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Abstract

Background: Dendritic cells (DCs) are important mediators of anti-tumor immune responses. We hypothesized that
an in-depth analysis of dendritic cells and their spatial relationships to each other as well as to other immune cells
within tumor draining lymph nodes (TDLNs) could provide a better understanding of immune function and
dysregulation in cancer.

Methods: We analyzed immune cells within TDLNs from 59 breast cancer patients with at least 5 years of clinical
follow-up using immunohistochemical staining with a novel quantitative image analysis system. We developed
algorithms to analyze spatial distribution patterns of immune cells in cancer versus healthy intra-mammary lymph
nodes (HLNs) to derive information about possible mechanisms underlying immune-dysregulation in breast cancer.
We used the non-parametric Mann–Whitney test for inter-group comparisons, Wilcoxon Matched-Pairs Signed
Ranks test for intra-group comparisons and log-rank (Mantel-Cox) test for Kaplan Maier analyses.

Results: Degree of clustering of DCs (in terms of spatial proximity of the cells to each other) was reduced in TDLNs
compared to HLNs. While there were more numerous DC clusters in TDLNs compared to HLNs,DC clusters within
TDLNs tended to have fewer member DCs and also consisted of fewer cells displaying the DC maturity marker
CD83. The average number of T cells within a standardized radius of a clustered DC was increased compared to
that of an unclustered DC, suggesting that DC clustering was associated with T cell interaction. Furthermore, the
number of T cells within the radius of a clustered DC was reduced in tumor-positive TDLNs compared to HLNs.
Importantly, clinical outcome analysis revealed that DC clustering in tumor-positive TDLNs correlated with the
duration of disease-free survival in breast cancer patients.

Conclusions: These findings are the first to describe the spatial organization of DCs within TDLNs and their
association with survival outcome. In addition, we characterized specific changes in number, size, maturity, and T cell
co-localization of such clusters. Strategies to enhance DC function in-vivo, including maturation and clustering, may
provide additional tools for developing more efficacious DC cancer vaccines.
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Background
There is growing evidence that the immune system
naturally responds against cancer. In a series of 1919
cases of primary ductal and lobular infiltrating breast
carcinomas, a strong positive correlation was found
between survival rates and the presence of lymphocytes
at the tumor site [1]. More recently, gene expression
analysis of 1781 primary breast cancer samples showed
that the presence of a functional T cell metagene signa-
ture predicted a favorable prognosis in ER-negative and
HER2-positive breast cancers [2]. In yet another study
[3], multivariate analysis revealed that infiltration of
primary breast tumors with mature dendritic cells (DCs)
had independent favorable prognostic relevance in breast
carcinomas.
An anti-tumor response is elicited when DCs present

tumor antigens to T cells leading to activation and
proliferation of cancer-specific T cells. Over the past
decade, there has been considerable effort made to
characterize DC populations in patients with cancer.
Peripheral blood DC numbers are shown to be altered in
patients with head and neck, breast, colorectal, gastric,
lung, cervical, endometrial, and renal cell carcinomas
[4-6]. Low numbers of DCs within the tumor correlated
with poor clinical outcome in several different cancers
including breast, colorectal, gastric, esophageal, thyroid,
and bladder transitional cell carcinomas [7-9].
Beyond numbers, the maturation status of DCs also

plays an important role in determining the nature of an
immunologic response. Mature DCs are capable of
eliciting an effective “immunogenic” response. While
immature DCs can process and present antigen in the
context of MHC class I molecules, this results in the
induction of a “tolerogenic” response [10]. There is
strong evidence that cancer affects DC maturation and
differentiation. In primary breast tumor masses, DCs
interspersed within the tumor bed usually lack matur-
ation markers [11,12]. Breast tumor-derived factors such
as prostanoids [13], macrophage inhibitory protein 3
alpha [11], and spermine [14] have been found to correl-
ate with decreased DC maturation.
One of the pivotal locations to examine immune-

tumor interactions is the tumor-draining lymph node
(TDLN). It is the site where tumor antigens are typic-
ally first presented to the immune system and a crit-
ical initial decision between immune activation and
tolerance is made. In a prior study, our group found
significant decreases in immune cell populations within
breast cancer non-sentinel lymph nodes (NSLNs), spe-
cifically in CD4+ T cells and CD1a+ DCs, and discov-
ered that these changes strongly correlated with clinical
outcome [15].
The aims of the present study were to examine the

