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Abstract

Background: Malignant peripheral nerve sheath tumors (MPNST) are rare highly aggressive sarcomas that affect
8-13% of people with neurofibromatosis type 1. The prognosis for patients with MPNST is very poor. Despite TOP2A
overexpression in these tumors, doxorubicin resistance is common, and the mechanisms of chemotherapy
resistance in MPNST are poorly understood. Molecular-guided therapy prediction is an emerging strategy for
treatment refractory sarcomas that involves identification of therapy response and resistance mechanisms in
individual tumors. Here, we report the results from a personalized, molecular-guided therapy analysis of MPNST
samples.

Methods: Established molecular-guided therapy prediction software algorithms were used to analyze published
microarray data from human MPNST samples and cell lines, with benign neurofibroma tissue controls. MPNST and
benign neurofibroma-derived cell lines were used for confirmatory in vitro experimentation using quantitative
real-time PCR and growth inhibition assays. Microarray data was analyzed using Affymetrix expression console
MAS 5.0 method. Significance was calculated with Welch's t-test with non-corrected p-value < 0.05 and validated
using permutation testing across samples. Paired Student's t-tests were used to compare relative EC50 values from
independent growth inhibition experiments.

Results: Molecular guided therapy predictions highlight substantial variability amongst human MPNST samples in
expression of drug target and drug resistance pathways, as well as some similarities amongst samples, including
common up-regulation of DNA repair mechanisms. In a subset of MPNSTs, high expression of ABCCT is observed,
serving as a predicted contra-indication for doxorubicin and related therapeutics in these patients. These
microarray-based results are confirmed with quantitative, real-time PCR and immunofluorescence. The functional
effect of drug efflux in MPNST-derived cells is confirmed using in vitro growth inhibition assays. Alternative
therapeutics supported by the molecular-guided therapy predictions are reported and tested in MPNST-derived
cells.

Conclusions: These results confirm the substantial molecular heterogeneity of MPNSTs and validate molecular-
guided therapy predictions in vitro. The observed molecular heterogeneity in MPNSTs influences therapy prediction.
Also, mechanisms involving drug transport and DNA damage repair are primary mediators of MPNST chemotherapy
resistance. Together, these findings support the utility of individualized therapy in MPNST as in other sarcomas, and
provide initial proof-of concept that individualized therapy prediction can be accomplished.
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Background

Malignant peripheral nerve sheath tumors (MPNSTSs)
are aggressive sarcomas associated with substantial mor-
bidity and mortality [1]. MPNSTs are rare in the general
population, affecting about 1 in 100,000 people each year
[2], whereas individuals with neurofibromatosis type 1
(NF1) carry an 8-13% lifetime risk of developing an
MPNST [1]. Despite aggressive, multi-modal treatment,
overall survival is poor for both primary and metastatic
MPNST [1,3].

Chemotherapy resistance is a hallmark of both primary
and recurrent MPNSTs [4,5] owing to a variety of factors,
most notably up-regulation of drug efflux transporters
[4,6-8]. Alternative mechanisms of chemotherapy resis-
tance in MPNSTs and other sarcomas have been described,
including Twist 1 overexpression [9], Bcl-x] overexpression
[10], and autophagy induction [11]. Escalation of DNA
repair processes is also observed in other chemotherapy-
resistant sarcomas [12-14]. The doxorubicin target, topo-
isomerase II (TOP2A), is significantly overexpressed in
MPNSTs [15] compared to neurofibromas [16]. Doxorubi-
cin binds to the topoisomerase II complex following DNA
strand breaks, interrupting cellular replication [17]. How-
ever, overexpression of TOP2A is associated with dimi-
nished survival in MPNST, confirming that overexpression
of the doxorubicin target is insufficient to overcome
established mechanisms of doxorubicin resistance [15].
Doxorubicin-based chemotherapy regimens are typically
used to treat MPNST, but the therapeutic benefit is modest
and closely parallels that of other soft-tissue sarcoma regi-
mens [18,19], and dose limiting toxicity is common [20].

The refractory nature of MPNSTs is attributable to a
high degree of molecular heterogeneity, both in terms of
mechanisms underlying disease progression [21] and
rapidly evolving therapy resistance. Studies confirm dele-
tion or loss of function in tumor suppressor genes, inclu-
ding NF1, HMMR/RHAMM, TP53, and duplications or
gain of function mutations in several oncogenes, including
MET, HGF, EGFR, ITGB4, and PDGFRA [22]. Other
deregulated pathways in MPNSTs include a variety of
well-characterized drug targets such as mTOR, HGF/Met,
TOP2A, Ras, and steroid hormones [15,16,22-27].

