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Tickling the TLR7 to cure viral hepatitis
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Abstract

Chronic hepatitis B and C are the leading causes of liver disease and liver transplantation worldwide. Ability to
mount an effective immune response against both HBV and HCV is associated with spontaneous clearance of both
infections, while an inability to do so leads to chronicity of both infections. To mount an effective immune
response, both innate and adaptive immune responses must work in tandem. Hence, developing protective
immunity to hepatitis viruses is an important goal in order to reduce the global burden of these two infections
and prevent development of long-term complications. In this regard, the initial interactions between the pathogen
and immune system are pivotal in determining the effectiveness of immune response and subsequent elimination
of pathogens. Toll-like receptors (TLRs) are important regulators of innate and adaptive immune responses to
various pathogens and are often involved in initiating and augmenting effective antiviral immunity. Immune-based
therapeutic strategies that specifically induce type I interferon responses are associated with functional cure for both
chronic HBV and HCV infections. Precisely, TLR7 stimulation mediates an endogenous type I interferon response,
which is critical in development of a broad, effective and protective immunity against hepatitis viruses. This review
focuses on anti-viral strategies that involve targeting TLR7 that may lead to development of protective immunity
and eradication of hepatitis B.
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Introduction
Defense against chronic viral infections is complex and
involves both host innate and adaptive immune systems
[1]. The major characteristic of the human immune
system is the nature by which immune cells recognize
self from non-self [2,3]. While the adaptive immune
system features specific antigen recognition receptors, the
innate immune system utilizes a unique set of pattern
recognition receptors (PRRs), such as TLRs, which recognize
non-specific, but conserved molecular structures on
microorganisms [3-5]. However, certain viral pathogens
such as hepatitis B (HBV) and C (HCV) may effectively
evade host immune responses, thereby establishing
chronic persistent infection [6,7] These infections can be
treated with modest success using immunomodulatory
therapy such as exogenous interferon [8-10]. Hence, there
is a continued interest in other novel immune-based
therapies for chronic viral hepatitis, which may improve
treatment outcomes. Activation of specific TLRs results
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in an endogenous interferon response leading to the
production of antiviral, proinflammatory and costimulatory
cytokines, enabling crosstalk between the innate and
adaptive immune systems, which culminates in the
stimulation of immune effector cells integral to antiviral
immunity [11,12]. In this regard, interactions between
viruses and TLRs may play a major role in developing
protective antiviral immunity. Therefore, exogenous
activation of TLRs represents an attractive therapeutic
strategy to combat chronic viral pathogens such as HBV
and HCV.
Review
The toll-like receptor family
Members of the TLR family detect a wide range of
conserved pathogen-associated molecular patterns
(PAMPs). Upon recognition and binding to a PAMP,
stimulation induces shared signaling pathways that
culminate in expression of numerous host defense
genes. In humans, there are 10 known members of the
TLR family, which are membrane-bound proteins struc-
turally characterized by the presence of a conserved intra-
cellular Toll/interleukin (IL)-1 receptor (TIR) domain and
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leucine-rich repeat ectodomain [13,14]. This extracellular/
endosomal leucine-rich domain plays a key role in the
binding of ligands, although the molecular basis for the
recognition of the PAMPs by TLRs is largely unknown
[15]. The TLR subgroups are classified according to the
location of the receptor and its function upon activation.
TLRs expressed on the cell surface include TLR1, TLR2,
TLR4, TLR5 and TLR6; these subgroups are able to detect
bacterial and fungal cell wall components and some viral
proteins [16]. The intracellular subgroups TLR3, TLR7,
TLR8, and TLR9 are located within endosomes and bind to
viral nucleic acids [16,17]. Their location within endosomes
provides an environment in which host DNA should not be
present, thus avoiding the possibly deleterious effects of
self-recognition [18]. TLR3, TLR 7/8 and TLR9 recognize
viral or synthetically derived double stranded RNA, viral
single stranded RNA or bacterial unmethylated CpG DNA,
respectively [17,19-21]. While bothTLR7 and 8 have similar
structures, are triggered by viral single stranded RNA, and
propagate signaling via the same adapter protein, the
myeloid differentiation primary-response protein (MyD88,
IFN