spatial distribution of immune cells within TDLNs as
compared to HLNs, determine if these spatial patterns
are associated with clinical outcome, and apply quantita-
tive methods to characterize the spatial organization of
these cells in vivo. To this end, we hypothesized that the
spatial distribution of immune cells within TDLNs could
also be altered by cancer and could provide additional
information about the underlying tumor-immune inter-
play. One such spatial phenomenon described in the
literature is that of “clustering” behavior seen in the DC
population. Several studies have detailed aggregations of
DCs, both in-vitro and in-vivo, noting functional proper-
ties associated with cluster size and maturation levels
[16-18]. Alterations in DC clustering were associated
with autoimmune diseases in murine models and
humans [16-18]. We thus focused our analyses on the
spatial organization of immature DCs, mature DCs, and
T cells within breast cancer TDLNs and compared them
to cell distributions in healthy lymph nodes (HLNs). We
found that DCs in HLNs tend to aggregate in large clus-
ters of mature cells, whereas DCs in TDLNs tend to
remain either unclustered or form smaller clusters with
fewer mature cells. This clustering behavior appears to
be associated with an increased number of proximal T
cells co-localized to a clustered DC compared to an
unclustered DC. Importantly, a higher degree of DC
clustering within TDLNs correlated with better clinical
outcome in breast cancer patients.

Methods
Study patients
59 breast cancer patients aged 32–80 years, treated at
Stanford University Medical Center between 1995 and
2011 were included in this study. For controls, seven
intramammary lymph nodes were obtained from healthy
prophylactic mastectomy and breast reduction patients
aged 29–48 years old (median: 40) treated at Stanford
University Medical Center between 2001 and 2007.
These tissue samples were acquired from the Stanford
Pathology Department archive as coded specimens
under a protocol approved of by the Stanford University
Medical Center Institutional Review Board (IRB). In
addition, 6 breast cancer patients, aged 37–54, treated
between 1995 and 2009 at the University of Vermont
Fletcher Allen Breast Care Center were included in the
study. At the time of tissue acquisition by lymph node
biopsy, all participants were untreated and were without
previous recorded history of cancer or autoimmune
disease. Initial diagnoses were made by needle aspiration
or core biopsy for most cases. Final diagnoses were
confirmed by pathologic evaluation of the excised tissue
specimen. Following appropriate surgical intervention,
all patients received adjuvant radiation or chemotherapy
per recommendations by their primary treatment physi-
cians. Minimal clinical follow up for all patients was 5
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years after diagnosis unless patients relapsed within the
first 5 years. A privacy notice informed patients that
their medical records could be used for scientific re-
search without their authorization, upon IRB approval.
The confidentiality of patients’ identifying information
was protected at all times, with data gathered during the
study not to influence the treatment of the subjects and
their well being.

Tissue preparation and immunostaining
Tissue samples were acquired as 3μm-thick serial cuts
via microtome from formalin-fixed paraffin-embedded
blocks. Antigen retrieval was then achieved using Diva
Decloaker (Biocare Medical, Concord, CA). Two multi-
color immunohistochemistry (IHC) panels were devised
to simultaneously visualize the relative locations of im-
mature DCs, mature DCs, T cells, tumor cells, and the
nuclei of other cells not specifically stained for by anti-
bodies. IHC was performed on serially sectioned tissue
specimens.
Breast cancer cells were identified by pan-cytokeratins

AE1/AE3 positivity, immature DCs by CD1a positivity
and CD83 negativity, mature DCs by CD83 positivity,
and T cells by CD3 positivity. Primary antibodies utilized
included pan-cytokeratin (mouse monoclonal, clones
AE1/AE3, 1:200 from Biocare), CD1a (mouse monoclo-
nal, clone CD1a007, 1:50 from Biocare), CD83 (mouse
monoclonal, clone HB15a, 1:4000 from Beckman Coulter,
Marseille, France), and CD20/CD3 (mouse monoclonal,
clone L26/rabbit monoclonal, clone SP7 from Biocare
Medical) double stain cocktail (although analysis of B cells
was not included in this study). Secondary antibodies used
were Mach 2 Mouse AP-Polymer Detection System
(Biocare) for CD1a and pan-cytokeratins, Mach 2 Mouse
HRP (Biocare) for CD83, and Double Stain 2 (anti-mouse
HRP, anti-rabbit ALP cocktail, Biocare) for CD3+CD20.
Chromogens utilized were NBT-BCIP (Dako, Carpinteria,
CA) for pan-cytokeratins, Vulcan Fast Red (Biocare) for
CD1a, DAB (Biocare) for CD83, Ferangi Blue (Biocare) for
CD3. Denaturing solution (Biocare) was used between
each stain to clear residual reagent left from the previous
sequence. Each slide was also counterstained with
hematoxylin (Biocare) to visualize all nuclei. Optimization
of antibody concentration and incubation time was
performed using tonsil control tissue.