Molecular-guided therapy prediction or personalized
medicine (PMED) strategies are currently under evalu-
ation for use in recurrent and refractory pediatric brain tu-
mors (NCT01802567), neuroblastoma (NCT01355679)
and sarcomas (NCTO01772771). This approach is also a
promising treatment alternative for therapy-resistant can-
cers like MPNST [28-30]. PMED workflows follow a
knowledge and rules-based statistical algorithm that con-
verts genomic profiling data into an ordinal ranking of
therapies. Drug predictions are therefore agnostic to dis-
ease context and adaptable to a variety of clinical scenar-
ios. Essential to the PMED drug prediction algorithm is
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the reconciliation of predicted therapies selected from a
comprehensive drug list against known mechanisms of
chemotherapy resistance and drug resistance bio-
markers. This knowledge-based rules approach relies on
databases, such as DrugBank, that feature annotated
references to over one thousand drugs and target
molecules. PMED platforms also feature topological
analysis tools which identify drug targets and potential
mechanisms of resistance based on gene network per-
turbation. This approach is complementary to a single
gene interrogation and allows for a broader systems-
based analysis of disease-specific molecular pathogen-
esis (GeneGo-Thomson Reuters) [31-35]. While the
clinical efficacy of PMED approaches is still under investi-
gation, the PMED bioinformatics approach is a robust tool
for discovery-level research into the molecular pathoge-
nesis of MPNSTs.

Here, we present data supporting the PMED strategy
as a useful method for determining mechanisms of
chemotherapy resistance and identifying potential alter-
native therapeutics in individual MPNSTs. The use of
benign precursor neurofibromas as a biologically rele-
vant control in the PMED analysis is novel and provides
insight into the genomic alterations underlying conver-
sion from neurofibroma to MPNST. We also demon-
strate that novel predicted therapies have in vitro
efficacy against highly drug resistant MPNST-derived
cells [35].

Methods

Microarray data

Microarray data on MPNST samples, neurofibromas,
and MPNST-derived cell lines were accessed via NCBI
Gene Expression Omnibus (GEO) repository [36] as in-
dicated in text. Additional benign neurofibroma samples
were acquired through an established tissue collection
initiative in collaboration with Spectrum Health. All
specimens were obtained according to an IRB approved
protocol within Spectrum Health. Affymetrix U133 2.0
plus chip arrays were performed at Clinical Research
Laboratories (CRL, Lenexa, KS). Purified RNA was
used for the preparation of amplified ¢cDNA (NuGen
Ovation Pico WTA System). Amplified cDNA was then
fragmentated and labelled (NuGen Encore Biotin Mod-
ule) and hybridized to GeneChip Human Genome U133
Plus 2.0 Array (GeneChip® Hybridization, Wash and
Stain Kit, Affymetrix). The arrays were scanned by using
GeneChip Scanner 3000 7G and the intensity files were
analyzed by Expression Console Software. Array data
was normalized using Affymetrix expression console
MAS 5.0 method and further filtered to remove probes
with absent calls and expression intensities less than 100
in over 40% of samples. Differentially expressed genes
were identified using Welch’s t-test with non-corrected
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p-value < 0.05 and validated using permutation testing
across samples. Most significant probe sets of top 100
and top 200 probes were submitted to GeneGo for ex-
tensive network and pathway enrichment analysis. Heat
maps were generated using XenoBase® version 3.5 from
Affymetrix array data using MAS 5.0 normalization.
Clustering was performed in both sample and probe di-
mensions using average linkages with a Pearson correl-
ation distance metric.

