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Abstract

Purpose: Ovarian cancer, like most solid tumors, is in dire need of effective therapies. The significance of this trial
lies in its promise to spearhead the development of combination immunotherapy and to introduce novel
approaches to therapeutic immunomodulation, which could enable otherwise ineffective vaccines to achieve
clinical efficacy.

Rationale: Tumor-infiltrating T cells have been associated with improved outcome in ovarian cancer, suggesting
that activation of antitumor immunity will improve survival. However, molecularly defined vaccines have been
generally disappointing. Cancer vaccines elicit a modest frequency of low-to-moderate avidity tumor-specific T-cells,
but powerful tumor barriers dampen the engraftment, expansion and function of these effector T-cells in the
tumor, thus preventing them from reaching their full therapeutic potential. Our work has identified two important
barriers in the tumor microenvironment: the blood-tumor barrier, which prevents homing of effector T cells, and T
regulatory cells, which inactivate effector T cells. We hypothesize that cancer vaccine therapy will benefit from
combinations that attenuate these two barrier mechanisms.

Design: We propose a three-cohort sequential study to investigate a combinatorial approach of a new dendritic
cell (DC) vaccine pulsed with autologous whole tumor oxidized lysate, in combination with antiangiogenesis
therapy (bevacizumab) and metronomic cyclophosphamide, which impacts Treg cells.

Innovation: This study uses a novel autologous tumor vaccine developed with 4-day DCs pulsed with oxidized
lysate to elicit antitumor response. Furthermore, the combination of bevacizumab with a whole tumor antigen
vaccine has not been tested in the clinic. Finally the combination of bevacizumab and metronomic
cyclophosphamide in immunotherapy is novel.
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Background and rationale
Ovarian cancer cells are antigenic and express a multi-
tude of known tumor-associated antigens (TAAs) includ-
ing Her-2/neu [1-3], p53 [4], NY-ESO-1 [5,6], cdr2 [7],
hTERT [8,9], mesothelin [10], survivin [11,12] SP-17, WT1
[13-19] etc. Clinical data now clearly indicate that the im-
mune system affects the outcome of patients with epithelial
ovarian cancer (EOC). We and others have shown that the
presence of intraepithelial tumor-infiltrating lymphocytes
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correlates with improved progression-free and overall
survival [20-28]. TILs isolated from ovarian cancers are
oligoclonal [29,30], recognize autologous tumor and
known TAAs in vitro [14,31-34], and exhibit tumor-
specific cytolytic activity ex vivo [35,36]. Tumor-specific
T-cell precursors can also be detected in the blood of
patients with advanced ovarian carcinoma [37]. These
observations suggest that activation of antitumor immun-
ity could be feasible and could produce clinical results. To
date, immunotherapy investigations have yielded limited
but encouraging results in EOC. For example, weekly in-
traperitoneal IL-2 infusion produced a ~17% complete
pathologic response rate in ovarian cancer [38,39], while
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anecdotal objective responses have been reported with
CTLA-4 antibody [40,41]; adoptive transfer of TILs
[23,24]; or vaccines using NY-ESO-1 peptide [42], virus-
modified autologous tumor cells [43] or DCs pulsed with
whole autologous tumor lysate [44].

Whole tumor cancer vaccines
Therapeutic cancer vaccines have the potential to break
immune tolerance and induce long-term immune re-
sponse against cancer cells. However, molecularly de-
fined vaccines directed towards known TAAs have either
failed to produce clinical responses or have yielded tran-
sient responses in ovarian cancer patients to date, as
none of the above antigens, except for NY-ESO-1, have
been proven to be bona fide rejection antigens in the
clinic [42,45,46]. A reasonable alternative may be whole
tumor vaccines [47-49]. The advantages of these were
reviewed recently [50]. Tumor cells express a whole
array of antigens, most of which remain uncharacterized
in EOC. Vaccination with whole tumor antigen poten-
tially draws on this rich source of antigens, comprising
epitopes for both CD8+ cytotoxic T-cells (CTLs) as well
as CD4+ T helper (Th) cells, a possibly necessary condi-
tion to ensure tumor homing of low affinity CD8+ cells
[51-53]. Whole tumor vaccines could also greatly dimin-
ish the chance of tumor escape compared to single
epitope vaccines. Finally, recent deep sequencing results
from over 300 advanced EOC specimens show that
ovarian tumors carry an average of 61 somatic non-
synonymous mutations, most of which were private [54].
Some of these mutations could potentially give rise to
neo-antigens that could stimulate effective and long-
lasting anti-tumor responses. Interestingly, a meta-analysis
of 173 published peer-reviewed immunotherapy trials
found that 8.1% of patients vaccinated with whole tumor
antigen (n=1,733) experienced objective clinical responses,
compared with 3.6% of patients vaccinated with defined
tumor antigens (n= 1,711; P < 0.0001) [55]. Although,
studies have shown that whole tumor lysates can be
poorly immunogenic and can suppress DC differentiation
and maturation [56-58], some approaches to lysate prepar-
ation can increase immunogenicity of whole tumor lysates
[59-61]. In this study, we exploit oxidation during the
preparation of tumor lysate, which appears to promote
immunogenicity [62].

