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Quantitative proteomic analysis in HCV-induced
HCC reveals sets of proteins with potential
significance for racial disparity
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Abstract

Background: The incidence and mortality of hepatitis C virus (HCV)-induced hepatocellular carcinoma (HCC) is
higher in African Americans (AA) than other racial/ethnic groups in the U.S., but the reasons for this disparity are
unknown. There is an urgent need for the discovery of novel molecular signatures for HCV disease progression to
understand the underlying biological basis for this cancer rate disparity to improve the clinical outcome.

Methods: We performed differential proteomics with isobaric labeling tags for relative and absolute quantitation
(iTRAQ) and MS/MS analysis to identify proteins differentially expressed in cirrhotic (CIR) and HCC as compared to
normal tissues of Caucasian American (CA) patients. The raw data were analyzed using the ProteinPilot v3.0.
Searches were performed against all known sequences populating the Swiss-Prot, Refseq, and TrEMBL databases.
Quality control analyses were accomplished using pairwise correlation plots, boxplots, principal component analysis,
and unsupervised hierarchical clustering. Supervised analysis was carried out to identify differentially expressed
proteins. Candidates were validated in independent cohorts of CA and AA tissues by qRT-PCR or Western blotting.

Results: A total of 238 unique proteins were identified. Of those, around 15% were differentially expressed
between normal, CIR & HCC groups. Target validation demonstrates racially distinct alteration in the expression of
certain proteins. For example, the mRNA expression levels of transferrin (TF) were 2 and18-fold higher in CIR and
HCC in AA as compared to CA. Similarly; the expression of Apolipoprotein A1 (APOA1) was 7-fold higher in HCC of
AA. This increase was mirrored in the protein expression levels. Interestingly, the level of hepatocyte nuclear
factor4α (HNF4α) protein was down regulated in AA, whereas repression of transcription is seen more in CA
compared to AA. These data suggest that racial disparities in HCC could be a consequence of differential
dysregulation of HNF4α transcriptional activity.

Conclusion: This study identifies novel molecular signatures in HCV-induced HCC using iTRAQ-based tissue
proteomics. The proteins identified will further enhance a molecular explanation to the biochemical mechanism(s)
that may play a role in HCC racial disparities.
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Background
Hepatocellular Carcinoma (HCC) is one of the few tu-
mors in which the incidence is on the rise worldwide,
especially in the United States (US) [1]. The increasing
incidence in the US is associated with the rise in hepa-
titis C virus (HCV) infection [2]. It is estimated that 3.2
million people in this country are infected with HCV; a
blood-borne disease linked to 12,000 US deaths a year
[3]. More concerning are projections that this rate will
quadruple in the next ten years, to over 40,000 cases per
year. Although a reliable value for HCV-positive individuals
is difficult to determine, the World Health Organization
(WHO) estimates that 3% of the world’s population – more
than 170 million people – are chronically infected, and that
300 million people are HCV carriers [4]. Following an
acute infection with HCV, the disease becomes chronic in
about 80% of cases. After 20–30 years of chronic infection,
20-30% of patients develop liver cirrhosis, which leads to
HCC in 80-90% of all cirrhotic livers [5].
Inequalities in disease prevalence, treatment, and out-

come make HCC an important minority health problem.
First, there are disparities in the prevalence of HCV in-
fection with African Americans (AAs) being twice as
likely to have been infected compared with Caucasian
Americans (CAs) [6]. Additionally, there are significant
disparities in access to HCV care for racial/ethnic minor-
ities [7]. Finally, AAs are less likely to respond to anti-
HCV therapy than CAs [8], and have a considerably
lower likelihood of receiving liver transplantation [9].
Therefore, there is a need for new prognostic markers to
understand the molecular mechanisms of HCC disease
progression, especially in the presence of cirrhosis, and
to establish the precise biological underpinnings of HCC
racial disparities. Currently, the most widely used sur-
veillance/diagnostic tests for HCC are ultrasound and
serum α-fetoprotein (AFP). The use of ultrasound is par-
ticularly subject to low sensitivity and specificity when
applied to cirrhotic patients [10]. In addition, serum
AFP levels may be normal in up to 40% of patients with
HCC, particularly during early stages [11], and elevated
AFP have been reported in patients with cirrhosis or ex-
acerbations of chronic hepatitis infection [12,13]. Thus,
the use of serum AFP as a diagnostic maker for HCC
has multiple limitations when applied to patients with
HCV. As a direct consequence of the limitations of these
two methods for assessing HCC there exists an urgent
need to identify additional biomarkers for prognosis and
detection of HCV induced HCC. High-throughput omics
technologies have been widely applied, aiming at the dis-
covery of candidate biomarkers for HCC staging, predic-
tion of recurrence and prognosis, and treatment selection.
For example, microarray analyses were used to identify
genes that are uniquely up- or down-regulated in HCC
tissue samples [14-16]. Although these studies have
provided important information for elucidating bio-
markers for HCC disease progression, they also pro-
vided limited diagnostic/prognostic values. In addition,
gene expression profiles of most of the discovered
genes did not correlate well with changes in protein
levels [17]. However, recent advancements in quantita-
tive and large-scale proteomic methods have been used
not only for discovery of clinically useful biomarkers
for HCC [18], but also in clarifying the molecular
mechanisms of disease pathogenesis by using body fluids,
such as serum [19,20], and tissue samples [21,22] and cul-
tured cells [23,24].
Since 80% of HCC patients in the US have cirrhosis due

to HCV infection, we aimed in the current study to identify
tissue protein patterns and differentially expressed protein
markers in patients with HCV cirrhosis (HCV+/HCC-)
and HCV-associated HCC (HCV+/HCC+) using iTRAQ
(Isobaric Tags for Relative and Absolute Quantitation)-
based comparative proteomic analyses to assess possible
roles of identified proteins in HCC racial disparities. Differ-
ential expression of selected, biologically interesting pro-
teins were then validated on two independent sets of liver
and tumor tissue samples from AA and CA patients by
immunoblot blot (WB) analysis and real-time PCR
(qRT-PCR).