IR
Nucleus

Cytoplasm

Figure 1 Selective TLR7 signaling. Natural ligands of TLR7 include ssRNA
hepatocyte, it engages the TLR7 receptor resulting in the formation of a co
TIR, which occurs in the endosomal compartment. This complex then trigg
formation of IRAK/IRF7/TRAF6 complex. IRF7 will translocate to the nucleus
Exclusive TLR7 agonists generate activation of type I interferons, while TLR7
such as IL-2, IL-8, and TNF along with interferon α/β, which may result in d
agonists are ideal in the treatment of hepatitis viruses.
see below), their activation appears to result in different
host cell responses. Interestingly, recent studies show a
vital role of TLR7 activation in early immune responses
and throughout progression of plasmodial infections,
another pathogen with a liver life cycle [22]. Studies
utilizing synthetic agonists demonstrated higher type I
interferon induction by TLR7 signaling and greater
proinflammatory cytokine induction via TLR8 activation
[23]. In this review, we will focus primarily on TLR7, as
the majority of small molecule TLR agonists undergoing
clinical development for treatment of viral hepatitis
target TLR7 agonists to induce an endogenous interferon
response.

TLR7 signaling: induction of antiviral cytokines
TLR7 signaling is primarily associated with generation of an
endogenous type I interferon response (Figure 1). Binding
of TLR7 to its respective ligand causes conformational
changes and dimerization of the receptors, followed by the
recruitment of its specific TIR adaptor protein, MyD88.
MyD88 activates a series of signal transduction molecules,
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, particularly viral particles (HCV). Once an HCV virion enters the
mplex facilitated by the recruitment of adapter protein, MyD88 and
ers a series of signal transduction pathways culminating in the
and transactivate the production of type I interferons (IFN-α and β).
/8 agonists result in the generation of proinflammatory cytokines,
evelopment of undesirable adverse events. Hence, selective TLR7
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including IL-1R associated kinases (IRAKs), tumor necrosis
factor receptor (TNFR)-associated factor 6 (TRAF6), and
transforming growth factor (TGF)-B activated kinase
(TAK1), which yield activation of the transcription factors
nuclear factor kappa B (NF-κB) and IFN regulatory
factor 7 (IRF7) (Figure 1). TLR7 signaling is biased
toward IRF7 activation, which facilitates production of
antiviral cytokines, including type I and type II interferons,
while NF-κB induces a proinflammatory effect via
secretion of cytokines such as TNF-α, interleukin-6 and
interleukin-12 (IL-6, IL-12) [16,18,24].
TLR7-induced production of type I and II interferons

activate pathways that lead to the destruction of intracellu-
lar pathogens, including stimulation of adaptive immune
effector cells [12]. This augmentation of innate and
adaptive immune signaling makes TLR ligands an attractive
addition to antiviral therapeutics [25]. However, immune
activation can be a double-edged sword; exogenous
immunomodulatory treatment must be utilized with cau-
tion in patients with cirrhosis as profibrogenic chemokine
stimulation can activate hepatic stellate cells, which may
exacerbate fibrosis.