A novel approach to tumor cell lysate preparation
A widely used and straightforward method of whole
tumor cell preparation already used in clinical trials is
necrotic whole tumor cell lysate. The efficacy of the nec-
rotic cell lysate can be further enhanced by oxidative
modification using hypochlorous acid (HOCl) treatment
[59]. It has been demonstrated that proteins oxidized by
HOCl are more readily taken up and processed by
antigen presenting cells (APCs) and lead to enhanced
priming of autologous tumor-specific CD4+ and CD8+

T-cell responses in vitro [63-66]. The use of HOCl to
potentiate the immunogenicity of whole ovarian tumor
cells has been evaluated using SKOV3 ovarian cancer
cells [67,68]. The improvement in antigen immunogen-
icity is explained by three possible mechanisms. First,
HOCl can quantitatively deaminate serine and convert
its side chain into an aldehyde, leading to significant
improvement in immunogenicity [69-71]. Second, oxida-
tion of protein antigens might allow protein unfolding
and exposure of cryptic immunogenic peptides to spe-
cific T-cells [72]. Third, scavenger receptors such as the
lectin-like oxidized low-density lipoprotein receptor-1
(LOX-1) might be involved in the uptake of HOCl-
oxidized tumor cells [73-75], leading to DC activation
and efficient presentation of MHC-I as well as MHC-II
restricted peptides [59,76]. In preclinical evaluation, this
tumor lysate preparation proved to be more immuno-
genic than the standard UV treated whole tumor lysate
[50]. This will be the first study utilizing DCs pulsed
with oxidized whole tumor lysate.

A new dendritic cell vaccine platform
DCs loaded with whole tumor lysate have been investi-
gated in several clinical trials for their ability to induce
anti-tumor T-cell responses [44,77-80]. Beneficial anti-
tumor responses have been observed in some patients,
illustrating the potential of this approach. DCs can be
classified into different subsets, depending on their
lineage and receptor expression pattern. Their distinct
biology can be exploited for different therapeutic strat-
egies. The most widely used DCs in clinical trials to date
are myeloid DCs differentiated from peripheral blood
monocytes. In most trials, “classic” DCs are fully differ-
entiated over seven days in the presence of recombinant
granulocyte-macrophage colony stimulating factor (GM-
CSF) and interleukin 4 (IL-4) [81-83]. These DCs exhibit
high phagocytic and antigen-processing capability. Upon
maturation with an appropriate stimulus, Day-7 DCs up
regulate costimulatory surface molecules such as CD80,
CD86, CD40, and lymph node-homing receptors such as
CCR7, and can efficiently prime naïve T-cells [84-86].
We developed a faster, four-day protocol for DC prepar-

