Oh et al. Journal of Translational Medicine 2014, 12:107
http://www.translational-medicine.com/content/12/1/107

JOURNAL OF
TRANSLATIONAL MEDICINE

REVIEW Open Access

Immunocompetent murine models for the study
of glioblastoma immunotherapy

Taemin Oh'", Shayan Fakurnejad', Eli T Sayegh', Aaron J Clark?, Michael E Ivan?, Matthew Z Sun®, Michael Safaee?,
Orin Bloch', Charles D James? and Andrew T Parsa’

Abstract

Glioblastoma remains a lethal diagnosis with a 5-year survival rate of less than 10%. (NEJM 352:987-96, 2005)
Although immunotherapy-based approaches are capable of inducing detectable immune responses against
tumor-specific antigens, improvements in clinical outcomes are modest, in no small part due to tumor-induced
immunosuppressive mechanisms that promote immune escape and immuno-resistance. Immunotherapeutic
strategies aimed at bolstering the immune response while neutralizing immunosuppression will play a critical role
in improving treatment outcomes for glioblastoma patients. /n vivo murine models of glioma provide an invaluable
resource to achieving that end, and their use is an essential part of the preclinical workup for novel therapeutics
that need to be tested in animal models prior to testing experimental therapies in patients. In this article, we review
five contemporary immunocompetent mouse models, GL261 (C57BL/6), GL26 (C57BL/6) CT-2A (C57BL/6), SMA-560

approaches.

Immunosuppression

(VM/Dk), and 4C8 (B6D2F 1), each of which offer a suitable platform for testing novel immunotherapeutic
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Introduction

With a median survival of just 15months, glioblastoma
(GBM) is a notoriously lethal tumor of the central ner-
vous system marked by significant treatment resistance
[1]. Standard treatment for patients with GBM is maxi-
mum safe resection of tumor followed by radiation with
concurrent temozolomide [1]. Glioma immunotherapy, a
promising alternative to such aggressive cytotoxic adju-
vants, is a highly specific, minimally toxic modality cap-
able of killing tumor cells while sparing normal tissue
[2-5]. Immunotherapy in glioma can also activate im-
mune surveillance, and thereby offers the potential for
long-term control of this lethal disease [2-6]. However,
tumor-induced immunosuppression exists as a consider-
able barrier to achieving successful immunotherapeutic
treatment of GBM and other tumors. GBMs inhibit im-
mune function, systemically as well as within the tumor
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microenvironment, causing many patients to present
with impaired cell-mediated immunity [3,5,7]. Impli-
cated mediators of immunosuppression include regula-
tory T cells (T,eg), myeloid-derived suppressor cells, and
M2 macrophages [8]. Tumor heterogeneity [9] and
immune escape mechanisms [10] further complicate
immunotherapeutic treatment efficacy.

Focused research strategies designed to mitigate im-
munosuppressive mechanisms could contribute informa-
tion of critical importance to improving GBM patient
outcomes. Preclinical research using immunocompetent
mouse models offers a means for studying important
interactions between glioma, the immune response, and
therapeutics, and for hypothesis-driven evaluation of
novel approaches for treating GBM [11]. Here, we
present a review on immunocompetent murine glioma
models and examine their applications for glioma re-
search, placing specific emphasis on their value to the
field of glioma immunotherapy.
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Murine models for glioma - an overview

A useful experimental glioma model should have the
following features: 1) in vitro sustainability, 2) in vivo re-
capitulation of glioma features (e.g. invasion and angio-
genesis), 3) amenability to genetic manipulation, 4) facile
transplantation, 5) reproducible and predictable growth
characteristics [12,13]. Histopathology, tumor biology,
molecular profiles, and invasiveness are all important
characteristics to preserve in order to replicate glioma be-
havior in vivo.

Two major considerations are important when asses-
sing preclinical models for GBM, the first of which is
generation of the tumor itself and the stable transplant-
able cell lines that follow. GBM tumors can be generated
spontaneously, or through induction using chemicals or
viruses [14]. Spontaneous tumors, albeit rare and diffi-
cult to cultivate without a large host of animals, perhaps
best reflect the natural course of human GBM [12,14].
However, for the purpose of increasing expediency and
efficiency of time plus effort, tumor induction methods
have been more commonly used. Seligman and Shear
described the first successful experimental brain tumor
in 1939 through intracranial (IC) implantation of 20-
methylcholanthrene, leading to the development of gli-
omas and meningeal fibrosarcomas [15]. Viral induction
with DNA or RNA viruses has also been widely used for
inducing rodent model GBM and has made significant
headway over the past few decades [16-19]. However,
this approach presents many challenges, among which
include potential harm to laboratory personnel, high
maintenance requirements, and incomplete tumor pene-
trance [16-18].