Imaging
Processed and stained slides were imaged using a
custom-built automated high-resolution multispectral
imaging system (CRi Vectra™, Woburn, MA). This setup
is capable of capturing digital images at 200×, outputting
data sets of hundreds of Tagged Image Files (TIF) which
can be stitched together to recreate a whole tissue
section. Vectra™ images each subject at increments of 12
wavelengths between 420 to 720nm, then utilizing user-
directed examples of each chromogen from a training
set to spectrally un-mix the chromogen signatures into
independent channels.

Image analysis
Cell classification
The files created by Vectra™ were loaded into GemIdent,
a custom statistical image segmentation program using
machine-learning to identify/classify distinct cell types
and quantify them [19]. The software accomplishes this
task by using iterative trainings by an operator to build a
classification library. GemIdent is then able to apply the
user-defined examples in its library to automatically
classify all cells found in a loaded data set. Maps are
then constructed by the program, indicating the type,
number, and Cartesian (x, y) coordinates of identified
cells on each slide. Factors taken into account by the
system include color, size, and morphological features of
marked cells. The number of training examples needed
depends on the integrity of the tissue and quality of IHC
staining, with typical tissue sections requiring between
50 and 200 examples per slide [20].

Defining DC clusters
To quantitatively analyze the spatial patterns of DCs
identified by GemIdent, we applied the density-based
clustering (DBC) algorithm of Chen et al. [21] to define
and identify “clusters” of DCs. Clustering, by definition,
is a classification of an input set S of objects into groups
(i.e., subsets of S) based on certain criteria, such that the
objects in the same cluster are more similar to each
other according to the specified partitioning criteria than
to objects in different clusters. The DBC algorithm
groups DCs that are close to each other in Euclidean
distance into clusters while ignoring “isolated” DCs (i.e.,
the DCs that do not belong to any cluster), using an ap-
proach which assesses the density of nearby DCs in the
neighborhood of each DC. The clusters determined by
the DBC algorithm are mutually disjoint (i.e., no two
different clusters share any common element).
The main concept of the DBC algorithm is defined as

follows:
Input: A point set S.
Output: A collection of clusters C1, C2, …, Ck of S.
Parameters: R (a radius for specifying a circular region

for the neighborhood) and D (for the density of DCs
within the neighborhood).

1. For each point p ∈ S, count the number n(p) of
points of S inside the circle C(p) of radius R centered
at p; if the number n(p) ≥ D, then all the points of S
∩ C(p) are said to be clustered, and they are assigned
the same cluster label;
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2. For any two clusters Ci and Cj, if Ci ∩ Cj ≠ ϕ, then
group Ci and Cj into the same cluster;

3. Any unclustered point of S is considered as “noise”
and is discarded.

For two chosen parameters R and D, if the circle C of
radius R centered at any DC contains at least D DCs,
then all DCs in the circle C are considered part of a
cluster. To prevent double counting, if two clusters de-
termined by the algorithm share any common DCs, then
they are merged into one cluster. If any DC does not be-
long to any cluster at the end of the clustering process,
then it is considered as isolated or “unclustered”. In
studying the properties and patterns of DC clusters, iso-
lated DCs are not taken into account (Additional file 1).
Clustering results were computed using different pairs

of R and D values, comparing the results against a train-
ing set of six randomly-selected tissue slides containing
DC aggregations in parafollicular zones as identified by a
biologist. The pair of parameters that yielded the best
match was selected. Based on the optimization set, a
circle of radius R = 250 (in pixel units of GemIdent out-
put images) and density value D = 5 were chosen.

DC-T interactions
DCs interact with T cells in lymph nodes to initiate cell-
mediated immune responses. Two-photon studies have
described T cells moving in a looping, “orbital” fashion
within lymph nodes, making physical contacts with DCs
[22]. A T cell often needs to make multiple such connec-
tions with DCs at their dendritic projections in order to
find an appropriate antigenic partner. To define a DC to
T cell “contact”, we set a co-localization radius of a DC
and T cell to be 100 pixels, which is approximately the
diameter of a DC (including its dendrites) in the output
images of our digital histology system. Since a T cell
must enter a theoretical influence radius of a DC in
order to make possible physical contact with it, we de-
fined any T cell within 100 pixels of its nearest DC as
being associated with that DC. All such T cells within
this radius of a clustered DC would be defined as “clus-
tered”. Obviously, those not within 100 pixels of a DC
were considered unassociated. Note that our model ig-
nores other methods of influence DCs exert on T cells
(e.g., soluble attractive factors), considering only the po-
tential for physical associations within the 100-pixel
range.