ation, using GM-CSF, IL-4 and serum-free AIM-V media
that is suitable for clinical use. We showed that Day-4
DCs generated with this protocol are similar to “classic”
Day-7 DCs, in terms of phenotype and phagocytic
capability, and have a higher capacity than Day-7 DCs to
produce IL-12p70 following LPS and IFN-γ stimulation.
In addition, these Day-4 DCs were highly immunogenic,
and efficiently primed ovarian tumor-specific T-cells
in vitro in peripheral blood lymphocytes from healthy
volunteers and ovarian cancer patients [87].
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Enhancement of immune therapy by
antiangiogenic therapy
It has been shown that vascular endothelial growth factor
(VEGF) suppresses tumor antigen presentation through
blockade of myeloid DC differentiation and maturation,
leading to tumor immune tolerance [88-95], a process
primarily mediated by VEGF receptor-1 (VEGFR-1)
[96]. VEGF also up regulates programmed death ligand
1 (PD-L1 or B7-H1) in myeloid DCs, which is associated
with T-cell suppression and exhaustion [97]. VEGF
blockade restores DC function and enhances immuno-
therapy [12,98-101]. Anti-VEGF strategies reduce the
number of CD4+CD25+ T regulatory (Treg) cells when
administered in combination with a GM-CSF secreting
tumor vaccine, resulting in increased CTL induction
and improved vaccine efficacy [102,103]. Similar effects
were observed in human subjects treated with VEGF-
neutralizing antibody therapy [98]. A single-arm clinical
trial of vaccine and bevacizumab for prostate cancer has
shown that the combination is associated with a high
rate of immune response induction [104].
Work by us and others have demonstrated that angio-

genesis mechanisms also impair the effector arm of
antitumor immunity by blocking homing of effector T-
cells into tumors. This is in part mediated through the
endothelin B receptor (ETBR), which is up regulated in
tumor endothelium and deregulates endothelial ICAM-1
expression and T-cell adhesion. This blood-tumor endo-
thelial barrier can be disrupted by ETBR antagonists,
resulting in dramatic increase of T-cell homing in tumors
and significant efficacy of otherwise ineffective vaccine
therapy in the mouse, thus calling for human experimen-
tation [105,106]. Importantly, ETBR is upregulated by
VEGF. In vitro, ET-1 signaling through ETAR in cancer
cell lines leads to de novo production of VEGF, a process
regulated by HIF-1-alpha [107] utilizing initial PGE2
production [108] as an intermediary before secondary
VEGF production [107,109-112]. We confirmed that
VEGF blockade enhances T-cell homing to tumors in
ID8-VEGF tumors, a murine syngeneic model of ovarian
cancer overexpressing VEGF [113]. Following vaccination
with UV-irradiated tumor cells, in spite of a tangible fre-
quency of antitumor T-cells in the spleen, no CD8+ TILs
were detected in ID8-VEGF tumors. In agreement with
others [114], treatment with the VEGFR-2 tyrosine kinase
inhibitor SU5416 [115] produced a dramatic influx of
CD8+ TILs in ID8-VEGF tumors, while DMSO vehicle
had no effect on TILs (unpublished data). Normalization
of tumor vasculature through disruption of the VEGF/
VEGFR-2 axis was also shown to increase extravasation
of adoptively transferred T-cells into the tumor and
improve adoptive cell transfer immunotherapy in a
murine cancer model [116]. Combining VEGFR-2 anti-
body DC101 with Her-2-specific vaccination in a mouse
model of Her-2/neu-induced breast cancer, it was dem-
onstrated that this combination treatment accelerated
tumor regression augmenting the lytic activity of CD8+

cytotoxic T-cells [114]. Thus, VEGF blockade not only
blocks tumor angiogenesis, but may also increase the ef-
ficacy of tumor vaccines by enhancing DC function and
by increasing T-cell homing to tumors.

Using metronomic chemotherapy to enhance
immune response
Although, the traditional view has been that chemother-
apy may neutralize antitumor immune response gener-
ated through vaccine therapy, emergent data indicate
that chemotherapy can be combined safely with im-
munotherapy with possibly additive or synergistic effects
that are dose and schedule dependent. The most exten-
sively investigated drug to enhance vaccine potency is
cyclophosphamide, a drug previously used in ovarian
cancer as standard of care in combination with cisplatin.
One of the first observation was made by Berd and
colleagues who used a regimen of low-dose cyclophos-
phamide (300 mg/m2 i.v.), given three days prior to vac-
cination with autologous melanoma cells admixed with
Bacillus Calmette-Guerin (BCG), to treat patients with
melanoma [117]. They reported that cyclophosphamide
plus vaccine treatment resulted in a progressive deple-
tion of circulating CD4+ suppressor T-cells.
In mouse models, North presented evidence that intra-