Material and methods
Ethics statement
The Institutional Review Board at Washington State
University (WSU) approved the protocol of the current
study. Twenty-six snapped frozen tissue samples (8 included
in original analysis and 18 for target validation study) were
obtained from the Institutional Research Board (IRB)
approved University of Kansas Medical Center Liver Center
Tissue Bank. All specimens with anonymized identifiers
were histopathologically confirmed by a pathologist.

Tissue preparation and protein extraction
We studied 9 liver tissue samples from HCV+/HCC +
patients, 9 samples from HCV+/HCC- patients, and 8
normal liver samples HCV- de-identified. Relevant clin-
ical information on the patients is shown in Supplemental
Table 1. Tissues were prepared as described previously
[25]. All tissues were frozen at −80°C until use. Each tissue
sample was first frozen in liquid nitrogen and a tissue
powder was then generated. The tissue powder was
carefully collected and resuspended in RIPA lysis buf-
fer (Boston Bioproducts, Inc. Ashland, MA) supplemented
with one tablet of complete protease inhibitor cocktail
(Roche) and 1 mM DTT. About 500 ul of lysis buffer was
added to each tissue powder and then mixed by vortexing.
After centrifugation at 10,000xg for 10 minutes at room
temperature, the supernatant was retained as the solu-
bilized whole cell lysate. Retained lysates were acetone



Table 1 Real-time PCR primers

Gene Primer Sequence

TF Forward Primer 5'-ATGAACCAGCTTCGAGGCAA-3'

Reverse Primer 5'-AGAGGTTTACGTGGCTCAGG-3'

FLNA Forward Primer 5'-TGTCACAGGTGCTGGCATCG-3'

Reverse Primer 5-CGTCACTTTGCCTTTGCCTG-3'

APOA1 Forward Primer 5'-CAAGGTCAGCTTCCTGAGCG-3'

Reverse Primer 5'-CGTTTATTCTGAGCACCGGGAA-3'

18S rRNA Forward Primer 5'-GTAACCCGTTGAACCCCATT-3'

Reverse Primer 5'-CCATCCAATCGGTAGTAGCG-3'
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precipitated. To 250 ul of whole cell lysate a 6× volume
(1.5 ml) of ice-cold 100% acetone was added. Precipitated
proteins were then collected by centrifugation at 6,000xg for
10 minutes and pellets were briefly air-dried (1–2 minutes),
and then re-suspended in 10 mM TEAB (pH 8.5).
After mixing for 1–2 hours at room temperature the
re-solubilized proteins were centrifuged at 10,000xg for
10 minutes. The supernatant was retained as the solubi-
lized whole cell lysate used in the iTRAQ assay. Protein
concentration of each sample was determined using the
Pierce BCA Protein Assay Kit (Thermo Scientific, Rockford,
IL). and samples stored in aliquots at −80°C until use.
iTRAQ sample labeling
The 8-plex iTRAQ sample protocol (Applied Biosystems,
Foster City, CA) was utilized [26]. Briefly, 100 ug of
protein from each sample was reduced, alkylated then
digested with trypsin, prior to labeling with one of the
individual 8-plex-iTRAQ tags (Applied Biosystems,
Framingham, MA). The labeled samples were com-
bined, vacuum-evaporated, and stored at −20°C prior
to fractionation by strong-cation exchange (SCX) liquid
chromatography.
First dimension separation: strong cation exchange (SCX)
chromatography
Half of each pooled iTRAQ labeled sample (400 ug) was
added to 1.0 ml of SCX buffer A. After mixing well this was
centrifuged at 16,000xg for 5 minutes. The entire sample
was loaded with care taken to avoid any pellet at the bot-
tom of the tube. The peptides in the sample were separated
using an Agilent 1100/1200 HPLC with a POROS HS/20
column (4.6 mm × 100 mm). Buffer A was 10 mM
KH2PO4, 25% acetonitrile (v/v), pH 2.78. Buffer B is Buffer
A containing 1 M KCl as described previously [25]. The en-
tire unbound and bound gradient was collected across 96
fractions. Based on the chromatogram, 40 fractions cover-
ing all bound and eluted molecules were then run for sec-
ond dimension separation by LC MALDI-TOF/TOF.
Fractions were dried using a vacuum centrifuge as before
and each was re-suspended in reverse phase buffer A.