Linking innate and adaptive immunity: TLR-controlled
DC-mediated activation of T cells
As a first line of defense, innate immune responses
prime the adaptive immune system to mount an effective
pathogen specific immune response. Efficient priming of
adaptive immune response requires antigen presentation by
the major histocompatibility complex (MHC) on antigen-
presenting cells (APCs) in addition to the simultaneous
induction and presentation of accessory signals, including
several instructive cytokines and/or costimulatory molecules
induced by innate immune signaling pathways. Dendritic
cells (DCs) are professional antigen-presenting cells in
humans. DC subsets respond to pathogens for which they
have corresponding TLRs. In humans, TLR7 is expressed
on plasmacytoid DCs (pDCs) and in some studies has
also been detected on myeloid DCs (mDCs) [12]. The
generation of adaptive immunity is dependent upon the
maturation of DCs, a process that is mediated in various
ways by TLR signaling [12,26,27]. This process begins with
the recognition and sequestration of antigen by DCs in per-
ipheral tissue and the subsequent migration to lymph nodes
for presentation to naïve T lymphocytes [26] (Figure 2).
Once inside the lymph nodes, DCs seek out naïve

antigen-specific T cells and induce their activation and
differentiation into effector cells. The first signal in activa-
tion of naïve T cells is an antigen-specific signal resulting
from the binding of the T cell receptor to the peptide
presented by the MHC molecule [26]. The second signal
in activation is driven by costimulatory molecules CD80
and CD86 expressed on the DCs, which interact with
CD28 on naïve T cells to stimulate T cell proliferation,
cytokine production and generation of CTL response
[12,28]. This is an example of TLR-mediated control of
adaptive response, as hepatic pDC subsets upregulate
costimulatory molecules CD40, CD80 and CD86 by
TLR4, TLR7 and TLR9 stimulation [29,30]. Specifically,
viral ssRNA (a PAMP), is delivered to and is endocytosed
by a pDC, and forms the source of the PAMP. Next,
engagement of TLR7 on the endosome triggers the signal-
ing pathways resulting in production of specific cytokines
and costimulatory molecules that augment adaptive
immune responses (Figure 2) [27,31]. Hence, TLR-mediated
signaling impacts adaptive immune responses by producing
cytokines that mediate T cell differentiation. In the liver,
pDCs produce IFN-α, TNF-α, IL-6 and IL-12 in response to
ligands for TLR7/9 [29,32]. Consequently, in response to
stimulation by a TLR7 agonist, cytokines such as IL-12
drive the induction of TH1 responses on T cells [33], which
is characterized by the production of IFN-γ by T cells and
further activation of cell-mediated immunity, resulting in
the activation of phagocytes, antigen-specific cytotoxic T
lymphocytes and the release of various cytokines (Figure 2).
Studies using animal models that lack TLR signaling

pathways have clearly established the vital role played
by TLR7 in antiviral immunity [11,34]. Mice deficient
in MyD88, the adaptor protein that mediates signal
transduction by TLR7, are not capable of signaling
through TLRs. As a result, their APCs are not stimulated
by TLR agonists [35]. MyD88-deficient mice demonstrated
a lack of T cell activation in response to antigen, suggesting
impairment in the antigen-specific priming of T cells [27].
Consequently, these mice failed to produce detectable
amounts of IFN-γ in response to antigen stimulation [27],
suggesting that in the absence of TLR signaling, immune
responses are severely impaired and unable to generate an
effective TH1-dependent immune response. In addition,
MyD88-deficient DCs treated with antigen did not induce
production of CD80, CD86, MHC class II or IL-12,
which resulted in an inability of DCs to mature and led to
inefficient priming of naïve T cells [27]. These results
support the theory that innate immune recognition by
TLRs is required for induction of accessory signals
required for the activation of adaptive immune response
and inducing TH1 polarization by expressing IL-12 on
APCs [27,36], an event critical for the induction of DC
maturation, the generation of TH subsets and the activation
of the adaptive immune response against viruses.