venous cyclophosphamide enhanced tumor immuno-
therapy by elimination of CD8+ tumor suppressor cells
[118], and that the effect was independent of direct
tumor cytotoxic effects [119]. Machiels and colleagues
evaluated the combination of cyclophosphamide with
(GM-CSF)–secreting whole-cell vaccines in the HER-2
/neu mouse model of mammary cancers [120]. They
found that when cyclophosphamide was given at a dose
range between 50 and 150 mg/kg 1 day prior to vaccine,
the combination controlled tumors more effectively than
either agent alone. Subsequent work showed that cyclo-
phosphamide depletes Treg cells [121,122] and it impairs
their function for nearly 10 days post treatment.
Cyclophosphamide has been used also in humans to

augment cancer immunotherapy [123,124]. In patients
with advanced colorectal carcinoma and melanoma,
cyclophosphamide was shown to increase the response
to an adjuvant KLH vaccine. Jaffee and colleagues have
examined carefully the dose-dependent immunomodu-
latory effects of cyclophosphamide with respect to
targeting T regulatory (Treg) cells [125]. Emens et al.
conducted a Phase I trial that evaluated allogeneic, Her-
2-positive GM-CSF–secreting breast tumor vaccine
alone or in sequence with low doses of cyclophosphamide
and doxorubicin in metastatic breast cancer patients
(n=28), and they found that the dose of 200 mg/m2 of
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intravenous cyclophosphamide augmented Her-2-specific
humoral immunity. However, the immunomodulatory ef-
fect of intravenous cyclophosphamide was lost if given at
doses above 200 mg/m2 [125]. Single-agent intravenous
cyclophosphamide doses of 150, 250, and 350 mg/m2 were
also evaluated in patients with hepatocellular carcinoma
by Greten et al. who reported that the lower doses (150
and 250 mg/m2) induced a decrease the number and the
relative frequency of circulating regulatory T-cells, and
that the dose of 250 mg/m2 was able to impair the sup-
pressor function of regulatory T-cells. It was also shown
in a phase I trial of pancreatic cancer patients that in-
hibition of regulatory T-cells (when using 250 mg/m2

intravenous cyclophosphamide) resulted in recruitment
of high-avidity effector T-cells to tumors, leading to
prolonged progression-free survival and overall sur-
vival [126].
It has been hypothesized that combining VEGF block-

ade with low-dose (metronomic) chemotherapy may have
positive antiangiogenic or antitumor effects [127]. In a
multi-institutional phase II study (NCI-5789), 29 subjects
were treated with bevacizumab 10 mg/kg every 14 days
and low-dose oral cyclophosphamide 50 mg daily [128].
The response rate was 28% and 6-month progression free
survival rate of 57%. A second phase II prospective study
investigated the efficacy and safety of intravenous
bevacizumab 10 mg/kg every other week plus oral cyclo-
phosphamide 50 mg daily in fifteen heavily pretreated pa-
tients with recurrent ovarian cancer [129]. There was
significant activity, with a response rate of 53%. Despite
being heavily pretreated, no gastrointestinal perforations
were noted. In short, combination of bevacizumab and
cyclophosphamide is a promising dual antiangiogenic/
tumoristatic and immunomodulatory therapy that is avail-
able at the present time. The rationale for combining this
therapy with vaccine is to prime the tumor microenviron-
ment and create a favorable milieu to achieve greater effi-
cacy and immune response.

Trial design
We propose a phase I, three-cohort, single-center study
to establish the safety and proof of concept of Oxidized
tumor Cell pulsed DC (OCDC) vaccine administered
intranodally, alone (Cohort 1, n=5 subjects) or in com-
bination with either intravenous bevacizumab (Cohort 2,
n=10 subjects) or intravenous bevacizumab and intra-
venous cyclophosphamide (Cohort 3, n=10 subjects) in
subjects with recurrent ovarian, fallopian tube or primary
peritoneal cancer (Figure 1). Inclusion criteria require
patients 18 years or older, diagnosed with advanced stage
disease, with ECOG performance status ≤1, and >6
months expected survival.
The components of the vaccine in this study include

agents, for which safety has been previously demonstrated
to be acceptable. During this current study we intend to
manufacture a modified whole tumor vaccine using
oxidized whole tumor cell lysate derived from autolo-
gous tumor harvested at secondary debulking surgery,
pulsed onto autologous dendritic cells (Figure 2). The
choice of dendritic cell maturation and the choice of
tumor cell preparation are based on previously pub-
lished data [67,130].