Second dimension separation: reverse-phase LC-MALDI-
TOF/TOF
The 40 SCX fractions were each analyzed by reverse-
phase (RP) nanoLC-MALDI-TOF/TOF. Peptides were
captured by microflow on an Acclaim PepMap100 C18
cartridge column (500 um i.d. × 5 mm, 5 um, 100A).
Peptides were then separated by nanoflow (300 nl/min)
over a 15.0 cm long Acclaim PepMap100 C18 column
(75 um i.d. × 15 cm, 3 um). Each SCX fraction was
printed to ~500 spots per plate with five SCX fractions
per plate and CHCA MALDI matrix (5 mg/ml stock
solution) mixed in by the Probot just prior to printing.
Mass spectrometry was performed on the separated and
printed peptides in the 4800Plus MALDI-TOF/TOF
Analyzer.

Mass spectrometry data collection parameters
Peptide MS spectra were captured using the reflector
positive mode. The mass window was between 800–
4000 Da with the focus mass at 2100. Approximately, 50
laser shots on 20 random spots per printed MALDI spot
were collected for a total of 1000 laser shots per spot.
The Interpretation Method used for MS/MS peak selec-
tion included the top 15 peptides across a three con-
secutive spot window above a S/N = 70. MS/MS spectra
were generated with the CID on (medium pressure) and
50 laser shots on 20 random spots (1000 shots in total)
were averaged per fragmented peptide.
The mass spectral data generated were then exported to

.txt files. The Peaks to Mascot function in the 4000 Series
Explorer™ (AB SCIEX) software was used with the follow-
ing settings to generate the data files (MS/MS peak filter
mass range = 60; precursor = −20; peak density = 5 peaks
per 200 Da; Min S/N = 5; Min Area = 50; max peaks/pre-
cursor = 40). There were 40 SCX fractions run; therefore,
40 .txt files with the MS and MS/MS peak list data are in-
cluded in the Exported data.rar (see Additional file 1).

Bioinformatics analysis
Protein identification and relative quantitation
The raw data were analyzed by the ProteinPilot v3.0
software (AB SCIEX) using the Paragon algorithm [27].
Searches were performed against a comprehensive data-
base generated from SwissProt, Refseq and TrEMBL
protein sequences. We generated a combined, redundant
database of all known human proteins in three publicly
available databases. Human proteins from UniProtKB/
SwissProt and TrEMBL (http://www.uniprot.org/uniprot/?
query=organism:9606+keyword:1185) and the NCBI RefSeq
human proteins (http://www.ncbi.nlm.nih.gov/protein) were
used and combined into one file containing 121,237

http://www.uniprot.org/uniprot/?query=organism:9606+keyword:1185
http://www.uniprot.org/uniprot/?query=organism:9606+keyword:1185
http://www.ncbi.nlm.nih.gov/protein
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protein sequences. A total of 60,250 MS/MS spectra were
generated that were combined and searched against hu-
man database file using Protein Pilot 3.0. The sample type
was set to iTRAQ 8plex (peptide labeled). Cys alkylation:
MMTS; Digestion: trypsin; and the ID focus: Biological
modifications and amino acid substitutions. Using these
criteria 20,791 spectra (34.3%) were identified with 95%
confidence.
The data were normalized for loading error by bias

correction and background correction using ProteinPilot
3.0. The confidence value for each peptide was calculated
based on agreement between the experimental and theor-
etical fragmentation patterns. Each protein was provided
with a confidence score (0% to 100%) based on confidence
scores of its constituent peptides with unique spectral pat-
terns. The proteins with confidence score greater than
90% and with at least 1 peptide of 95% identification con-
fidence were used for further quality control and differen-
tial expression analysis. Each protein also achieved
quantitative scores for each of the eight-iTRAQ tags to
calculate the relative expression levels, as shown in Table 2.
In this experiment, the relative expression for proteins in
different samples was calculated using a normal sample as
the reference sample.
Quality control and unsupervised analysis
The quality control analysis was performed on the basis
of relative expression values of different proteins to identify
any outliers. The quality control analysis was performed
using pair-wise correlation plots, boxplots, principal com-
ponent analysis (PCA) and unsupervised hierarchical clus-
tering. PCA projects multivariate data objects onto a lower
dimensional space while retaining as much of the original
variance as possible. This is necessary because in analyzing
proteomic data, due to a dimensional problem, the number
of proteins most often exceeds the number of samples by a
considerable amount.
Supervised analysis
To identify the differentially expressed proteins (DEP),
the relative protein expression values were compared be-
tween groups (Normal vs. Cirrhosis (CIR), Normal vs. HCC,
Cirrhosis vs. HCC). Proteins were considered overexpressed
in HCC compared to normal if the iTRAQ ratio of HCC
compared to Normal was greater than 2.0, and if the corre-
sponding maximum normal to normal ratio was less than
the HCC to normal ratio. Similarly, proteins were consid-
ered under-expressed in HCC relative to normal if the
iTRAQ ratio of HCC to normal was less than 0.5 and if the
corresponding minimum normal ratio was higher than
the HCC to normal ratio. Using the same method,
DEP were identified for CIR vs. normal, and HCC vs.
CIR comparisons.
In order to identify proteins patterns that are specific-
ally differentially expressed in HCC or HCC and CIR as
compared to normal and functionally related, we performed
self-organizing map (SOM) analysis on the differentially
expressed proteins identified as described in the previous
section. We carried out SOM clustering on relative protein
expression values using Pearson correlation coefficient based
distance metrics and a target of 9 groups. SOM allow the
grouping of protein expression patterns into an imposed
structure in which adjacent clusters are related, thereby
identifying sets of proteins that follow certain expression
patterns across different conditions.
Pathways and functional enrichment analysis:
The Ingenuity Pathway Analysis (IPA 7.0) was used to
identify the pathways and biological functions affected
by proteins that are specifically associated with HCC or
HCC and Cirrhosis (CIR). The knowledge base of this soft-
ware consists of functions, pathways and network models
derived by systematically exploring the peer reviewed sci-
entific literature. A detailed description of IPA analysis is
available at the Ingenuity Systems’ web site (http//
www.ingenuity.com). This software calculates a P-value
for each pathway according to the fit of user’s data to IPA
database by the one-tailed Fisher exact test. Pathways with
multiple test corrected P-values <0.05 were considered
significantly affected.
Interactive network analysis:
To gain further molecular insight HCC progression, we
performed systems biology oriented analysis on proteins
that are HCC specific or disease specific (HCC + CIR)
using Ingenuity Pathway Analysis (IPA) 7.0. The net-
works were developed on the basis of protein-protein;
protein-DNA, protein-RNA and protein-chemical inter-
actions obtained public databases and experimentally
validated literature. The significance of the effect on the
network was determined on the basis of score derived
from the P value of the one-tailed Fisher exact test
[Score = −log (P value)] and indicates the likelihood of
focus proteins appearing together in the network due to
random chance. A score of 2 or higher has at least a
99% probability of not being generated by random chance
alone. The ability to rank the networks based on their
relevance to the queried data sets allows for prioritization
of networks with the highest impact on a disease process.
The key focus hubs in the network were identified
using degree of connectivity (number of interactions
for a node with other network proteins). The focus
hubs are likely critical for overall function of the net-
work and, thus, interruption of such proteins by thera-
peutic intervention is anticipated to perturb the whole
network of proteins.