Hepatitis C infection
An estimated 4.1 million people are infected with
hepatitis C (HCV) in the United States, with up to 180
million people infected worldwide [37,38]. Approximately
60-85% of individuals infected with HCV will eventually
develop chronic hepatitis C infection [39-41]. Although
chronic infection is usually asymptomatic, it can lead to
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Figure 2 Selective TLR 7 agonists in chronic viral hepatitis. Selective oral TLR7 agonists are absorbed through the gastrointestinal mucosa
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chronic liver disease, including cirrhosis, hepatocellular
carcinoma and ultimately liver failure [37,42]. In the
United States, complications from HCV are the leading
indication for liver transplantation [43]. Currently, immune-
based therapies including interferon still have a role in the
eradication of HCV. The standard of care for HCV is
rapidly evolving as safer, more effective therapies become
available. Currently, the preferred regimen for HCV
genotype 1 infection is a 12-week course of sofosbuvir
(an HCV NS5B polymerase inhibitor) in combination with
pegylated interferon and ribavirin [44], which resulted in a
90% sustained virological response in phase III clinical
trials [45]. The treatment paradigms will likely evolve to
include interferon-sparing treatment options for most
patients over the next few years.

Plasmacytoid dendritic cells and TLR signaling in HCV
infection
Many viruses have evolved mechanisms to subvert host
immune responses and HCV is no exception. The HCV
NS3/4A protease inhibits TLR3 and RIG-I mediated
signaling in infected hepatocytes [46], thereby blunting
type I interferon responses in these cells. The robust
induction of interferon stimulated genes (ISGs) in the
livers of HCV-infected patients [23] suggests that cells
other than infected hepatocytes may drive type I interferon
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induction. In vitro work done in Huh 7.5 cells suggest that
pDCs in HCV-infected livers stimulate type I interferon via
TLR7 signaling without becoming infected [47]. Thus,
cell-cell interaction should be required in order for pDCs
to endocytose HCV RNA particles from infected hepato-
cytes. Recent work suggests that this cell-cell recognition is
facilitated by CD81/CD9 tetraspanins [48]. In summary,
these data suggest that TLR7 mediated signaling plays an
important role in immune responses in HCV-infected
patients, and that exogenous TLR7 agonists may have a role
in management of chronic HCV infection.

TLR agonists for chronic hepatitis C infection
As treatment for HCV is slowly evolving from an immune
based interferon-containing therapy to an interferon-free,
all oral, directly acting antiviral (DAA) therapy, much
more needs to be learned about the correlates of HCV
clearance. Induction of hepatic type I interferons seems to
be a reliable early indicator of sustained virologic response
to DAA-based therapies [49]. In this regard, HCV therapy
can be optimized by enhancing an endogenous hepatic
interferon response by using TLR agonists. Hence, the
evaluation of novel immunomodulatory strategies, such as
the use of TLR7 agonists, which result in an induction of
endogenous type I interferon response, is warranted in
maximizing the effectiveness of HCV therapeutics.
In a proof of concept study isatoribine, a TLR7 agonist,

was shown to cause a significant reduction of plasma HCV
RNA in previously untreated HCV-infected individuals [50].
Administration of the TLR7 agonist isatoribine was shown
to significantly increase viral clearance by inducing an
immune antiviral response, as indicated by dose-dependent
changes in immunologic biomarkers [50]. Treatment was
well tolerated and viral reduction occurred in both genotype
1 and non-genotype 1 HCV infection [50]. Since this initial
trial, small-molecule TLR7 agonists have become a focus of
clinical trials for the treatment of chronic HCV infection. In
a multi-center, phase IIa study, resiquimod, a TLR7/8
agonist was taken orally for 4 weeks resulted in a transient
viral reduction, but serious adverse events were reported
consistent with IFN-α induction, including fever, headache,
shivering and lymphopenia [51]. As a result of the systemic
effects of the drug, resiquimod was withdrawn from clinical
testing for HCV but was further examined as a topical
agent for HPV [52]. Another agent, PF-4878691, effectively
induced immune biomarkers and IFN responses in a
dose-dependent manner, but its antiviral effect was
only produced at doses associated with serious adverse
events [53,54]. An oral isatoribine prodrug, ANA773, was
administered to HCV-infected patients every other day for
28 days (800 mg, 1200 mg, or 1600 mg) or for 10 days
(2000 mg). A significant reduction of serum HCV RNA
levels was seen in the 2000 mg-dosed group. The drug
was generally well tolerated and most of the reported
adverse events symptoms disappeared rapidly during
continued dosing, resulting in no dose reductions or
discontinuations. Thus, ANA773 is the first oral TLR7
agonist to induce a dose-related antiviral response leading
to a significant decrease in serum HCV RNA levels without
the concurrent induction of prohibitive systemic side effects
[55]. Hence, it is plausible that viral eradication may be
enhanced using a strategy that optimally targets the host
innate immune system by using an oral selective TLR7
agonist to induce a direct antiviral effect (type I interferon
signature) and an indirect effect (enhancing HCV-specific
immunity by cross-linking innate and adaptive immune
system), resulting in rapid eradication of HCV without a
myriad of adverse events.