The second consideration is the method of transplan-
tation. Transplantation methods for murine models of
glioma can be classified in three ways: 1) implantation of
syngeneic primary tumor cells or cultured cell lines into
immunocompetent hosts, 2) implantation of human gli-
oma cells into immunocompromised mice (xenografts), or
3) implantation of cells that have been subjected to
manipulation of oncogenes or tumor suppressor genes
[12,20]. Subcutaneous syngeneic transplantation of tumor
cells has a long history, initially having been demonstrated
over 70years ago [21]. The first report of using athymic
(nude) mice as hosts for human tumor cell propagation
[22] was followed by the demonstration of human GBM
xenograft establishment by Rana et al. [23]. Danks and
colleagues described the first transgenic astrocytoma
model in 1995 by inducing astrocyte expression of the
pro-tumorigenic SV40 large T antigen [24].

Knowledge of model advantages and disadvantages is
critical for selecting the best-fit model for achieving
study objectives. While there is no single murine model
that is appropriate for all types of preclinical research,
spontaneous tumors in syngeneic, immunocompetent
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mouse models provide the most versatile tool for study-
ing immunotherapy and immunosuppression in GBM.
Comparatively, xenografts can be modified for the pur-
pose of evaluating GBM immunological treatment mo-
dalities, [25-27] but their use is somewhat limited due to
a compromised host immune system [20,28,29]. Trans-
genic models that have been engineered to sponta-
neously develop GBM in immunocompetent hosts have
seen increasing use in glioma immunotherapy studies,
although these models, in comparison to transplantation
models, suffer from reproducibility, latency of tumor
formation, and cost [28,29]. Transgenics may also result
in mixed tumors of diverse histological grades, such that
many fail to recapitulate key features of GBM [29,30].
Moreover, their genetic alterations can interfere with
host immune functions such as lymphopoiesis and
clonal expansion, which are important pathways to con-
serve for immunotherapy research in glioma [20].

In that manner, several syngeneic immunocompetent
models are available for preclinical utilization. In the
following sections, a brief overview and applications in
GBM immunotherapy for each syngeneic model is pre-
sented. It should be noted that while each of these
tumors arose spontaneously at the time of their disco-
very, they have since been maintained and experimen-
tally utilized through serial transplantation or generation
of transplantable cell lines.

SMA-560-VM/Dk model

Origins and tumor characteristics

In 1971, H. Fraser described the first incidence of a
spontaneous glioma within the VM mouse strain [31].
Initially, these tumors, which resembled anaplastic
astrocytomas, were restricted to in vivo studies only, as
tumorigenicity was lost with repeated in vitro passaging
of tumor explant cultures [31]. In 1980, Serano and
colleagues successfully established five tumor cell lines
(P492, P496, P497, P540, P560) following serial trans-
plantation of a spontaneous murine astrocytoma. Cell
lines were developed via homogenization of tumor tis-
sue, in vitro culturing, and transplantation into VM/Dk
mice. Although the P492, P496, and P497 cell lines de-
monstrated variable tumorigenicity after serial passaging,
P540 and P560 maintained tumorigenicity throughout
all passages [13]. Median survival for animals bearing
SMA-560 tumors has been reported to be approximately
26 days when implanted intracranially with 1x10* tumor
cells/5 pl [32].

SMA-560 tumor cells provide excellent representation
of anaplastic astrocytoma, with low S-100 expression and
high expression of glial fibrillary acid protein (GFAP) and
glutamine synthetase, thus supporting the astrocytic
lineage of derivative tumors [13,33,34]. These tumors lack
Class II but do express Class I Major Histocompatibility
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Complex (MHC) at low levels, which highlights their
potential for antigenic recognition by traditional effector
T cells [35]. Of interest, brain tumors derived from SMA-
560 cells express transforming growth factor f (TGE-p),
[35] an immunosuppressive protein known to be secreted
by GBM [36]. TGF-f expression lends great value to this
model, although it has failed to experience widespread
use, likely due to its lack of commercial availability,
thereby restricting its use to a few academic centers.