http://www.ingenuity.com


Table 2 Differentially expressed proteins (DEP) between cirrhotic HCV + and HCV+/HCC + compared to normal liver
tissue samples of Caucasian Americans

Protein ID Protein name Peptides % Coverage Mean iTRAQ ratios

Normal HCV+/HCC- HCV+/HCC+

P00738 Haptoglobin 15 27 1.05 0.19 0.18

P11021 78 kDa glucose –regulated protein 12 23 1.15 0.45 0.18

P01834 Ig kappa chain C region 17 85 1.17 10.65 8.47

P67936 Tropomyosin alpha-4 chain 8 24 0.68 3.40 2.47

Q13011 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase 9 26 0.84 0.45 0.47

P62328 Thymosin beta-4 8 77 1.04 4.30 5.68

P05091 Aldehyde dehydrogenase 10 17 1.20 0.37 0.42

Q06278 Aldehyde oxidase 1 5 4 1.06 0.24 0.34

P26038 Moesin 7 15 0.83 2.20 2.02

P54868 Hydroxymethylglutaryl-CoA synthase 7 11 0.87 0.23 0.36

Q09666 Neuroblast differentiation-associated protein 6 5 0.93 3.03 2.78

P23284 Peptidyl-prolyl cis-trans isomerase B 3 13 0.90 0.48 0.37

P34896 Serine hydroxymethyltransferase 4 9 0.89 0.30 0.41

P0CG05 Ig lambda-2 chain C regions 3 35 1.07 20.96 12.90

Q05682 Caldesmon 3 6 0.76 11.04 7.29

P02647 Apolipoprotein A-I 3 10 1.35 2.79 3.51

P02787 Serotransferrin 2 3 1.24 6.71 6.30

P00505 Aspartate aminotransferase 2 4 0.86 0.37 0.44

P02741 C-reactive protein 2 3 0.80 0.15 0.13

P21333 Filamin A, alpha 1 1 0.86 4.15 4.38

P24752 Acetyl-CoA acetyltransferase 7 17 1.05 0.33 0.53

B9A064 Immunoglobulin lambda-like polypeptide 5 3 7 1.47 7.80 6.09

P12532 Creatine kinase B-type 1 6 1.25 8.21 5.36

P63313 Thymosin beta-10 3 64 1.01 2.86 2.46

P02753 Plasma retinol-binding protein 1 5 1.00 3.66 2.82

P01742 Ig heavy chain V-I region 2 10 0.91 5.77 7.12

341914926 PREDICTED: Ig heavy chain V-III region 1 16 1.18 2.89 2.40

Q16555 dihydropyrimidinase-related protein 2 isoform 1 2 3 1.50 3.91 3.02

P13716-2 Isoform 2 of Delta-aminolevulinic acid dehydratase 1 3 0.94 0.49 0.50

Q01995 Transgelin 1 5 1.04 5.20 4.34

P01701 Ig lambda chain V-I region 1 15 0.51 2.31 2.56

P18136 Ig kappa chain V-III region 1 14 1.08 2.22 3.51

Note: Proteins shown in italics were validated using qRT-PCR or WB.
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Target validation
Target validation of proteomic results was performed
on 18 independent tissue samples (9 AA, and 9 CA).
Three differentially expressed proteins were identi-
fied and selected based on unsupervised hierarchical
clustering and the Interactive Network Analysis. We
validated the expression of these proteins using
quantitative real-time RT-PCR (qRT-PCR) or Western
blotting (WB).
Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted from tissue homogenates using
the RNeasy mini kit (Qiagen, Valencia, CA) and quantified
using Nanodrop spectrophotometry (ThermoScientific,
Wilmington, DE). RNA quality was assessed with the use
of a Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
CA). One microgram of RNA was reverse transcribed to
complementary DNA (cDNA) using Superscript II in ac-
cordance with manufacturer’s instructions (Invitrogen).
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qRT-PCR was run in technical duplicates for each reaction
using 50 ng cDNA from at least triplicate of normal,
HCV+/HCC- and HCV+/HCC + samples of AA and
CA. The validated genes were: Serotransferrin (TF),
Filamin A Alpha (FLNA), Apolipoprotein A-1 (APOA-1),
and hepatocyte nuclear factor 4α (HNF4α). Relevant infor-
mation on RT-PCR primers used to detect the expression
of these genes is shown in Table 1, qRT-PCR data for each
sample were normalized using 18S rRNA gene. Data were
collected using the ABI PRISM 7500 sequence detection
system (Applied Biosystems, Forster City, CA). Graphs
were prepared from normalized data relative to 18S
rRNA and fold changes were calculated using the ddCt
method as, previously described [28] and detailed by
Applied Biosystems (www.appliedbiosystems.com).
Statistical analysis of these data was performed with a
two-sided t-test or with a two-sided Wilcoxon rank-sum
test if the expression data not follow normal distribution.

Western blot (WB) analysis
Selected protein expression in tissue samples was verified by
WB analysis, as previously reported [28]. Briefly, 20 μg of