Molecular-guided personalized medicine (PMED) analysis
For each individual tumor sample tested, microarray
data from a single sample was compared to pooled be-
nign controls. This process was performed for a total of
15 samples including MPNST and MPNST-derived cell
lines (public dataset), and neurofibroma tissue samples.
Microarray data processed as above was analyzed using
XenoBase-based analysis software, a molecular-guided
therapy prediction methodology and reporting tool de-
veloped at the Van Andel Research Institute [34,35].
Tumor gene expression levels from Affymetrix U133 2.0
plus chip were normalized using MAS 5.0 Affymetrix
expression console and compared to a benign tumor ref-
erence set. Relative expression intensities were converted
to Z-score values and the gene list with significant ex-
pression deviation from the reference set are supplied
directly to the Gene Targeted Therapy Map [37] as well
as to the GeneGo Topology tools [34] that identify add-
itional significant genes implied by topological analysis.
Topologically identified genes were also supplied to the
Gene Targeted Therapy Map. Z-score expression values
were also supplied to two drug response pattern evalu-
ation methods, PGSEA [38] and CMAP [39]. PGSEA
and CMAP score the expression pattern against known
response to therapy and suggest possible effective ther-
apies. The final method to supply therapy choices is
driven by expression levels and applied to specific bio-
marker rules based on strong evidence from clinical trial
work that validates the biomarkers for both indicated
and contra-indicated therapies [32,40]. All MPNST and
MPNST-derived sample data, in addition to data from
benign samples for which paired tumor-derived cell
lines, RNA, and histology were available for future use
were individually analyzed using this process. Finally, re-
sults from these analyses are integrated and ranked
according to summary scores. A diagram of this process
is provided in Figure 1A, and a more thorough descrip-
tion is provided as Additional file 1.

Quantitative real-time PCR

Microarray data was confirmed using real-time polymerase
chain reaction (QRT-PCR). Total RNA was extracted from
cultured MPNST cell lines and benign neurofibroma-
derived cell lines during logarithmic cell growth using
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TRIzol reagent (Invitrogen). Neurofibroma cell lines were
derived from benign neurofibromas using established
protocols [41]. Synthesis of cDNA was performed using
500 ng of RNA according to manufacturer’s instructions
(High Capacity cDNA Reverse Transcription Kit, Invitrogen).
Primers used for qRT-PCR were as follows ABCCI-
Forward (F), GAGGAAGGGAGTTCAGTCTT; ABCCI1-
Reverse (R), ACAAGACGAGCTGAATGAGT; ABCC3-F,
CACACGGATCTGACAGACAATGA; ABCC3-R, ACAG
GGCACTCAGCTGTCTCA; ABCC4-F, TGTGCTTTTT
AAGGCTTCACTCAAT; ABCC4-R, TTGTCCTTCGTA
TAGCAAGTTTTTTG; ABCC5-F GAGAACCAGCACT
TCTGGGA; ABCC5-R, TGAGCTGAGAATGCATGGAG;
ABCC6-FE, AAAGTACACACAGCATGGCAGTTC; ABCC
6-R64, GCTCCCGGCTAGACCCTTAA; ABCG5-R232,
GTTCACATACACCTCCCCCA; ABCG5-F101, TCCTTG
TACGTGGAGAGCG; GAPDHF, TGGTATCGTGGAAG
GACTCATGAC; GAPDHR, TGCCAGTGAGCTTCCCG
TTCAGC. Reactions were performed in duplicate at 10 pl
volume using Sybr Select master mix (Applied Biosystems)
according to manufacturer’s instructions. Melt curve ana-
lyses are performed following all reactions to ensure detec-
tion of a single product based upon single and consistent
melting temperatures for each primer set using StepOne
Software v2.3 (Applied Biosystems) standard parameters.
Data is normalized using GAPDH expression and repre-
sented as fold change relative to a control sample
(27"AACr) as indicated in the respective results.

Immunofluorescence

Cells grown on 8-well chamber slides (Nunc) were fixed
in 4% paraformaldehyde, blocked in PBS with 10% goat
serum, and incubated in primary antibodies against
ABCC1 (Abcam ab24102) and S100 (Dako Z0311) at
1:50 and 1:400 dilution, respectively, overnight at 4°C.
Cells were washed in PBS, and secondary incubations
were conducted for 45 minutes at room temperature
with respective Alexa Fluor-488 Donkey anti-Mouse IgG
and Alexa Fluor-568 Donkey anti-Rabbit IgG secondary
antibodies at 1:400 dilution. Slides were mounted in
Vectashield with DAPI (Vector Labs) for nuclear
counterstaining. All images were obtained using identi-
cal acquisition settings with 60x objective on an Al con-
focal Ti microscope (Nikon).