Applications in immunotherapy research for GBM

The SMA-560 model has experienced occasional use,
such as in the study by Sampson et al., the results of
which showed that manipulation of SMA-560 cells for
hyper-secretion of select cytokines, specifically interleukin
(IL)-2, IL-4, or tumor necrosis factor «, resulted in an
increase in median survival of VM/Dk mice following IC
injection of modified cells (p<0.0001). SMA-560 cell
modification for increased production of IL-3, IL-6,
interferon-y, Cluster of Differentiation (CD)80, or gran-
ulocyte-macrophage colony-stimulating factor, had no sig-
nificant effect on host survival [35].

Recently, Miller et al. showed that SMA-560 cells
transfected to over-express a soluble form of the CD70
ligand reduced tumor growth rate and increased host
animal survival. In addition, several long-term survivors
from the group injected with CD70-modified cells de-
monstrated resistance to tumor re-challenge. Finally, the
results of this study revealed that improved animal sub-
ject outcomes were contingent upon activation of a ro-
bust cytotoxic immune response. Immunohistochemical
analysis of tumor samples revealed that mice with tumor
cells expressing soluble CD70 had greater infiltration of
CDg" T cells in the tumor periphery, and that depletion
of CDg" T cells reversed the benefits of soluble CD70 to
overall survival [37].

The SMA-560-VM/Dk model has also been used to in-
vestigate tumor vaccines. Heimberger et al. pulsed bone
marrow-derived dendritic cells (DCs) with SMA-560
homogenate, and administered pulsed DCs to VM/Dk
mice prior to IC implantation of SMA-560 cells. Com-
pared to control, mice treated with pulsed DCs de-
monstrated median survival of >65 days versus 25 days,
thus representing a 160% increase in median survival
(p=0.016). When surviving immunized mice were re-
challenged with tumor 50 days following initial treatment,
increased survival again resulted (>50 days), thereby
providing evidence for the acquisition of long-lasting anti-
tumor immunity. Both cell-mediated and humoral im-
munity were found to be involved in the generation of this
potent therapeutic response [32]. More recently, Sampson
et al. utilized the SMA-560 model to test the efficacy of
genetically modified T cells, which were modified to
express chimeric antigen receptors targeting the epidermal
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growth factor receptor vIII (EGFRVIII), a known glioma
antigen. When this was administered to tumor-bearing
mice, growth of SMA-560 tumors was abrogated, and
treatment conferred resistance to tumor re-challenge [38].

CT-2A; C57BL/6 model

Origin and tumor characteristics

Developed specifically for characterizing ganglioside dis-
tribution in murine neural tumors, the CT-2A cell line
was established by Seyfried et al. in 1992 through che-
mical induction with 20-methylcholanthrene. Following
serial transplantation of tumor fragments into C57BL/6
mice, this syngeneic model for highly malignant, poorly
differentiated anaplastic astrocytoma resulted in 100%
mortality within 3-8 weeks [39]. In 2007, Martinez-
Murrillo et al. standardized techniques for establishing
CT-2A tumors from cultured CT-2A cells, as opposed to
solid tumors, and demonstrated a survival range of 15-20
days with IC injections of 8x10* tumor cells/4 pl [40].

Histologically, CT-2A tumors manifest features of
high-grade astrocytomas including pleomorphism and
high cellular density, but can undergo malignant trans-
formation with evidence of pseudopalisading necrosis
[40]. Tumors are angiogenic, occasionally cystic, and in-
filtrative, with tumorigenesis rates reported up to 100%
[40-43]. Compared to established glioma cell lines, CT-
2A cells are significantly more proliferative and invasive
(p <0.05), [41] but less invasive than other mouse brain
tumors [44]. Overall, the CT-2A model is considered to
accurately represent several GBM characteristics inclu-
ding intra-tumoral heterogeneity, in vivo migratory pat-
terns, radio-resistance, and chemo-resistance [40].