total protein were separated by SDS-PAGE (12% polyacryl-
amide gel) and transferred onto nitrocellulose membrane
(Millipore, Bradford, MA). TF, APOA1 and HNF4α proteins
were identified using mouse anti-transferrin, mouse
anti-APOA-1 (Santa Cruz Biotechnology), and rabbit
anti-HNF4α (Epitomics) primary antibodies. GAPDH
(Rockland) was used as a loading control. Protein ex-
pression was visualized after incubation with secondary
anti-mouse or anti-rabbit antibodies conjugated with
horseradish peroxidase and enhanced chemilumines-
cence reagent (Thermo Scientific, Rockford, IL). Im-
munoblots were developed on a ChemiDoc XRS gel
Imaging System (Bio-Rad Laboratories, Hercules, CA)
for immunodetection. The intensity of protein staining was
determined with the ChemiDoc Imager using Quantity
One Software (Bio-Rad Laboratories, Hercules, CA).

Statistical analysis
The data were expressed as mean±SD, and analyzed with
the Student’s t-test between two groups. Changes were
considered statistically significant if the P-value was <0.05.
Results
Clinical characteristics of the study population
A total of 26 liver and tumor tissue samples from CA
and AA populations were used in this study (Additional
file 2: Table S1). There were no significant differences of
age and sex between cases in the two groups. In
addition, the cirrhotic cases (HCV+/HCC-) of the AA
group had statistically different laboratory results for aspar-
tate aminotransferase (AST), and alanine aminotransferase
(ALT) (p < 0.05) compared to CA group. There were no
significance differences of the laboratory values for albu-
min, total albumin and hemoglobin between cases in the
two groups.

Clustering analysis of identified proteins can discriminate
between normal and diseased stage
Using the results from Protein Pilot 3.0, we identified a
total of 238 proteins with at least 1 peptide of >95% con-
fidence. The normal, CIR, and HCC formed separate
clusters on the PCA plot (Figure 1B) and we determined
that samples separated on the basis of disease status (e.g.
HCC, CIR vs. Normal) along primary component (PC1)
accounted for 43.3% of the variation between samples.
We also performed hierarchical clustering using a eu-
clidean distance metric (Figure 1A), and demonstrated
two major clusters linked to disease and normal sam-
ples. In the diseased cluster, subclusters depicting sig-
nificant similarity within cirrhosis and HCC samples
were observed.

Identification of differentially expressed proteins between
normal and diseased states in CA population
To identify the differentially expressed proteins (DEP),
the relative protein expression values were compared be-
tween groups (Normal vs. Cirrhosis (CIR), Normal vs.
HCC, Cirrhosis vs. HCC). The identification of proteins
differentially expressed in cirrhotic and HCC patient
groups relative to the normal group were of interest as
these could provide leads for potentially useful diagnos-
tic and prognostic biomarkers for disease progression.
Thus, Figure 2 shows heat maps of fifteen differentially
expressed proteins that were selected by this supervised
analysis, as outlined in the Bioinformatics analysis
section. For example, Figure 2A shows differentially
expressed proteins of HCC group compared to normal;
six of which were overexpressed in HCC compared to
nine proteins over-expressed in normal tissues. Similarly,
a comparison between the cirrhotic groups versus the
normal group identified nine proteins overexpressed in
cirrhotic group versus six that were over-expressed in the
normal group (Figure 2B). As shown in Figure 2D, thirty-
two proteins (about 15% of proteins identified) overlapped
between HCC and cirrhotic groups as compared to the
normal. These thirty-two proteins met our definition for
differential expression (see Experimental Procedures) in
comparison between CIR, HCC to the normal group. Thus,
Table 2 and Figure 3 show the thirty-two differentially
expressed proteins (DEP): twenty were overexpressed
(iTRAQ ratios of ≥2.0) and twelve were under-expressed
(iTRAQ ratios ≤0.5).
A literature search showed that all DEP have previously

been associated with hepatitis and HCC as a result of
HCV infection. For example, high plasma retinol-binding