Statistical analysis
The non-parametric Mann–Whitney Test was applied for
inter-group comparisons and the Wilcoxon Matched-
Pairs Signed Ranks test was utilized for intra-group com-
parisons. To compare the number of years of disease-free
survival for patients with different DC parameters, only
those patients who had a minimum follow-up period of 5
years from the date of surgery (range: 5.5 years to 12
years) and had no diagnosed concurrent cancers or
neoplastic processes at the time of breast cancer diagnosis
were analyzed. Furthermore, only patients whose total
percentage of DCs (out of all counted cells in a lymph
node) was in the center 90% range (i.e. above the 5th per-
centile and below the 95th percentile) were considered for
the survival analysis. For each of the DC parameters con-
sidered, patients were divided into two groups based on
the value of the parameter being considered. To avoid
introducing spurious findings due to biased selection of
thresholds, the median value was always chosen to divide
the patients into two equally-sized groups. Kaplan-Meier
curves were plotted to visually inspect the survival
difference between the two groups and the log-rank
(Mantel-Cox) test was applied to determine the statistical
significance of the difference. The GraphPad Prism 5.0 (La
Jolla, CA) software package was used for all our statistical
analyses. A p-value <0.05 was considered a statistically
significant difference in these calculations.

Results
Patient, tumor, and lymph node attributes
Clinicopathologic characteristics of the study patients
and tissue samples, including number, age, tumor size,
grade/stage, molecular subtype, and steroid receptor sta-
tus are shown in Table 1. Nodes were segregated into
three groups: 50 were tumor-free non-sentinel lymph
nodes (NSLN-), 22 were tumor-invaded non-sentinel
lymph nodes (NSLN+), and 7 were healthy control nodes
(HLNs). Of the breast cancer patient lymph nodes, 7
NSLN- and NSLN+ were pairs from the same patients. All
patients had tumor-positive sentinel nodes on dissection.

DC number, maturity, and spatial organization are altered
in breast cancer TDLNs compared to HLNs
To determine how DCs in TDLNs may differ from those
of HLNs, we assessed alterations in DC number and ma-
turity between these groups. First, all stained slides were
microscopically examined, and it was observed that
semi-quantitatively, HLNs had a greater number of DCs
in each section than NSLN- and NSLN+. The pattern
was seen between HLNs and the TDLNs of breast
cancer patients who remained disease-free or relapsed
during a five-year follow-up period post-treatment. HLN
DCs appeared to form larger, more densely populated
“clusters” than their TDLN counterparts (Figures 1 and 2).
Given these qualitative differences, immune cell numbers
and spatial distributions were analyzed quantitatively using
a novel quantitative, spatial analysis imaging approach
[21]. Since there are variations in size and cell number
among lymph nodes, we used DCs as a percentage of total
cells in a node (calculated as a sum of all T cells, DCs, and



Table 1 Clinical pathological characteristics associated
with NSLNs

Tumor free
NSLNs (NSLN-)

Tumor invaded
NSLNs (NSLN+)

Number of patients n=50 n=22

Median age of patients (years) median : 47
range: 32-80

median: 54
range: 32-76

Primary tumor size (cm) median: 2.05
range: 0.30-7.00

median: 2.15
range: 0.80-7.00

Stage

I 5/50 (10%) …

IIA 20/50 (40%) 4/22 (18.2%)

IIB 13/50 (26%) 4/22 (18.2%)

III 7/50 (14%) 9/22 (41%)

Unknown 5/50 (10%) 5/22 (22.7%)

Grade

I 8/50 (16%) …

II 30/50 (60%) 8/22 (36.3%)

III 9/50 (18%) 9/22 (41%)

Unknown 3/50 (6%) 5/22 (22.7%)

Molecular subtype

Luminal A 23/50 (46%) 8/22 (36.3%)

Luminal B 10/50 (20%) 3/22 (13.6%)

HER2 2/50 (4%) 4/22 (18.2%)

Basal 3/50 (6%) 2/22 (9%)

Unknown 12/50 (24%) 5/22 (22.7%)

ER status

Positive 41/50 (82%) 15/22 (68.1%)

Negative 6/50 (12%) 7/22 (31.9%)

Unknown 3/50 (6%) …

PR status

Positive 38/50 (76%) 13/22 (59%)

Negative 9/50 (18%) 9/22 (41%)

Unknown 3/50 (6%) …

HER2/neu expression

Positive 12/50 (24%) 7/22 (31.8%)

Negative 26/50 (52%) 10/22 (45.5%)