As recently elucidated by Binello et al., CT-2A tumors
also share similarities with neural stem cells, as they form
neurospheres when cultured in serum-free media, much
like primary human GBMs grown ex vivo, [45] and ex-
press stem cell markers such as CD133, Oct, and nestin
[41]. Cells expressing Sox9 and Sox10 localize to the per-
iphery of CT-2A tumors [40]. Similarities between CT-2A
tumor cells and brain tumor stem cells (BTSCs), which
are capable of self-renewal, express CD133, and possess
profound tumor-forming capacity, [46-48] may account
for their high tumorigenic potential [44]. Phenotypically,
the “stemness” of CT-2A tumors manifests as significantly
enhanced proliferative and invasive capacity in vitro [41].
Importantly for glioma immunotherapy, however, the
consequences of neurosphere formation and culture on
CT-2A tumor immunogenicity is currently unknown and
requires further investigation.

Applications in immunotherapy research for GBM

By virtue of its BTSC-like properties, the CT-2A model
could provide a resource for studying tumor stem cells
in an immunocompetent environment. Due to mounting
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evidence that BTSCs negatively impact overall and pro-
gression-free survival, [49] while contributing to treatment
resistance in high-grade gliomas, [50,51] therapeutic tar-
geting of BTSCs is a subject of some importance. BTSCs
induce immunosuppression by expressing Programmed
Death Ligand-1 (PD-L1) and TGEF-B1, as well as by inhi-
biting T cell proliferation, inducing T cell apoptosis, and
enhancing T, function [52,53]. While to date, BTSC-
focused GBM preclinical research has not been especially
active with respect to the development of immu-
notherapeutic strategies, several groups have recently
demonstrated the potential of targeting BTSCs using
immunotherapeutic approaches. Morgan et al. tested the
efficacy of T cells genetically engineered to target EGFR-
vIII on glioma stem cells and found that these lym-
phocytes induced significant antitumor effects [54]. Brown
et al. also found that cytotoxic T lymphocytes (CTLs)
engineered to target the IL13Ra2 receptor, which can be
mutated in GBM, were able to induce tumor regression in
xenografts established from stem cells [55]. In non-GBM
cancers, passive antibody-mediated approaches and anti-
body-drug conjugates directed against cancer stem cells
have been shown to reduce disease burden [56-59]. The-
oretically, BTSCs can be targeted through vaccine the-
rapies, although a potential challenge to this approach
concerns BTSC avoidance of immune surveillance [60]. A
key research aim, for which the CT-2A model may be
well-suited, involves determining how to augment the im-
munogenicity of CD133" BTSCs, including the identifica-
tion of novel epitopes to target [60].

CT-2A tumors are also deficient in the phosphatase and
tensin homolog (PTEN) protein, leading to dysregulation
of the phosphatidylinositol-3 kinase (PI3K) pathway [61].
PTEN mutations also carry clinical significance, and are
observed in 40% of high-grade human gliomas as well as
70% of glioma cell lines [61,62]. PTEN mutations contri-
bute to tumor-induced immunosuppression, and thus the
CT-2A model can be utilized to devise strategies for miti-
gating PTEN deficiency-associated immune effects [63].

GL261; C57BL/6 model

Origin and tumor characteristics

The Glioma 261 (GL261) orthotopic model for murine
glioma was established in 1970 via chemical induction
with methylcholanthrene. Ausman et al. transplanted
tumor fragments subcutaneously and intracranially into
C57BL/6 mice, with the latter resulting in a median sur-
vival of 24-25 days when implanted with 1x10°> tumor
cells/10 pl [64,65]. Stable GL261 cell lines for transplant-
ation were constituted in the mid-1990s [65]. Although
the GL261 tumors most resemble ependymoblastomas
on histology, GL261 tumors closely mimic GBM pheno-
types [64]. They stain positively for the GBM marker
vimentin [66] and harbor activating mutations of the
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K-ras oncogene as well as mutations of the p53 tumor
suppressor gene, resulting in high expression of c-myc
[65]. Similar genetic derangements have been reported
in human gliomas [67-69]. GL261 tumors are partially
immunogenic, as they express high levels of MHC L
However, GL261 expression of MHC II, B7-1, and B7-2,
the latter two of which are co-stimulatory molecules
required for T cell activation, is limited [65]. Reduced
MHC and B7 expression is also characteristic of GBM
cell lines and CD133" BTSCs, which contributes to their
escape from immune surveillance [60,70,71].