Hepatitis B infection
Hepatitis B (HBV) is an enveloped, double stranded
DNA virus that can be transmitted perinatally, percutan-
eously, or through close person-to-person contact [56].
An estimated 350 million individuals are chronically
infected with hepatitis B worldwide [57], with approximately
1.25 million HBV carriers living in the United States [56,58].
HBV carriers are at an increased risk of liver damage,
including cirrhosis, hepatic decompensation and hepatocel-
lular carcinoma [59,60]. Hepatitis B virus is self-limited
in 90-95% of adults. The remainder will develop
chronic hepatitis B infection, as demonstrated by the
presence of HBsAg+, serum HBV DNA, persistent or
intermittent elevation in ALT/AST levels and evidence of
necroinflammation.

Treatment for HBV
The current goal of chronic hepatitis B treatment is to
achieve long lasting suppression of HBV replication to
prevent cirrhosis, hepatic failure and HCC. Currently,
immune based treatment of chronic HBV infection consists
of IFN administration. Nucleoside analogues (NA), mainly
tenofovir and entecavir, can achieve long-term suppression
of HBV. Complete response to treatment, also known
as HBV clearance, consists of an HBsAg seroconversion,
normalization of ALT/AST, absence of serum HBV DNA
and absence of covalently closed circular DNA (cccDNA).
Complete response is rare with the use of NA alone, but
can be rarely achieved through the use of immune-based
therapy, or via rare spontaneous clearance. In the absence
of a cure, long-term suppression of HBV is required to
prevent progression of liver disease. However, long-term
suppressive therapy with NA is associated with emergence
of resistance and toxicities [61]. Some nucleoside analogues
have a low barrier to resistance and once antiviral-resistant
HBV mutants are selected they are typically retained in the
virus population indefinitely [62]. Even in the setting of
successful viral suppression and normal ALT/AST levels, it
is uncertain what long-term risk of sequelae like HCC is in
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these patients. Although chronic HBV infection may be
cleared without induction of innate immune responses
[63] there is proof of principle data available that immune-
based treatment such as interferon-α is capable of
achieving protective immunity in some treated patients
[64]. This offers hope that similar strategies, that are safer,
more tolerated and orally available could be vital in
accomplishing a “functional cure” of HBV.