Growth inhibition experiments

MPNST-derived cell lines NF96.2, NF02.2, and NF9%4.3
(ATCC) and benign neurofibroma cell lines were maintained
in 5% CO, at 37C, in modified DMEM with 10% fetal
bovine serum and 1% penicillin/streptomycin. Growth
inhibition experiments were carried out in DMEM
supplemented with 10% FBS in 96-well plate format.
Cells were seeded at 2x10° cells per well and allowed to
attach for 24 hours prior to drug treatment for 96 hours.
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(See figure on previous page.)

Figure 1 Molecular-guided therapy prediction process. A) Each MPNST sample is compared to a benign tumor tissue reference pool and
processed as shown. Consolidated reports include individual rankings of therapeutics for each sample (see Table 1 and Additional file 2). B)
Summary graph depicting microarray signal intensity for transcripts contributing to molecular-guided therapy predictions in MPNST samples
in comparison with benign neurofibromas. Additional graphs for increased visibility of individual results are also provided in Additional file 4.

Doxorubicin (LC Laboratories) dosages included 5 pg/ml,
2.5 ug/ml, 1.25 pg/ml, 625 ng/ml, 312 ng/ml, 156 ng/ml,
78 ng/ml, 40 ng/ml, 20 ng/ml, and 10 ng/ml. Vorinostat,
rapamycin, and etoposide (LC Laboratories), as well as
thalidomide (Sigma), were used at doses ranging from
2 mM to 100 nM. Freshly prepared verapamil (Sigma) was
added at 100 pM where indicated. Trichloroacetic acid fix-
ation and sulforhodamine B (SRB) staining was performed
as described [42] as a surrogate cell count measurement.
ECs, was defined as the drug concentration causing a 50%
reduction in net signal versus untreated controls as inter-
polated from line of best fit. An ECsy was calculated for
each individual experiment (n = 5) and Student’s t-test
was used to compare ECsq from doxorubicin only treat-
ments to verapamil (100 uM) plus doxorubicin.

Results

Molecular-guided therapy predictions

Molecular-guided therapy prediction analyses (Figure 1A)
were performed based on published expression data from
five MPNST-derived cell lines and six human MPNST tis-
sue samples. This analysis identified hypothetical drug

targets, indicators of drug sensitivity, and indicators of
drug resistance or insensitivity using curated biomarker
rules, drug response knowledge, and topology tools [36].
Scores based on a synthesis of this information are
assigned to each drug and drugs are ranked in a consoli-
dated summary report. Reports were also generated in this
way for benign neurofibroma data, using normal nerve tis-
sue as a reference. Table 1 includes a truncated summary
of drug recommendations and gene expression contrib-
uting to the top ranked drugs for each tumor. Complete
records of the summary drug recommendations and re-
sults of intermediate analyses are reported in Additional
files 2 and 3. Microarray-based expression levels of the
major transcripts contributing to drug responsiveness
and drug resistance predictions for each MPNST sample
are shown in Figure 1B, with additional detail provided
in Additional file 4.

As expected, TOP2A overexpression is observed in
nearly all MPNST and MPNST-derived samples, favoring
doxorubicin and other TOP2A inhibitors based on drug
target expression (Figure 1B). Variable expression of other
drug-targetable pathways is also observed, including

Table 1 Top 3 drugs indicated by personalized medicine analysis for MPNST and neurofibroma samples