http://www.appliedbiosystems.com


Figure 1 Unsupervised analysis of normalized proteomics data obtained from Normal, Cirrhosis (Cir) and HCC subjects: A)
Unsupervised Clustering B) Principal component analysis. Unsupervised Pearson Correlation based cluster of Normal, Cirrhosis (Cir) and HCC
subjects depicts two major clusters containing Normal’s and Diseased (Cir, HCC) subjects. B) The first principal component with highest variation
(43%) is shown on the X-axis and separates the samples on the basis of Diseased vs Normal status. The second component with median variance
(15%) is displayed on the Y-axis and separates the sample on the basis of the disease progression (Cirrhosis vs. HCC). The Normal, Cirrhosis and
HCC samples formed three separate clusters on PCA plot.
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protein (RBP4) has been reported to be associated with
the pathogenesis of insulin resistance in type 2 diabetes
[29]. RBP4 was also shown to have prognostic significance
as a marker in patients with chronic liver disease and
cirrhosis-induced by genotype 1 HCV infection [30]. Simi-
larly, transgelin (TAGL) has been shown to be associated
with cell migration and invasion of cancer stem cells [31].
TAGL was also shown to have a potential prognostic sig-
nificance in HCC [32].
Gene ontology annotation (GO analysis)
We subjected the differentially expressed proteins to GO
analysis and categorized them according to molecular
function, biological processes and pathways. When we an-
alyzed these proteins for molecular function (Figure 4A),
we found that over 50% of proteins (P < 10-1.55) were
grouped under “hepatic metabolism” such as vitamin and
mineral metabolism, drug metabolism, nucleic acid me-
tabolism, carbohydrate metabolism, amino acid metabol-
ism and lipid metabolism (Figure 4A). The remaining
differentially expressed proteins were grouped under
“stress-related process” (P < 10-2.0), “protein-related pro-
cesses” (P < 10-1.9), and “cell signaling” (P < 10-1.8).
We also grouped the differentially expressed proteins

into molecular pathways (Figure 4B). We found that a
significant number of proteins were grouped under vari-
ous canonical pathways. However, the major pathway
identified is “acute phase response signaling” (P < 10-3.5).
This is a rapid inflammatory response that provides
protection against various types of infection including
viral infection such as HCV. As a consequence of this
acute phase response most of identified proteins were
thus included under “hepatic metabolism” as shown in
Figure 4A.
Differentially expressed proteins are involved in a
number of pathways associated with disease progression
We performed Interactive Network analysis on the dif-
ferentially expressed proteins using the Ingenuity Path-
way Analysis (IPA) tool. As shown in Figure 5, the
network consisted of a cluster of seventy proteins, our
thirty-two DEP (Table 2), and thirty-eight additional
proteins. The network is enriched with proteins signifi-
cantly linked to cell movement, connectivity tissue dis-
order and cancer. This network also exhibited focus
hubs containing NFκB, ERK1/2, UBC, p38MAPK, and
HNF4α, all which regulate inflammation, and survival
and proliferation of tumor cells. The majority of the molecu-
lar targets identified in this study (Table 2 and Figure 3)
were, in fact, regulated by these focus hubs. As shown
in Figure 5, there is a high degree of interaction be-
tween HNF4α (a focus hub) and target genes such as
serotransferrin (TF) and apolipoprotein lipase A1 (APOA1),
and to a lesser degree with filamin-A alpha (FLNAα)
(labeled orange). These data suggest that interruption of
these pathways may provide a means to the development of
molecularly targeted therapies for HCV-induced HCC
[33]. Thus, the expression levels of HNF4α (a focus



Figure 2 Identification and comparison of differentially expressed proteins (DEP) identified from different supervised analysis. Heat
maps of fifteen differentially expressed genes that were selected by following supervised analysis A) Normal vs. Cirrhosis, B) Normal vs. HCC, and
C) Cirrhosis vs. HCC. The columns represent the samples and the rows represent the proteins. Protein expression is depicted with a pseudocolor
scale (−2 to 2); red denoting high expression level and green denoting low expression level. D) Venn Diagram comparing the significantly
differentially expressed proteins identified from following comparisons i) Normal vs. Cirrhosis, ii) Normal vs. HCC, and iii) Cirrhosis vs. HCC.
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hub) and interacted proteins (TF, APOA1, and FLNA)
were selected for further validation using qRT-PCR
and/or immunoblotting.

Target validation
We were able to confirm the differential expression of
TF, APOA1, FLNA, and HNF4α by qRT-PCR or WB ana-
lyses using independent sets of 18 tissue samples (9 AA,
9 CA; 3 tissues/group). These four proteins were se-
lected for validation based on their expression using
both hierarchal clustering analysis (Figure 3) and Inter-
active Network analysis (Figure 5). Figure 6A shows
the relative mRNA expression levels of TF, APOA1,
FLNA and HNF4α as normalized to 18S rRNA in AA
(red) & CA (blue) tissue samples. The mRNA expression
levels of TF were 2 fold (p < 0.05) and 18 fold (p < 0.001)
higher in Cir & HCC tissues of AA samples compared to
CA. Similarly, the mRNA expression levels of APOA1 and
HNF4α were 7 fold (p < 0.001) and 2 fold (p < 0.05) higher,
respectively, in HCC of AA samples compared to CA. No
significant changes in FLNA mRNA expression levels
were observed. A similar trent was noticed at the protein
using WB. Figure 6B shows representative immunoblots
of TF and APOA1 expression in normal (N), Cir (cirrho-
sis), and HCC in both AA and CA protein extracts with
GAPDH employed as a loading control. Compared with
normal tissues, Cir and HCC tissues have a detectable in-
crease in the steady-state levels of TF and APOA1 in AA
as compared to CA. In contrast however, the expression
levels of HNF4α protein were different when compared to