Regimen
Eligible patients will undergo a 10–15 liter apheresis
around day −30 to −15 to harvest peripheral blood
mononuclear cells (PBMC) for DC manufacturing. Pa-
tients will receive OCDC tumor vaccine in combination
with other agents in a design that escalates combinatorial
complexity. OCDC is prepared at the Cell and Vaccine
Production Facility of the University of Pennsylvania. It
will be released in sterile syringes containing ~2.5-5 × 106

DC in 0.55 mL sterile saline. Subjects will receive a total
dose of approximately 5–10 × 106 DCs administered
through two or more intranodal injections into different
normal groin nodes; 0.55 cc containing ~2.5-5 × 106 DCs
will be injected per node with a 22 Gauge needle.
Subjects in Cohort 1 will receive five doses of 5–10 ×

106 dendritic cells (OCDC vaccine) intranodally, while
subjects in Cohort 2 will receive the same five doses of
vaccine in combination with intravenous bevacizumab
(10 mg/kg) given every two weeks on days 0, 14, 28, 42 and
56. Subjects in Cohort 3 will receive the same five doses of
vaccine on days 0, 14, 28, 42 and 56, while bevacizumab
(10 mg/kg) plus cyclophosphamide (200 mg/m2) will be
given the day before each vaccination.
Subjects will be offered to undergo apheresis within

two weeks after vaccine #4 or one to three weeks after
vaccine #5 to collect vaccine primed PBL for use in a
follow-on study of adoptive T-cell therapy. Each treatment
cohort will be evaluated separately, to detect any side ef-
fects that may be due to the vaccine in combination with
other biological agents. Patients in Cohort 2 will be taken
off bevacizumab, if they experience severe adverse events
(SAEs) at least likely related to bevacizumab, but will
retain the option of continuing OCDC vaccination on the
study. Subjects in Cohort 3 will be taken off bevacizumab/
cyclophosphamide, if they experience severe adverse
events (SAEs) at least likely related to bevacizumab or
cyclophosphamide, but will retain the option of continu-
ing OCDC vaccination on the study. Subjects will be taken
off the study completely if they experience SAEs, which
are possibly, probably or definitely related to OCDC. Ter-
mination of enrollment for each cohort will be triggered
with ≥2 DLTs (i.e., DLT is any Grade 3 or higher allergic,
autoimmune or injection site reaction or any Grade 4
hematologic or non-hematologic toxicity expect fever) in
the first 5 subjects and ≥3 DLTs at any time. The rules for
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early stopping for toxicity do not depend on the availabil-
ity of immune response data; any subject that gets at least
one vaccination injection is included. For this study, 25
evaluable subjects will be treated, and we estimate that up
to 30 subjects may need to be enrolled, assuming a 20%
failure rate for generating the dendritic cell vaccine.
Subjects will be followed daily for the first 5 days

(starting at Day 0), and then biweekly until week 8 (End
of Study). At screening and 30 days following the fifth
vaccine dose (day 86), subjects will undergo immune
assessment. Immune monitoring will be performed on
blood samples from all participating patients to assess
the vaccine induced antitumor immune response and
the composition of circulating T-cell subpopulations.
This study obtained approval from national health agen-
cies and from the Institutional Review Board of the
University of Pennsylvania and is performed in accord-
ance with the Helsinki Declaration, the International
Conference of Harmonization Good Clinical Practice
guidelines, and local regulatory requirements. Written
informed consent will be obtained from each patient.

Objectives
The primary objective of the study is to determine the
feasibility and safety of administering OCDC intranodally
alone, in combination with intravenous bevacizumab, or
in combination with intravenous bevacizumab plus cyclo-
phosphamide in subjects with recurrent ovarian, fallopian
tube or primary peritoneal cancer. The secondary objec-
tives of the study are to obtain pilot data on immunogen-
icity on OCDC administered intranodally in subjects, to
assess the effect of the proposed treatments on periph-
eral blood regulatory T-cells and on the tumor micro-
environment, as well as to evaluate clinical responses up
to 114 days.