Tumors established from GL261 cells recapitulate many
characteristics of GBM. Tumor formation proceeds
through four stages, over a four-week period, following
implantation: perivascular organization, proliferation near
vasculature, hypoxia through blood vessel degeneration,
and neovascularization towards necrotic regions [72].
Histologic analysis reveals pleomorphism, pseudopali-
sading necrosis, and angiogenesis [72]. While invasive,
GL261 tumors are not known to be metastatic [65] and,
importantly, these tumors do not spontaneously regress as
other murine tumors are known to do on occasion [73].

Applications in immunotherapy research for GBM

The GL261 murine model has perhaps been the most
extensively used for preclinical testing of immunothe-
rapeutic approaches for GBM [74]. Among these studies
are: the use of adoptive T cell transfer to restore and in-
duce long-term immunity [75]; the use of antibodies to
improve antitumor T cell activity via augmentation of
costimulatory signaling [76]; and the abrogation of the
survival advantage of T,es [77]. Gene therapy studies,
involving tumor modification for production of inflamma-
tory cytokines (e.g. IL-2) to enhance tumor immuno-
genicity [78] as well as with IL-12-expressing DNA
plasmids to slow tumor growth and stimulate a robust
CTL response, [79] have also utilized the GL261 model.

The GL261 model has also been widely used in support
of vaccine-based studies. GL261 cells express unique
tumor antigens, including HMP/AN2, [80] EphA-2, [81]
and GARC-1, [82] and these induce a GL261-specific
CTL response. GL261 vaccines, used for pulsing DCs,
have been curative and, at times, even preventative of
tumor engraftment [83-85]. DC vaccines have also been
augmented using adjuvants such as plasmid vectors for
[FN-y-inducible protein-10 (IP-10) [86] or by antibody-
mediated depletion of T, [87] The results of these
studies have helped validate GL261 as the model of
choice when investigating immunotherapeutic treatment
modalities.

The GL261 model has also been used to test experi-
mental methods for mitigating GBM-induced immuno-
suppression. For instance, in a study by Ueda et al., mice
were treated with peptide vaccinations using GL 261-
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specific antigens and a TGF-f neutralizing antibody
(ID11). Mice receiving both treatments showed 60%
100-day survival, in contrast to the 0-20% survival rates
for mice receiving treatments independently. Analysis of
animal subjects from this study revealed significantly
elevated CTL activity within the lymph nodes and
spleens, as well as greater immune cell infiltration, with
concurrent reduction of T,eg in the brains of the mouse
hosts. Overall, treatment was associated with promoting
the Th; phenotype [88].

The GL261 model has also been used for studying the
immunosuppressive effects of TGF-B, which promotes
Tyeg activity, on B and T cell function [36,89,90]. Ad-
ditional inhibitory mechanisms beyond TGF-f can be
studied using this model. Given GL261 deficiency in
PTEN, GL261 tumors accurately model PI3K pathway
dysregulation, which is known to promote glial tumor de-
velopment [91]. Importantly, PTEN mutations up-regulate
expression of PD-L1, a cell surface protein that can be
expressed in GBM tumors but not in normal physiologic
states [10]. PD-L1 promotes immunosuppression by indu-
cing T lymphocyte apoptosis, [92] and monocytes exposed
to PD-L1" gliomas adopt similar expression patterns of
PD-L1, leading to increased T cell apoptosis and tumor re-
sistance to immunotherapy [93,94]. Devising methods to
target and reverse PD-L1-mediated immunosuppression is
thus an important objective for optimizing immuno-
therapies [95].

Since GL261 cells express stem cell markers such as
CD133 when grown in serum-free media, these cell sub-
populations can be isolated and propagated for experi-
mental use. Importantly, when grown in serum-positive
media, GL261 cells differentiate and do not express
CD133, [96] as has been similarly reported with primary
human GBM cell lines [45]. Isolation of CD133" GL261
cells appears to increase tumorigenicity, as even IC im-
plantation of CD133" GL261 cells at small volumes
(~100 cells) leads to tumor formation and GL261
neurosphere formation is also greater when culturing
CD133" cells in serum-free media [96]. Thus, as is the
case for the CT-2A model, GL261 tumors may find use
for studying BTSCs and immunosuppression. However,
one potentially important consideration to this is that
GL261 stem cells appear to enhance tumor immu-
nogenicity. As demonstrated by Pellegatta et al., DCs
pulsed with tumor lysates from GL261 neurospheres,
as opposed to normal GL261 cells, generated a more
robust T cell and antitumor immune response [97].
More recently, Xu et al. lent further evidence to this by
showing that immunotherapy with DCs pulsed with
GL261 stem cell lysates or DCs pulsed with GL261
lysates were able to prevent tumor formation in 37.5%
and 0% of mice, respectively, and induced a significant
CTL response [98].
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Despite the extensive information yield from using the
GL261 cells, an inherent disadvantage of this model is its
moderate immunogenicity which may complicate inter-
pretation of experimental data [65]. Reduced immu-
nogenicity can confound evaluation of responses to
immunotherapy, and extrapolation of results to the cli-
nical setting, as GBM is known to be an immune-
privileged tumor that evades host immune recognition
[99]. Nevertheless, the GL261 system presents one of the
best characterized syngeneic, immunocompetent models,
and it is likely that this model will continue to see exten-
sive use in immunotherapy preclinical research.