TLR agonists for chronic hepatitis B infection
Studies have shown that liver of HBV transgenic mice pro-
duce IFN-α, −β and -γ to inhibit hepatitis B replication,
suggesting that HBV replication can be controlled by acti-
vation of innate immune response in the liver [65] When
HBV transgenic mice were injected with ligands specific for
TLR 2 through 9, HBV replication was nearly eliminated
after a single injection of 10 μg of each ligand except for
TLR2 ligands. The inhibition of HBV replication was essen-
tially noninflammatory and noncytopathic and was accom-
panied by the induction of IFN-α and IFN-β [65]. The
inhibition of HBV replication was accomplished at a post-
transcriptional level by suppressing the assembly or stability
of HBV RNA-containing capsids, where HBV DNA synthe-
sis is known to occur [65,66]. These findings provide evi-
dence that TLR activation directly inhibits HBV replication
[18,67]. However, HBV may evade innate recognition by
TLRs as a strategy to escape the innate immune response
by disrupting TLR expression, resulting in inhibition of
TLR signaling cascades [18,67]. It has been reported that
the expression of TLRs in hepatocytes and other cells is
down regulated in the presence various HBV viral products
[68-73]. Although HBV circumvents endogenous type I
interferon pathways, it is plausible that exogenous inter-
feron induction by using a TLR7 agonist may reinstate
interferon-α responses. When combined with a strategy
that results in maximal suppression of HBV replication
in vivo using NAs, exogenous IFN stimulation via TLR ago-
nists may result in development of protective immunity.
Several studies have shown that long-term suppression of
HBV using NAs results in partial reconstitution of adaptive
immunity. Furthermore, TLR7 mediated signaling may also
contribute to adaptive immune responses [12]. In this
regard, an adjuvant therapy using a TLR agonist may be
able to accelerate this process of immune reconstitution
and aid in functional cure or HBsAg seroconversion both
by innate and adaptive immune signaling.
There are other potential benefits in the use of TLR

agonists for treatment of chronic HBV infection. First, TLR
agonists are available as oral compounds enabling rapid
uptake by liver. Pre-systemic activation by TLR agonists
via gut absorption into portal circulation may allow for
optimal, lower doses of adjuvant therapy to minimize
adverse events. Second, they may be co-formulated with
other NAs as a single pill. Third, TLR7 agonists are
selective and do not activate the TLR8 pathway, thus elim-
inating the negative affects of TNF-α activation. Finally,
similar to injected IFN, TLR agonists induce IFN produc-
tion, triggering the production of cytokines to facilitate
intracellular communication and cellular trafficking.
However, through the use of TLR agonists this antiviral
state can be induced at the local level, pre-systemically
rather than systemically, eliminating the adverse events
associated with systemic innate immune activation.
Recent studies have shown that TLR7 agonist administra-

tion results in an augmentation of downstream signaling of
interferon stimulated genes (ISGs) without systemic IFN-α
related adverse events. In particular, the induction of ISG15
and CCL8 mRNA have been implicated as markers of pre-
systemic immune response in response to TLR7 agonist
stimulation [74]. Recently, in chronically infected chimpan-
zees, GS-9620, a selective oral agonist of TLR7, induced
prolonged suppression of HBV DNA in both the serum
and liver [75]. GS-9620 administration induced the produc-
tion of IFN-α and various cytokines and chemokines. In
addition, it activated all lymphocyte subsets to induce ISGs
[75]. HBV DNA was reduced in addition to serum levels of
HBsAg, HBeAg and HBV antigen positive hepatocytes [75].
In early studies of oral GS-9620 in healthy volunteers, oral
doses (single dose of 0.3, 1, 2, 3, 4, 6, 8, or 12 mg) were well
absorbed and well tolerated in doses up to 12 mg. Adverse
events associated with IFN treatment were seen subjects
who received 8 mg or 12 mg dose and serum IFN-α was
only detected at these doses although activation or ISGs
were seen at doses ≥2 mg [76].

Conclusions
Optimal induction of innate and adaptive immunity
contribute to host defenses against viral pathogens such as
hepatitis B and C. Endogenous induction of type I IFNs
contributes to the clearance of these viruses, hence
the appeal of selective TLR7 agonists,which generate
endogenous type I interferons and could thus aid in
augmenting spontaneous and therapeutic clearance of
hepatitis viruses. Adjunctive treatment with such agents
may allow for shorter, less toxic, and less expensive
courses of antiviral therapy. This approach, if successful,
will have a tremendous impact on the public health
burden of chronic liver diseases, wherein HCC and death
due HCV and HBV infections are common.
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