Unknown 12/50 (24%) 5/22 (22.7%)
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other hematoxylin-stained cells identified and counted by
GemIdent) to account for this. Total DCs were counted as
all cells in a node that expressed CD1a and/or CD83 (to
account for both immature and mature DC populations).
We found that DCs were significantly decreased in both
NSLN- (median value: 0.38%, p<0.01) as well as NSLN+
(0.29%, p<0.01) compared to HLNs (1.06%, Figure 3A).
The percentage of mature DCs in both NSLN- and NSLN+
(defined as the percentage of total DCs in each node that
was CD83-expressing) was also significantly reduced
compared to healthy controls (median value: 37.35%,
p<0.001 and 37.89%, p<0.001 respectively vs. 89.00%)
(Figure 3B). Moving beyond numbers of individual cell
types, we hypothesized that spatial organization of DCs
may also be altered. We quantified the clustering behavior
of DCs using the DBC algorithm we developed. As with
total overall DC number, we took into account variation
in lymph node size and evaluated the degree of clustering
in each node as the percentage of total DCs that were clas-
sified as in a cluster by our algorithm (Figure 3C). We ob-
served a stepwise reduction in DC clustering, as a trend
(p=0.07) towards decreased clustering in DCs from
NSLN- (88.89%) compared to HLNs (93.05%), a significant
difference in NSLN+ (69.99%) versus healthy nodes
(p<0.01), and a significant reduction in NSLN+ versus
NSLN- (p<0.01). Importantly, DC clustering was not
merely a reflection of the percentage of DCs in a lymph
node, as there was a significant reduction in DC clustering
in NSLN+ nodes even though the percentage of DCs be-
tween NSLN+ and NSLN- nodes were similar (Figure 3A).

DCs in TDLNs are organized into smaller, less mature
clusters compared to HLNs
Alterations of DC clusters in the cancer state were exam-
ined by comparing the number of clusters, average num-
ber of DCs per cluster, and percentage of mature DCs per
cluster between TDLNs and HLNs. First, the number of
clusters in each node was computed, and to account for
the lymph node size variation, this value was normalized
to the total number of DCs in the node. We found that
the relative number of clusters in each node was signifi-
cantly increased in NSLN- (median value: 8.51×10-3 units,
p<0.05) and NSLN+ (14.05×10-3 units, p<0.01) compared
to HLNs (3.81×10-3 units, Figure 4A). However, DC clus-
ters in TDLNs were found to contain fewer cells, as the
mean number of DCs per cluster was significantly de-
creased in NSLN- (104 DCs, p<0.05) and NSLN+ (55
DCs, p<0.01) compared to healthy nodes (244 DCs,
Figure 4B). This stepwise reduction was also observed in a
trend found between NSLN- and NSLN+ (p=0.07). The
maturation of the DCs in clusters was also altered in the
nodes of cancer patients, with the percentage of mature
DCs out of all clustered DCs in each node reduced signifi-
cantly in NSLN- (31.77%, p<0.001) and NSLN+ (30.73%
p<0.001) compared to HLNs (88.86%, Figure 4C).

T cells surrounding a clustered DC is reduced in NSLN+
compared to HLNs
To investigate if DC clustering is associated with T cell
behavior, we developed a DC-T co-localization algorithm
examining the proximity of T cells to DCs within a pre-
determined influence range. The mean number of T cells
found within a 100-pixel radius of a DC was significantly
reduced in unclustered DCs compared to clustered DCs



Figure 1 Immunohistochemistry-Stained Images of DC Clusters. Immunohistochemistry stained images of DC (dendritic cell) clusters from
two each healthy, disease-free and relapsed patients. Stains include: Magenta (CD1a, Immature DCs), Brown (CD83, Mature DCs), Blue (Hematoxylin,
Non-DC cells). The dark purple cells are pan-cytokeratin-stained tumor cells. Note the increased number and density of DCs in control nodes. All
images were taken at 200× resolution.