Sample Drug 1 Related transcripts Drug 2 Related transcripts Drug 3 Related transcripts
MPNST-derived cell lines
NF02.2 vorinostat HDACI1-4, 6 teniposide TOP2A sirolimus MTOR, FKBP1A
NF94.3 pravastatin MMP2, MMP14, TIMP2 flavoxate CHRM?2 sildenafil PDE5SA
NF96.2 vorinostat HDACI,2, 6 chlorpromazine HTR7, DRD2, dasatinib ABLI1, FYN, KIT
MPNST samples
AS10 pazopanib KDR, FLT1, PDGFRB sorafenib KDR, FLT1, PDGFRB sunitinib KDR, FLT1, PDGFRB
AS13 teniposide TOP2A etoposide TOP2A doxorubicin TOP2A
AS15 teniposide TOP2A vorinostat HDAC2 sunitinib KDR, CSFIR
AS37 doxycycline MMP9, MMP13 pravastatin MMP9, MMP13 vorinostat HDAC2,3,4
AS42 octreotide SSTR2 doxycycline MMPY, MMP13 pravastatin MMPY, MMP14
AS45 teniposide TOP2A octreotide SSTR2 vorinostat HDAC2,3
Benign neurofibroma samples
MS37T dasatinib EPHA2 KIT nilotinib KIT pazopanib KITKDR
MS90T biperiden CHRM1 carbinoxamine CHRM1 clozapine CHRM1
MS135T dasatinib EPHA2 sorafenib KIT pazopanib KITKDR
MS142T fluticasone PGR medroxyprogesterone PGR sorafenib FLT3
MS153T dasatinib EPHA2,KITLCK,SRC imatinib KIT nilotinib KIT
MS156T sorafenib KIT sunitinib FLT3 clofarabine POLAT
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mTOR (rapamycin). In several samples, high ABCCI ex-
pression is apparent (Figure 1B) and is highlighted by the
molecular-guided therapy analysis as a hypothetical doxo-
rubicin resistance mechanism. TYMS overexpression, also
observed, has been shown by others to correlate with
doxorubicin resistance phenotypes as well [43,44]. Re-
analysis of the published [36] microarray dataset confirms
that ABCCI is the most highly expressed ABC transporter
significantly elevated in MPNSTs relative to benign plexi-
form neurofibromas (Additional file 5). Other members of
the ABCC family are also elevated in the MPNSTs as a
group, including ABCC3, ABCC4, and ABCCe6.

NF02.2, an MPNST-derived cell line (ATCC [45])
showed significant and consistent expression of ABCCI.
Quantitative real-time PCR confirms the high level of
expression of ABCCI in the NF02.2 cell line relative
to benign neurofibroma-derived cells and other ABCC
family members (Figure 2A). ABCC1 protein is also
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detectable by immunofluorescent staining in NF02.2
cells in culture (Figure 2B).

Function and expression of ABC transporters in vitro
In order to examine the functional relevance of ABCC1
and ABC family drug transporter activity, growth inhi-
bition assays were performed using a broad range of
doxorubicin dosages (5 pg/ml [8.6 uM] to 20 ng/ml
[34 nM]) in the presence or absence of 100 pM verap-
amil, a calcium channel blocker that inhibits ABC trans-
porter activity. Significantly lower doxorubicin ECsq
values are obtained when doxorubicin dose is combined
with verapamil (0.861 pg/ml + 0.17 versus 0.248 pg/ml +
0.07, p = 0.0002 with paired Student’s t-test, Figure 3A).
Low-dose (<125 pM) verapamil alone does not affect
growth (Figure 3B).

Two additional MPNST cell lines, NF94.3 and NF96.2,
are also examined. In NF94.3, similar to NF02.2, high
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Figure 2 ABCC1 expression in MPNST-derived cell line NF02. A) Quantitative real-time PCR confirms elevated expression in NF02.2 compared
to benign neurofibroma-derived cell lines MS37T, MS80T, and MS90T. B) Immunofluorescent staining for ABCC1 (green) and S100 (red) with DAPI
(blue) nuclear stain as indicated. No primary antibodies were added in (C). Scale bar = 10 pm.

m NF02.2

W Average:Benign|
Neurofibromas

B MS37T

| MS80T

| MS90T

e

ABCC4 ABCCS5 ABCC6




Peacock et al. Journal of Translational Medicine 2013, 11:213
http://www.translational-medicine.com/content/11/1/213

Page 7 of 12

A NF02.2
100% T x

80% | ¢
° .
-
S 60%
o
2 |
©
2 a0% T
€
]
®

20%

0%
0.01 0.1

100% +
80%
60%

40%

% Untreated Control

20%

0%
0.001 0.01

1 10
ug/ml [Doxorubicin]
+ iy
¢ “
0.1 1

mM [Verapamil]

Figure 3 Doxorubicin-mediated growth inhibition in MPNST-derived NF02.2 cells with high ABCC1 expression. A) Relative cell content
(as a percentage of untreated control cells) following 96 hours of growth in doxorubicin-containing media with and without 100 uM verapamil.
Average doxorubicin ECsy 1.23 pg/ml, versus 0.21 pg/ml in the presence of verapamil *p = 0.003, n = 5. B) No growth inhibition is observed with
verapamil alone at concentrations 125 uM and lower. Dotted line indicates 100 uM concentration used in (A).