Statistical methods
Toxicity will be graded by NCI Common Toxicity
Criteria (NCI-CTC) Version 4.0 and will be tabled by
treatment cohort. Immune response will be evaluated by
descriptive statistics, scatter plots of pre- and post-
vaccine values of the various immune parameters, and
relevant fold changes by treatment cohort. Exploratory
longitudinal analyses (repeated measures ANOVA or lin-
ear mixed effects models) will be used to examine time
trends (e.g., decrease in Treg cells), test for differences
between baseline and post-vaccine time points within
cohorts and discern differences among cohorts. Clinical
responses scored by RECIST criteria will be tabulated by
treatment cohort.

Innovation
The proposed first-in- human study is innovative in many
ways. First, it translates novel concepts of combinatorial
immunomodulation of the tumor microenvironment from
the laboratory to the clinic. The notion of blocking VEGF
in combination with the whole tumor cancer vaccine is
novel and has not been tested in the clinic. Preclinical data
in solid tumor mouse models show that blocking VEGF
enhances de novo T-cell infiltration into the tumor [114]
and, when combined with cancer vaccines or adoptive T-
cell therapy, VEGF blockade significantly improves their
biological and clinical efficacy [104,116,131]. Furthermore,
although countering Treg cells in combination with vac-
cine is not novel, the suppression of Treg cells (by low-
dose cyclophosphamide) followed by VEGF blockade is
novel in the context of immunotherapy. This drug com-
bination could address the possibility that VEGF blockade
could trigger tumor hypoxia, which in turn could induce
Treg recruitment and immune tolerance via CCL28 che-
mokine, as we recently reported [132]. Finally, the vaccine
platform used in this study is innovative in its own right.
Following careful optimization in the lab [62,87], we are
proposing an autologous vaccine with DCs developed
from elutriated monocytes cultured for only four days
with GM-CSF and IL-4 and pulsed with lysate of HOCl-
oxidized tumor cells, which have not been used in the
clinic before. DCs will be matured with LPS/IFN-γ and
injected intranodally. Collectively, this approach is novel
for ovarian cancer, a disease in dire need of new therapies.

Discussion
We propose a new combinatorial therapy approach to
mobilize antitumor immunity against ovarian cancer. The
strong association between the presence of intraepithelial
T-cells along with other biomarkers of immune activation
in tumors and improved clinical outcome suggests that
mobilization of antitumor immunity should yield clinical
benefit in many patients with EOC, a notion preliminarily
supported by many published pilot studies. Our group
and other groups have however, revealed the existence of
numerous and overlapping mechanisms of immune dys-
function in ovarian cancer, which will have to be abated in
order to effectively mobilize antitumor immunity. The
combinatorial approach proposed herein is a first attempt
to utilize readily available therapeutic tools with known
clinical and biological behavior to address some of the
tumor barriers.
Given the paucity of reliable tumor rejection antigens

in EOC (with the exception of NY-ESO-1, which is
relatively rare), we propose to use a whole tumor lysate
vaccine. Given the easy accessibility of primary but also
recurrent tumors in the peritoneal cavity, and the
general acceptance of primary or secondary surgical
cytoreductive surgery as the standard of care for these
patients, autologous tumor lysate is a feasible approach
in this population. Autologous tumor lysates provide a
convenient and personalized source of multiple tumor
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antigens, possibly encompassing all the relevant class I
and II epitopes against which antitumor immune re-
sponse can be mounted, including private and mutated
epitopes. Incorporation of class II epitopes could be
especially important, since the coexistence of tumor-
reactive CD4+ cells can enhance tumor engraftment and
persistence of low affinity anti-tumor CD8+ cells [53].
The choice of tumor cell preparation is based on previ-
ous data demonstrating that oxidative necrosis enhances
the immunogenicity of whole tumor cell lysates and is
superior to other conventional tumor lysates [133,134].
There is no strictly defined standard duration of cul-