GL26; C57BL/6 model

Origin and tumor characteristics

The less commonly utilized GL26 glioma cell line closely
resembles GL261, and was first chemically induced by
Sugiura in 1969 [64]. Much like its GL261 analog, GL26
tumors bear greatest histologic resemblance to ependy-
moblastomas. However, they differ slightly in that GL26
tumors tend to demonstrate greater necrosis and vas-
cularity in addition to being more hemorrhagic [64].
Overall, GL26 gliomas possess characteristic GBM fea-
tures that lend well to GBM research: they stain positive
for vimentin and exhibit cellular pleomorphism, hyper-
cellularity, nuclear atypical, and inflammation [66]. Al-
though GL26 cells express Class I MHC antigens, Class
II MHC antigens are undetectable [100]. Median sur-
vival following IC tumor implantation of 2x10* tumor
cells/0.5 pl is 31 days [66].

Applications in immunotherapy for GBM

The GL26; C57BL/6 model has been utilized to study se-
veral immunotherapeutic approaches and, while it has not
seen as extensive use as GL261, there is evidence to
suggest that this model can prove invaluable to the study
of immunotherapy. GL26 tumors express melanoma-
associated antigens (MAAs) “gpl00” and “tyrosinase-
related protein 2 (TRP-2),” both of which can be immuno-
genically targeted for CTL-mediated destruction. Prins
et al., for example, employed this strategy to great effect
by vaccinating mice with MAA-pulsed DCs, which led to
a robust antitumor immune response and significantly
prolonged survival [101]. Alternatively, Kim and col-
leagues have shown similar antitumor efficacy with the
administration of genetically engineered IL-12-expressing
DCs pulsed with GL26 tumor lysates [102].

Other strategies tested with this model include T,
depletion using PC61, and antibody directed against
CD25, which is one of the primary markers for T,eg.
Curtin et al. found that, although PC61 was unable to
induce immunologic memory against tumors and pre-
vented the expansion of tumor-specific T lymphocytes,
it did inhibit tumor growth, dramatically reduce tumor
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infiltration with T\es, and prolong overall survival in the
context of low tumor burden [103]. The benefits of com-
binatorial chemo-immunotherapy consisting of pulsed
DCs and temozolomide have also been investigated.
When Park et al. treated tumor-bearing mice with low-
dose temozolomide and DCs transfected for survivin, an
anti-apoptotic highly expressed in gliomas, prolonged
survival was seen and this was due to increased cross-
priming of tumor-specific T cells [104]. Another group
similarly utilized low-dose temozolomide and DCs pulsed
with tumor lysates to show increased cross-priming, im-
mune infiltration, and survival, thereby highlighting the
potential promise for this therapeutic approach [105].

4C8; B6D2F1 model

Origin and tumor characteristics

Weiner et al. developed the 4C8-B6D2F1 model to
address shortcomings observed with other murine glial
tumors [106]. The 4C8 tumor was established from
clonal cell lines of a glial tumor known as MOCH-1,
derived from a transgenic mouse. This approach should,
in fact, be generalizable to the development of dozens
of syngeneic, immunocompetent engraftment models,
using tumor cells from the many brain tumor transgenic
mouse models that have been created over the past 2
decades of genetically engineered mouse model research.
In contrast to MOCH-1, which strongly resembles
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GBM, 4C8 cells adopt oligodendrocytic characteristics
in vitro but convert to GFAP" astrocytes when exposed
to serum [107]. IC implantation into B6D2F1 mice
produces pleomorphic, highly cellular tumors, with
extensive invasion into ventricles and meninges [106].
B6D2F1 tumors also express components of MHC I and
II molecules [108]. Overall, mice bearing B6D2F1 tu-
mors have demonstrated a mean survival of approxi-
mately 51 days when intracranially injected with 1x10°
cells/5 pl [106].