Figure 2 High-resolution IHC Images of DC Clusters in two staining panels. Immunohistochemistry stained images of DC clusters from
healthy, NSLN- and NSLN+ patient samples, serially stained in both a DC maturity assessment panel and a T cell colocalization panel. Stains for the
maturity panel include: Red (CD1a, Immature DCs), Brown (CD83, Mature DCs), Blue (Hematoxylin, Non-DC cells). Stains for the T cell colocalization
panel include: Magenta (CD1a, Immature DCs), Dark Blue (CD3, T cells), Brown (CD20, B cells), Light Blue (Hematoxylin, other cells). The dark purple cells
in both panels are pan-cytokeratin-stained tumor cells. All images were taken at 400× resolution.
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Figure 3 DC number, maturity, and organization are altered in
breast cancer TDLNs compared to HLNs. (A) Percentage dendritic
cells (DCs) out of all T cells, DCs, and other hematoxylin-stained cells
identified in a node (%DCs), (B) Percentage of DCs expressing CD83
out of all DCs expressing CD83 and/or CD1a (% mature DCs) and
(C) Percentage of DCs that formed clusters out of all DCs in a node
(% clustered DCs) were calculated in sections of healthy lymph nodes:
HLN (n=7), Tumor-free non-sentinel lymph nodes: NSLN- (n=50) and
Tumor-involved non-sentinel lymph nodes NSLN+ (n=22). ** denotes
p<0.01 and *** denotes p<0.001.
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(Figure 5A). This phenomenon was consistent within all
our study lymph node populations: HLN (79 T cells sur-
rounding clustered DCs vs. 61 T cells surrounding
unclustered DCs, p<0.05), NSLN- (81 T cells surrounding
clustered DCs vs.61 T cells surrounding unclustered DCs,
p<0.001), and NSLN+ (60 T cells surrounding clustered
DCs vs. 42 T cells surrounding unclustered DCs, p<0.001),
which suggested that DCs are co-localized with T cells to a
greater extent when organized in clusters. Furthermore,
we found that there were significantly (p<0.01) fewer
T cells localized within the radius of clustered DCs in
NSLN+ (60 T cells) compared to healthy nodes (79 T cells,
Figure 5Bi). To exclude the possibility that this finding
may be simply a reflection of the reduced number of
T cells in tumor-invaded lymph nodes, we also calcu-
lated T cells as a percentage of total cells in the nodes of
each population. This showed that the percentage of total
T cells in HLNs, NSLN-, and NSLN+ were not signifi-
cantly different (Figure 5Bii), suggesting that the reduced
T cells within the radius of clustered DCs in NSLN+ was
not merely a reflection of fewer T cells in these nodes.

DC clustering and maturation in NSLN+ nodes correlate
with duration of disease-free survival
To determine if alterations in DC organization within
TDLNs were associated with clinical outcome, survival
analyses were performed to examine the relationships
between DC parameters and patient disease-free remis-
sion. Using the median value of percent mature DCs per
node to divide the patients into low (below median) and
high (above median) groups, we found that the high
group had a statistically significantly longer (p<0.028)
duration of survival compared to the low group
(Figure 6A). This difference was not observed to be sta-
tistically significant in NSLN- nodes. Similarly, we then
grouped the patients into low (below median) and high
(above median) groups based on the percentage of clus-
tered DCs of all DCs in each node. There was a statisti-
cally significant (p=0.034) disease-free survival difference
between the two groups (Figure 6B). DC clustering and
maturation in NSLN+ nodes both correlated with dur-
ation of disease-free survival in our breast cancer patient
population. To determine if clinical characteristics or
medical treatment provided to groups above and below



Figure 4 DCs in TDLNs are organized into smaller, less mature
clusters compared to HLNs. (A) Number of DC clusters normalized
to the total number of DCs in a node (relative number of DC clusters)
(B) average size of a DC cluster in a node (calculated by taking an
average of the number of DCs that make up individual DC clusters in a
node) and (C) percentage of CD83 positive DCs of all clustered DCs in
a node (% mature DCs out of all clustered DCs) were calculated in
sections HLN (n=7), NSLN- (n=50) and NSLN+ (n=22). *denotes p<0.05,
** denotes p<0.01 and *** denotes p<0.001.
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the median could account for the survival difference, we
examined hormone receptor status, Her2/Neu expression,
radiation therapy, and chemotherapy regimens of these
cohorts. No significant differences were observed between
either of the two comparison groups for those variables
(Additional file 2, Additional file 3). Importantly, DC clus-
tering was found to be independent of DC maturity status
in the NSLN+ group (R2=0.04, p=0.416, Figure 6Ci). Fur-
thermore, the percentage of mature DCs did not differ
significantly between unclustered and clustered DC popu-
lations (p=0.425, Figure 6Cii). Therefore, DC clustering is
not merely a function of maturation or vice versa.

Discussion
DCs perform a central role in the initiation and regula-
tion of anti-tumor immunity. Therefore, a number of
studies have evaluated DC characteristics in the context
of cancer. The majority of findings have shown that DC
frequency, maturation status, and function are reduced
in the cancer state. These findings are clinically relevant,
as these were associated with a worse prognosis in
patients [23]. These observations underlie the scientific
rationale for devising immunotherapeutic strategies to
enhance DC functionality in cancer [24]. A major mile-
stone in DC based immunotherapy was the FDA
approval of PROVENGE (sipuleucel-T; a dendritic cell-
based vaccine for metastatic, hormone refractory pros-
tate cancer). However, Phase III clinical trials showed
only a modest improvement in median survival (by 4.1-
months) in the sipuleucel-T group vs. the placebo group
[25]. Therefore, there is substantial room for improve-
ment. In order to achieve a long-lasting and effective
anti-tumor response, it is important to recognize and de-
velop immunotherapeutic strategies that address under-
lying tumor-derived immune dysfunction.
The immune status of TDLNs is emerging as an

important factor in determining the development of
subsequent immune responses to cancer. This present
study extends our previous observation that a significant
decrease in DC number in breast cancer NSLNs (com-
pared to control lymph nodes) predicted clinical out-
come [15]. Moving beyond numerical changes, we
investigated another level of complexity in tumor in-
duced immune dysfunction: the effect of cancer on the