ture to generate human PBMC-derived DCs. To date,
most clinical studies have used a 7-day culture with
GM-CSF and IL-4. However, data from Czerniecki and
colleagues have shown that fully functional antigen-
presenting cells (APC) can be rapidly developed from
CD14+ PBMC cells in as little as 40 hours [135,136]. Al-
though, these “rapid DC” are efficient in presenting class
I and II peptides, data from our laboratory revealed that
at least four days of differentiation with GM-CSF and
IL-4 were required for elutriated peripheral blood mono-
cytes to acquire the phenotype and functional properties
of cross-presenting APCs capable of processing lysate
antigen [87]. These 4-day DCs pulsed with lysate under-
went proper maturation into DC1 cells when exposed to
bacterial lipopolysaccharide (LPS) combined with IFN-γ,
producing high levels of IL-12, but required a concomi-
tant – not sequential – exposure to the two maturing
agents [62]. We selected these cells as the proposed vac-
cine platform, which will be administered intranodally,
since intranodal administration of DCs allows adminis-
tration of a defined quantity of DCs directly to the site
of T-cell sensitization. This approach also allows the
peak IL-12 secretion to be synchronized with their prox-
imity to T-cells, where IL-12 can exert its full effects
during antigen presentation [137]. IL-12 is paramount as
dendritic cells that are able to produce high levels of IL-
12 can induce long-lived type 1 T-cell responses against
tumor-associated antigens more efficiently than standard
mature DCs. The benefit of high IL-12 producing DCs
was highlighted in several recent papers [138-140] dem-
onstrating the importance of IL-12 production with re-
gard to the induction of tumor-specific CTLs in vitro
and its ability to predict prolongation of progression-free
survival of patients with advanced cancer [141]. Okada
et al. showed in a Phase I/II cancer vaccine trial of ma-
lignant glioma patients that IL-12 production levels by
αDC1 positively correlated with time to progression.
In a murine tumor model, DC pulsed with tumor lysate

and injected intranodally resulted in greater sensitization
of T-cells and improved anti-tumor responses [142]. In a
randomized, Phase I, dose-escalation trial Lambert et al.
compared different administration routes (intravenous,
intranodal, intradermal) in metastatic melanoma receiving
four autologous peptide-pulsed DC vaccinations. The re-
sults showed that intranodal administration led to super-
ior T-cell sensitization as measured by de novo target-cell
recognition and DTH priming, indicating that intranodal
injection may be the preferred route of administration for
mature DC vaccines [143].
Adoptive immunotherapy has frequently resulted in

tumor rejection in the human, suggesting that a critical
number of high-avidity tumor-reactive T-cells are prob-
ably required to effectively overcome barriers in the
tumor microenvironment. On the contrary, cancer vac-
cines have most commonly failed to induce overwhelm-
ing tumor responses in patients. Preclinical models show
that if one can defeat immune barriers in the tumor
microenvironment, one can enable low-avidity/low-fre-
quency antitumor immune responses induced by vac-
cines to become clinically effective. Work from our lab
and from other labs shows that among tumor micro-
environment barriers preventing the engraftment, ex-
pansion and function of antitumor effector T-cells, two
can be readily targeted in ovarian cancer: a) angiogenesis
driven by VEGF, and b) Treg cells.
Vascular endothelial growth factor is highly expressed

and plays an important role in tumor progression of
ovarian carcinoma. Positive immunostaining for VEGF
was observed in 97% (68 out of 70) of ovarian carcin-
omas [144] and high VEGF levels correlated with ad-
vanced disease stage and poorer survival [144,145].
VEGF became a fundamental target in anti-angiogenic
therapy leading to the development of humanized re-
combinant monocloncal antibody bevacizumab, which
was evaluated for ovarian cancer treatment in clinical
trials only recently. In the OCEANS study, a phase III
randomized study, platinum-sensitive recurrent ovarian
and fallopian tube cancer subjects (n=484) were random-
ized to the combination of gemcitabine and carboplatin
either with or without bevacizumab for 6 to 10 cycles. The
study showed that the combination therapy including
administration of bevacizumab until disease progression
resulted in a statistically significant improvement in
progression-free survival (hazard ratio: 0.484, p<0.001)
[146]. Bevacizumab was also evaluated as frontline ther-
apy for patients in the randomized Phase III ICON7
trial, where stage IIIc or IV patients (n=1528) were ran-
domized to carboplatin and paclitaxel with or without
bevacizumab given concurrently every 3 weeks for 5 or
6 cycles and continued for 12 additional cycles or until
progression of disease. The ICON7 study has demon-
strated that bevacizumab improved the progression-free
survival in women with high-risk ovarian cancer (hazard
ratio: 0.84, p=0.004). The benefits with respect to both
progression-free and overall survival were greater
among those at high risk for disease progression [147].