@ Doxorubicin
EC5=0.86pg/ml

u + Verapamil: Doxorubicin
ECg0=0.25ug/ml *p<0.001

—=—

ABCCI expression is highlighted by the molecular-
guided therapy analysis as a hypothetical doxorubicin
resistance mechanism, whereas NF96.2 is not flagged
for high ABCCI expression. ABCC1 is detectable by
immunofluorescence in NF94.3 (Figure 4A) but not
NF96.2 (Figure 4B). A small effect of verapamil chan-
nel blockade on doxorubicin ECsy is observed in
NF94.3 cells (0.81 pg/ml+0.42 versus 0.34 pg/ml+
0.20, p = 0.025 paired Student’s t-test, Figure 4C),
while no significant effect is observed in low-ABCCI
expressing NF96.2 cells (0.44 pg/ml+0.31 versus
0.22 pg/ml+0.25, p = 0.16 paired Students t-test,
Figure 4D). No effect is observed for verapamil-only
treatments at concentrations below 125 pM in either
cell line (Figure 4E).

Microarray analysis of drug transport gene expression

In addition to ABC transport, other mechanisms of
drug resistance are undoubtedly present in MPNSTs.
Additional microarray analysis revealed activation of
DNA damage repair processes that may contribute to
insensitivity to doxorubicin-mediated DNA damage. In
contrast to drug transport gene expression, which is
highly variable amongst MPNSTs (Figure 5A), DNA
damage repair and related pathway gene expression is
consistently higher in MPNSTs and MPNST-derived
cell lines when compared to benign, plexiform neuro-
fibromas (Figure 5B). DNA damage repair processes are
also elevated in MPNST-derived cell lines when com-
pared to the tumors themselves. Therefore, this effect
may be exaggerated by or selected for during the tissue
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drug concentration.

Figure 4 ABCC1 expression and transporter function in MPNST-derived cell lines NF94.3 and NF96.2. Immunofluorescent staining for
ABCC1 (green) and S100 (red) with DAPI (blue) nuclear stain as indicated in NF94.3 (A) and NF96.2 (B). Scale bar =
following 5 days of growth in doxorubicin-containing media with and without 100 uM verapamil in NF94.3 cells. Average doxorubicin ECsg

0.81 pg/ml, versus 0.34 pug/ml in the presence of verapamil (*p = 0.025, n = 5). D) NF96.2 cells; average doxorubicin ECsy 0.44 ug/ml, versus

0.22 pg/ml in the presence of verapamil (n.s. p = 0.16, n = 5). E) No growth inhibition with verapamil alone at concentrations 125 pM and lower.
Dotted line indicates 100 pM verapamil concentration used in (C, D). F) Quantitative real-time PCR for ABCC family transporter transcript levels.
G) Doxorubicin ECsg values for benign neurofibroma-derived cell lines as compared to MPNST-derived cell lines. H) Growth inhibition curves for a
representative experiment with molecular-guided therapy predicted drugs. Data is graphed as percentage untreated control per

10 um. C) Relative cell content

culture process. Significant changes in other mecha-
nisms of drug resistance, however, were not observed in
our analysis. Autophagy, Twistl, and apoptosis related
signaling were not among significantly altered gene
ontology processes (data not shown).

Discussion

Our results demonstrate that molecular-guided therapy
predictions can be used to identify systematic patterns of
drug resistance in MPNSTSs based on analysis of human
MPNST samples when compared to benign neuro-
fibroma precursors. Significant molecular heterogeneity

amongst MPNSTs is observed, and the functional conse-
quences of this are examined in vitro. ABCC trans-
porters are highly overexpressed in some samples, and
transporter activity appears to play a modest but signifi-
cant role in decreasing doxorubicin effectiveness in this
subset of cultured MPNST-derived cells. Although trans-
porter inhibitors have not yet shown clinical utility
[46,47], new agents targeting this important resistance
mechanism are currently under investigation [48].
Considering only the list of current FDA approved
drugs, however, we have also identified alternative thera-
peutics that may be effective in these drug-resistant
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patients using our molecular-guided therapy analysis.
This analysis synthesizes biomarker, network, and drug
target based predictions for each individual tumor sam-
ple by comparing the tumor to benign controls. The top
three drugs predicted for each cell line and tumor
studied are listed in Table 1. The top four alternative
therapeutics for the doxorubicin-insensitive NF02.2
cell line were vorinostat, etoposide/teniposide, sirolimus,
and lenalidomide. However, many previous studies
have demonstrated cross-resistance to doxorubicin and
etoposide or teniposide, so these are likely not meaning-
ful alternatives in doxorubicin-refractory tumors [49-51].
Vorinostat, an HDAC inhibitor, is suggested for use in
NF02.2 cells based on drug response signature, network
target activity (including elevation of HDAC], 2, 3, and 6),
and drug target expression (elevated HDAC2) evidence.
Sirolimus (rapamycin) is suggested due to elevated
drug target (mTOR) expression and pathway signaling.
Elevated mTOR activity has been observed previously in
MPNSTs and neurofibromas and is currently the subject
of multiple clinical trials (NCT00634270, NCT01661283,
NCT00652990) [52,53]. Lenalidomide, a derivative of tha-
lidomide, was suggested for use based on elevated PTGS2
and TNF expression (see Additional file 2) [54-56].