Figure 3 Heat map of thirty-two proteins differentially expressed in both Cirrhosis and HCC as compared to Normal. These proteins
represent a potential signature depicting progression of disease. The columns represent the samples and the rows represent the proteins. Protein
expression is shown with a pseudocolor scale (−2 to 2); red denoting high expression level and green denoting low expression level. Proteins
validated using qRT-PCR or immunoblotting are highlighted in the heat map.

Figure 4 Pathways and functional enrichment analysis of proteins differentially expressed both in Cirrhosis and HCC as compared to
Normal A) Functional enrichment analysis B) Pathways enrichment analysis. For Figure 4A or Figure 4B each bar represents a significantly
enriched pathway or function as determined using the multiple test corrected Fisher’s Exact Test P-value. The P-value is depicted as –log10 (BH P value)
on primary X-axis. The analysis for canonical pathways and functions was performed using Ingenuity Systems interactions.
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Figure 5 Interactive Network representation of the cellular functions and pathways affected by thirty-two proteins that are commonly
altered in Cirrhosis and HCC as compared to Normal. The network is enriched with proteins significantly linked to cell movement,
connectivity tissue disorder and cancer. We used the Ingenuity Pathways Analysis tool (www.ingenuity.com) to generate the networks of proteins
that are only differentially expressed in Cirrhosis and HCC as compared to normal. The intensity of the node color indicates the degree of up-
regulation (red), down-regulation (green) or no effect (white) in HCC as compared to Normal samples.
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the mRNA levels seen in Figure 6A. Figure 6B shows
clearly that the steady-state levels of HNF4α protein
are reduced in AA samples (Cir and HCC) as com-
pared to CA.

Discussion
Cancer disparities in incidence and death rates exist
among various racial and ethnic groups. These dispar-
ities are clearly documented in many aggressive human
cancers (e.g., breast, colon, ovarian, prostate and blad-
der) [34-38]. There have been several studies suggesting
that this phenomenon is potentially caused by a multi-
tude of factors, including social and cultural experience,
shared behaviors, environmental exposure and variations
in genetic background. Environmental factors have been
identified as risk factors for cancers, and these can affect
cancer disparities between races and ethnicities. For ex-
ample, persistent infection with HCV is a well-documented
risk factor for HCC. There are clear racial/ethnic disparities
in disease prevalence, treatment and outcome to make it a
particularly important health problem in minorities [1,9].
While much of the existing literature has focused on noting
the presence of disparities in HCV-induced HCC, little is
known about specific biological pathway differences within
the context of racial background.
In this study, we hypothesized that HCV-induced oxi-

dative stress activates sets of host-specific genes (mo-
lecular signatures) that are associated with the disease
state and are ethnically/racially distinct. These sets of
genes could confer various biological properties respon-
sible for the observed disparities. Identification of these
molecular signatures could provide us with valuable in-
sights into the biological factors (gene expression, pro-
tein activity) that contribute to HCV-induced HCC
health disparities.
We performed relative quantitative proteomic profiling

to identify differential protein expression between HCV-
induced cirrhosis (CIR) and HCV-induced hepatocellular
carcinoma (HCC) directly compared to normal in tissue
samples obtained from Caucasian American (CA) patients

http://www.ingenuity.com


Figure 6 Target validation of DEP in tissue samples of CA and AA. A) Real-time qRT-PCR, B) A representative of Western blotting analysis. A)
Real-time qRT-PCR detected the relative mRNA expression levels of transferrin (TF), apolipoprotein A1 (APOA1), hepatocyte nuclear factor4α
(HNF4α) and filamin A (FLNA). 18S rRNA was used as the normalization standard. Compared to CA, AA tissues had an obvious up-regulation of TF
in CIR and HCC samples (p < 0.05 and 0.001, respectively) and up-regulation of APOA1, and HNF4α in HCC samples (p < 0.001; p < 0.05,
respectively). Bars = means ± SD. There was no significant difference in the expression of FLNA between the two groups. B) A representative of
immunoblot analysis result of (I) TF and APOA1, (II) HNF4α in tissue samples of AA and CA. GAPDH was used as a loading control. Compared
to CA, AA tissue samples (CIR, HCC) show an obvious increase in protein levels of TF and APOA1, but decreased protein levels of HNF4α.
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and cross-validated protein expression on tissue samples
obtained from African American (AA) patients. We iden-
tified thirty-two proteins that were significantly differen-
tially expressed in CIR and HCC compared to normal
liver tissue samples of CA (Table 2 and Figure 3). Interest-
ingly, a significant number of these proteins had previ-
ously been reported to be involved in HCV/HCC disease
progression For example, proteins identified in this study
like moesin (MSN) (Figure 2A), retinol-binding protein
(RBP4), and transgelin (TAGL) (Figure 2B) have been
involved in viral induced HCC. MSN was shown to be
involved in viral related invasion and metastasis of
HCC [39]. RBP4 was demonstrated to have a prognostic
significance as a marker in patients with chronic liver dis-
ease and cirrhosis-induced by genotype 1 HCV infection
[30]. Similarly, TAGL was shown to possess a potential
prognostic significance in HCC [32].
We used Ingenuity Pathway Analysis (IPA) to assess

