonality, host species, dilution, and
company of antibodies used for immunohistochemistry and western blot
analysis [249-252].
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