Additionally, we examined the efficacy of these pre-
dicted therapeutics in NF02.2 cells in vitro. Our results
demonstrate efficacy at low pM concentrations for
rapamycin (Sirolimus) [1.63 pM +0.26] and vorinostat
[2.57 uM + 0.88]. ECs, values for etoposide [16.2 pM +
5.92] and thalidomide [34.72 uM + 25.13] are relatively
higher (n = 4; one representative experiment is shown in
Figure 4H), but deserve further examination in combin-
ation with cytotoxic agents.

Notably, drug transport expression is highly variable
between MPNSTs and does not fully account for the
observed therapy resistance. Our additional analysis
highlighted DNA damage repair gene expression as
a possible chemotherapy resistance mechanism. DNA
damage repair pathways are significantly elevated in
MPNSTs as a group. This implies an elevated resistance
to DNA damaging cytotoxic chemotherapy agents, in-
cluding doxorubicin, and consideration should be made
to routinely include elevation in DNA damage repair
pathway gene expression in future molecular-guided
therapy prediction analyses.

Conclusions

Here, we provide evidence that the impact of patient
heterogeneity and drug transporter expression must be
considered in the selection of alternative treatment stra-
tegies for treatment refractory MPNST patients. We also
confirm that PMED-predicted therapies have potential
activity against MPNSTs. Future studies should focus
on validating individualized drug predictions in vivo,
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improving identification of effective drug combinations,
and expanding strategies to leverage PMED tools in
discovery-level research.

Availability of supporting data
Microarray data for this study are deposited with the
GEO repository: GSE50208.

Additional files

Additional file 1: Description of the molecular-guided therapy
prediction process. Additional detail is provided in this document to
better describe the data flow, reference selection, drug knowledge
database, drug target expression analysis, topological methods, drug
response signatures, drug sensitivity signatures, and method variance
involved in the molecular guided therapy predictions.

Additional file 2: Detailed summary reports of molecular-guided
therapy predictions. A summary spreadsheet is provided detailing the
summary results for the analyzed MTTB neurofibroma samples (A-G) and
MPNSTSs from the public data set (A-G). Ranked therapeutics and
corresponding scores as indicated for each sample (A) are based upon
intermediate results from B) drug target expression, C) network topology
and target activity, D) parametric gene set enrichment analysis (PGSEA),
E) connectivity map (CMAP) analysis, F) biomarker based rules (resistant)
analysis, and G) biomarker rules (sensitive) analysis.

Additional file 3: Detailed summary reports of molecular-guided
therapy predictions. Summary therapy predictions, drug target
(GeneGoDrugTarget) expression, cumulative Network topology results,
parametric gene set analysis (PGSEA), connectivity map (CMAP), and
biomarker-based rules (BiomarkerResistant/BiomarkerSensitive) in a CSV
file for greater data accessibility. This file supplies the same data as
Additional file 2.

Additional file 4: Relative expression of transcripts related to
therapeutic responsiveness scores in the personalized medicine
analysis. This figure is an expansion of data presented in Figure 1 for
improved clarity. Normalized signal intensity is graphed for ABCCI,
ADORA2B, CHRM2, HDACT, KDR, KIT, MMP2, mTOR, PDE5A, TOP2A, and
TYMS with average intensity from benign neurofibromas presented for
comparison to the individual MPNST samples as indicated.

Additional file 5: Relative expression of ABC transporter family
genes by microarray. Normalized signal intensity is graphed for all
probes for ABCC, ABC1, ABCB, and ABCD-G family transcript expression.
Significantly increased transcript levels in MPNSTs compared to plexiform
neurofibromas are indicated (*) for p < 0.05.
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