Figure 5 T cells surrounding a clustered DC is reduced in NSLN+
compared to HLNs. (A) Average number of T cells surrounding
clustered DCs (c) versus unclustered DCs (un) (calculated using an
algorithm mentioned in the Methods section) (B) (i) Average
number of T cells surrounding a clustered DCs and (ii) Percentage
T cells out of all T cells, DCs, and other hematoxylin-stained cells
identified in a node (%T cells) were calculated in sections of HLN
(n=6), NSLN- (n=33) and (n=14). ns denotes p>0.05, * denotes
p<0.05 and *** denotes p<0.001.
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spatial organization of immune cells within TDLNs. We
hypothesized that since lymph nodes represent special-
ized immune organs, spatial orientation and distribution
of immune cells within the nodes could affect the gener-
ation of effective immune responses. This study comes
at a time when there is a growing movement to incorp-
orate the immune profiles of tumor tissues into the
prognostic evaluation of patient pathology specimens
[26]. The proposed “immune score” methodology in-
cludes not only the presence and number of immune
cells, but also their general localization within tumors.
Our findings provide new prognostic indicators from
TDLN samples and insights into spatial distribution of
immune cells in greater detail.
To this end, we developed a quantitative, spatial image

analysis approach to histology. This begins with high di-
mension (4-color) immunohistochemistry stained tissue
samples and imaging with an automated high-resolution,
whole-section multi-spectral scanning system. The
resulting output files were analyzed using a custom soft-
ware suite (GemIdent), which utilizes user-driven machine
learning to identify and determine the spatial localization
of various indicated cell types. Lastly, we developed novel
spatial analysis algorithms to quantify the spatial
organization of tumor and immune cells within tissue.
These methods have been evaluated as being both efficient
and accurate when dealing with immunohistochemistry,
whole-slide imaging, and cancer tissue samples [27,28].
Previous histological studies have obtained only qualitative
or semi-quantitative results, since they base their findings
on observing either a limited predetermined number of
microscopic fields per tissue specimen or only the most
densely populated cellular region of a lymph node. Our
approach provides a comprehensive and quantitative un-
derstanding of the entire tissue section.
We used CD1a as a marker of immature DCs, CD83 as

a marker for mature DCs, CD3 as a marker for T cells,
and pan-cytokeratins as a marker for breast cancer cells.
In human DCs, the cell surface expression of the CD83
protein is upregulated during the maturation process and
has also been shown to play an important role in the regu-
lation of DC-mediated immune responses [29]. CD83 ex-
pression in DCs within primary breast tumors was shown
to correlate directly with clinical outcome [3]. CD1a has



Figure 6 DC clustering and maturation in NSLN+ nodes correlate with duration of disease-free survival. Using the median value of
(A) percentage mature DCs or (B) percentage clustered DCs per node as cutoff, patients having NSLN+ nodes (n=19) were divided into two
groups (using exclusion criteria mentioned in the Methods section) with those above the median defined by the solid line and those below the
median by the dotted line. Kaplan-Meier curves were plotted showing the difference in duration of disease free survival between the two groups.
(C) (i) Linear regression analysis between %clustered DCs and %mature DCs in NSLN+ nodes (n=19) (ii) Percentage mature DCs were calculated
among clustered as well as unclustered DCs in NSLN+ nodes (n=19) ns denotes p>0.05.
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been used widely to identify myeloid DCs, and often to-
gether with S100, to define DC populations in breast
tumor tissues and TDLNs [15,30-32]. There is evidence
that CD1a may be involved in the presentation of tumor
specific glycolipids to T cells, inducing CD1a-restricted
tumor-specific T-cell responses [33].
A novel hypothesis of this study is that not only numer-