Applications in immunotherapy research for GBM

One application of this model has been for the analysis
of effects from treating tumors with cationic liposomal
non-coding plasmid DNA complexes (EV-CLDC), which
demonstrated inhibition of tumor growth (p<0.0001)
[108]. In addition, intratumoral injections of vaccines
with herpes simplex viruses, engineered to secrete IL-12,
have been shown to promote significant anti-tumor ac-
tivity, with immune cell infiltration, and minimal toxicity
[109,110]. As a relatively new model, however, additional
study is needed to reveal the full range of this model’s
applications.

Summary and conclusion
Animal models have been indispensable for the study of
gliomagenesis, glioma progression, and experimental

Table 1 Immuno-competent syngeneic murine models of glioma

Cell line Host Induction Histology

Specific and potential applications in Refs

immunotherapy

P560 VM/Dk Spontaneous  Anaplastic Astrocytoma

CT-2A C57BL/6  Chemical Anaplastic Astrocytoma

GL261 C57BL/6  Chemical GBM/Ependymoblastoma

GL26 C57BL/6  Chemical GBM/Ependymoblastoma

4C8 B6D2F1  Transgenic Oligodendroglioma, Astrocytoma

- Vaccine studies (e.g. DQ) 13, 31-38
« Gene therapy studies (e.g. IL-2, CD70)

« Reversal of immunosuppression in glioma

(e.g. TGF-B)
- Tumor stem cells (BTSCs) 39-63

« Reversal of immunosuppression in glioma
(e.g. TGF-B, PTEN)

« Tumor stem cells (BTSCs) 10, 35, 60, 64-99
« Vaccine studies (e.g. dendritic cells)

- Gene therapy studies (e.g. IL-2)

- Adoptive T cell, antibody, and T,y depletion studies

» Reversal of immunosuppression in glioma
(e.g. TGF-B, PTEN)

« Vaccine studies (e.g. dendritic cells) 64, 66, 100-105

- Gene therapy studies (e.g. IL-12)

+ Treq depletion studies

+ Chemo-immunotherapy

- Vaccine studies (e.g. HSV) 106-110

« Gene therapy studies (e.g. plasmids)

Refs = References; DC = Dendritic Cells; IL-2 = Interleukin-2; IL-12 = Interleukin-12; CD70 = Cluster of Differentiation70; TGF-f = Transforming Growth Factor-(3;
BTSC = Brain Tumor Stem Cell; PTEN = Phosphatase and Tensin Homolog; GBM = Glioblastoma; T = Regulatory T Cell; HSV = Herpes Simplex Virus.
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therapies. Transplant models offer the convenience of
predictable tumor location and growth rate while facili-
tating the study of interactions between gliomas and the
host immune system [111]. However, it is important to
note that all animal models have certain deficiencies that
place limitations on their use, [20] and knowledge of
these, as well as model strengths, is essential for obtain-
ing preclinical results that are meaningful for clinical
translation [20].

The five syngeneic immunocompetent murine models
reviewed, as summarized in Table 1, recapitulate certain
histologic and biological characteristics of human astro-
cytomas and GBM, and their use of immunocompetent,
syngeneic hosts make them well-suited for studying gli-
oma immunology and a range of experimental immuno-
therapies. Preclinical findings from these murine models
have already been translated to clinical trials in human
glioma patients. For example, immunotherapeutic treat-
ments utilizing DC vaccines pulsed with whole tumor
homogenate [112] or tumor-specific peptides, such as
for EGFRVIII, [113-115] owe their translational origins to
successful studies using the GL261 model [84,116-119].
Other clinical trials for targets such as TGF-p [120,121]
and gene therapeutic approaches [122] also have origins in
preclinical studies using the SMA-560 [123] and GL261
models, [124,125] respectively.

Contemporary literature indicates that the GL261
model has been most frequently used. However, further
research using SMA-560, CT-2A, GL26, and 4C8 tumors
seems likely to reveal additional glioma immunotherapy
applications for these models as well. Given the promise
of immunotherapy as part of a multimodal treatment
paradigm for GBM, such in vivo models will continue to
prove invaluable in the future.
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