disease and functions/pathways association of differen-
tially expressed proteins (DEP). Top associated network
functions for DEP (Figure 4A) were: 1) free radical scaven-
ging 2) cell death and survival 3) protein degradation 4)
protein synthesis 5) cellular function and maintenance 6)
lipid metabolism, and 7) molecular transport. As shown in
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Figure 3, we identified many proteins that are involved in
many of these cellular functions such as stabilization of
actin filament structure. These include Filamin A (FLNA),
Moesin (MOES), Caldesmon (CALD1) and tropomyosin
alpha-4 (TYB4). These proteins have been shown to be in-
volved in cellular migration, invasion and metastasis of
HCC [40-42]. Other proteins such as Apolipoprotein A1
(APOA1), and Serotransferrin (TF) that are involved in
lipid metabolism and molecular transport were identified
as DEP. Both of these proteins have been shown to be as-
sociated with HCV-induced HCC [43-45].
In this study, major canonical biological pathways

identified are: 1) acute phase response signaling 2) keto-
genesis 3) phenylalanine degradation IV 4) mevalonate
pathway I, and 5) LXR/RXR activation. These pathways
are known be associated with HCV-induced HCC. For
example, the acute phase response is a rapid inflamma-
tory response that provides protection against the viral
infection using innate defense mechanisms [46]. The
majority of the DEP are involved in the acute phase sig-
naling pathway and thus strongly implicated in HCV
infection.
Another major pathway that was identified is the liver

X receptor (LXR)/retinoid X receptor (RXR) activation.
LXR is a key player in the control of numerous meta-
bolic pathways and along with RXR, LXR plays a crucial
role in linking bile acid with lipoprotein, lipid and
glucose metabolism (hepatic lipogenesis). LXR has been
shown as a major contributor to HCV-induced steatosis
and in the efficient replication of HCV [47,48].
The Network Analysis has identified many focus hubs

(e.g., NFκB, ERK1/2, UBC, and p38MAPK) with high de-
gree of interactions. These focus hubs are involved in
the overall pathophysiological response to HCV infec-
tion [49,50]. It is known that HCV infection enhances
the generation of reactive oxygen species (ROS) that act
through these hub molecules [51]. This process has been
suggested as one of the mechanisms for HCV induced
hepatic fibrosis.
The Network Analysis has also identified a high degree

of interaction between hepatocyte nuclear factor (HNF4α)
(focus hub) and target proteins such TF and APOA1, and
to a lesser degree with FLNA (Figure 5). HNF4α, a highly
conserved member of the nuclear receptor (NR) super-
family of ligand-dependent transcription factors, is known
as a master regulator of liver-specific gene expression [52],
especially those genes involved in lipid transport such as
APOA1 [53], glucose metabolism and iron transport, such
as transferrin (TF) [54,55]. Therefore, the expression of
TF, APOA1, FLNA and HNF4α was selected for further
validation in CA and AA tissue samples using q-RT-PCR
or WB.
It is very clear in Figure 6A & 6B that the expression

levels of TF and APOA1 are higher in AA compared to
CA tissue samples. It is known that AA patients with
chronic HCV have elevated levels of serum markers of
iron stores and altered cholesterol and triglyceride levels
[56,57]. Hence, the levels of both markers are elevated in
AA samples. The expression of both TF and APOA1 is
known to be regulated by the transcription factor
HNF4α [33]. Nevertheless, the levels of HNF4α protein
itself are reduced in AA compared to CA tissue samples,
as shown in Figure 6B. This differential dysregulation of
HNF4α expression in Figures 6A & 6B has been shown by
Sladek’s group in colon cancer [58]. It is not clear why
the levels of HNF4α are altered in AA versus CA tissue
samples. There are many factors that could alter the ex-
pression and function of HNF4α like single nucleotide
polymorphisms (SNPs), diet, stress response, severity of
disease, and regulatory molecules like transcription fac-
tors, co-regulators, and miRNAs [52]. Recent studies
showed that alteration of HNF4α protein expression
could provoke the initiation of HCC [59,60]. Thus, it is
conceivably possible that racial disparities in HCC could
be a consequence of differential dysregulation of HNF4α
expression in AA patients. Further study using larger
clinical samples size is warranted to confirm this
observation.
In conclusion, through the use of comparative prote-

omic analysis by relative quantitation with isobaric tag-
ging, we identified differentially expressed proteins that
can distinguish between HCV-induced cirrhotic liver
and HCV-induced hepatocellular carcinoma. Many of
these proteins are involved in biological pathways pertin-
ent to the overall pathophysiological response to HCV
infection. Target validation analyses showed that some
of these proteins are highly expressed in AA tissue sam-
ples compared to CA. In contrast, our study also indi-
cated that there is a differential dysregulation of HNF4α
expression in AA compared to CA. Alteration in HNF4α
levels could be one of the reasons for the observed racial
disparities in HCC seen between both groups. Further
validation of these markers in a larger study would
greatly improve our understanding of the molecular
mechanisms behind this racial disparity in HCC.
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