ical changes, but also spatial organization of DCs, may im-
pact immune function and clinical outcome in cancer.
Using novel spatial analysis algorithms, we found that
DCs in breast cancer NSLNs (especially in tumor-involved
NSLNs) were either unclustered or were organized into
smaller clusters with fewer mature DCs. In contrast, DCs
in HLNs were greater in number and had bigger clusters
predominantly composed of mature DCs. Importantly, the
extent of DC clustering in NSLN+ nodes correlated with
the duration of disease-free survival. In determining differ-
ential survival, this clustering behavior appears to be a
factor independent of DC maturity status, major tumor
characteristics, and major treatment regimens.
The phenomenon of DC clustering has been observed
by several other groups, but these studies were largely
qualitative in nature. Recently it was shown that during
acute rejection of kidney transplants, mature myeloid
DCs aggregate together in clusters, a behavior which
was correlated with the loss of renal function [17]. These
clusters were found in close proximity to T cells, sug-
gesting that DC clustering was associated with the ag-
gregation and activation of T cells with subsequent graft
rejection [17]. In a murine model of inflammatory bowel
disease, large intestinal DC aggregates were shown to
participate in the generation of regulatory T cells (Tregs)
[18]. Delemarre and colleagues carried out functional
studies of DC clustering in rats, showing that clustering
of rat splenic DCs (sDCs) led to an increase in DC
maturation and increase in T cell stimulating capabilities
in-vitro. Furthermore, they found that sDCs from
biobreeding diabetes-prone rat (a rodent autoimmunity
model) formed fewer and smaller clusters with modest
levels of maturation [16].
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To our knowledge, this is the first report on DC
spatial organization in the context of human cancer.
Prior studies on DC clustering suggested that 1) cluster-
ing is associated with DC maturation, and 2) clustering
increases interactions of DCs with T cells. Interestingly,
NSLNs that had a higher number of clustered DCs did
not necessarily have a higher number of mature DCs
and vice versa. This suggests that DC maturation and
DC clustering could impact on clinical outcome in
breast cancer patients independently. Furthermore, we
found that the average number of T cells located around
clustered DCs was significantly greater than the number
of T cells around unclustered DCs in all NSLNs and HLNs
analyzed. In addition, the average number of T cells
surrounding clustered DCs was significantly reduced in
tumor-invaded NSLNs compared to HLNs, even when the
overall percentage of T cells per node was similar between
the two groups. These findings suggest that either cluster-
ing makes DCs more effective at co-localizing with T cells
or that T cell interaction is a key factor influencing cluster
formation in DCs. Furthermore, DC clusters in tumor-
involved nodes may have a reduced capacity to interact
with and activate T cells compared to DC clusters in
healthy nodes. Such phenomena are not discernible by eye
and therefore would not have been appreciated without
the novel quantitative approach we developed to quantify
spatial distributions of cells.
The current study is limited by the lack of granularity

in regards to the subsets of investigated immune cell
types. A detailed investigation of different T cells (e.g.,
CD4+ T cells, CD8+ T cells, regulatory T cells) and DC
subsets (e.g., CD209+ and plasmacytoid DCs) in TDLNs
is ongoing and will further augment our understanding
of the functional significance of DC clustering. Never-
theless, given this novel finding that increased DC clus-
tering and maturation within TDLNs have a positive
impact on clinical outcome in breast cancer patients, the
next investigational steps should be aimed at devising
methods to enhance DC clustering in vivo to generate a
more robust anti-tumor response. There are reports
where DC clustering and maturation have been success-
fully enhanced in vitro using various signaling molecules
and cell surface receptor activation [34,35]. It would also
be important to identify specific tumor-derived factors
that impair clustering in vivo, and explore therapeutic
strategies to block them. Understanding the underlying
mechanisms of this novel discovery will help us induce a
more robust DC response to tumor antigens, paving the
way for more potent, efficacious anti-cancer DC vaccines.

Conclusions
Previous studies from our group and others have shown
that significant decreases in immune cell populations
arise in TDLNs of breast cancer patients, and that these
changes strongly correlate with clinical outcome. A
novel hypothesis of this study is that not only numerical
changes, but also spatial organization of DCs may im-
pact immune function and clinical outcome in cancer.
Using novel spatial analysis algorithms, we found that
DCs in healthy lymph nodes aggregate into large
clusters, predominantly composed of mature DCs. In
contrast, DCs in breast cancer TDLNs (especially in
tumor-invaded nodes) are either unclustered or orga-
nized into smaller clusters with fewer mature DCs.
Importantly, the extent of DC clustering in tumor-
invaded nodes correlated with the duration of disease-
free survival in patients. Furthermore, DC clustering
appeared to be an independent factor from DC maturity
status, tumor characteristics, or treatment regimens.
To our knowledge, this is the first report to demon-

strate that the spatial organization of DCs within TDLNs
impact clinical outcome in human cancer. These novel
results suggest that promoting DC maturation and clus-
tering in vivo could enhance the efficacy of DC-based
vaccines for cancer. Our work paves the way for further
investigational studies into mechanisms and better im-
munotherapeutic strategies against cancer.
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Additional file 1: The DBC algorithm used to define DC clusters.
Illustrating density-based clustering of DCs: Blue circles represent DCs, C:
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refers to a DC not classified as clustered by the algorithm.

Additional file 2: Clinical and therapeutic characteristics of survival
analysis in patients by DC maturity.

Additional file 3: Clinical and therapeutic characteristics of survival
analysis in patients by DC clustering status.
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