Figure 3 VEGF blockade and the endothelial
blood-tumor barrier.
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Therefore, VEGF blockade can provide a) important
antiangiogenic therapeutic effects, b) attenuate the
endothelial blood-tumor barrier (Figure 3) and c) im-
prove DC maturation. Tumor vascular endothelium is a
physicial barrier through which T-cells home to the
tumor and can present a significant challenge to the
Figure 4 Combinatorial effect of VEGF blockade and Treg depletion.
success of immunothery. Tumor endothelial cells regu-
late leukocyte trafficking via adhesion molecules and
chemokines [148]. The adhesive properties of tumor
endothelium can be deregulated by signaling through
the endothelin-B receptor, resulting in the inability of
T-cells to adhere and home effectively to tumors [105].
It is possible that some of these effects are maintained
by VEGF, since VEGF blockade can enhance T-cell ad-
hesion to endothelium and T-cell homing to tumors
[149,150]. Endothelial cells can also express surface in-
hibitory or death ligands mediators including PDL-1
and PDL-2 [151,152], Fas ligand (FasL; also known as
CD95L) [153], TNF-related apoptosis-inducing ligand
(TRAIL) [154], and CD31 [155], or release soluble fac-
tors such IL-10, TGF-β and PGE2, which can inhibit ef-
fector lymphocyte function and/or DC maturation and
function. It is quite possible that some of these tumor
endothelial immunomodulatory mechanisms may not
be directly mediated by VEGF. For example, we previoulsy
found that many of the specific markers of tumor endo-
thelium in ovarian cancer are induced not by VEGF but
rather by a combination of hypoxia and inflammatory me-
diators [156]. Importantly, low dose cyclophosphamide
used in this study to target Treg cells also exerts an
antiangiogenic effect through direct cytotoxicity to tumor
endothelium, which could synergize with bevacizumab to
abate these aspects of the tumor endothelial barrier.
VEGF plays an important role in suppression of DC

maturation. It has been demonstrated that DCs from
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cancer patients are functionally impaired; furthermore,
the increase of immature dendritic cells in the periphery
was closely correlated with serum VEGF levels but not
with TGF-β, IL-6 or GM-CSF [98]. Gabrilovich and
colleagues were the first to identify that VEGF released
by tumor cells were capable of impairing both DC
function and DC maturation from CD34+ precursors
[91]. By using neutralizing blocking antibodies against
VEGF (but not IL-10 or TGF-β) they were able to re-
verse the suppression. VEGF can exert its immune sup-
pression on dendritic cell mostly through disruption of
normal hematopoesis [90,94,95] (impairment of normal
nuclear factor-kappa-B signaling during hematopoesis
[92] through VEGFR-1 [56]).
Treg cells have been shown to be present in ovarian

cancer [24,157]. Curiel et al. demonstrated that CD4+

CD25+ FOXP3+ human Treg cells suppress tumor-specific
T-cell immunity and contribute to growth of human tu-
mors in vivo in a study of 104 individuals affected with
ovarian carcinoma. They found that there was a significant
correlation between tumor Treg cell content and survival
in the group as a, and also for individuals in stage II, , III
or IV disease [158]. Presently, there are no specific drugs
to deplete Treg cells, but among commercially available
strategies, low-dose cyclophosphamide appears as a prom-
ising approach. In a preclinical rat model of colon cancer,
Ghiringhelli et al. have shown that single administration
of cyclophosphamide depletes CD4+ CD25+ T-cells, delays
tumor growth, and improves cure rates when followed by
non-curative immunotherapy [145]. The same group has
demonstrated that metronomic oral cyclophosphamide
immunosuppressive regulatory T-cells and improves ef-
fector immune function in patients with cancer [159].
Jaffee et al. showed that intravenous cyclophosphamide in
doses no greater than 200 mg/m2 can transiently decrease
Treg frequencies and enhance tumor-specific immune re-
sponse in breast cancer patients in combination with a
cancer vaccine [125,160].
We recently reported on a pilot study (UPCC-11807),

where we administered oral metronomic cyclophospha-
mide at 50 mg daily every other week to patients with
EOC in combination with bevacizumab. We saw no sig-
nificant effect of this dose of cyclophosphamide on per-
ipheral blood Treg. Thus, in the present study we chose
the dose of 200 mg/m2 administered intravenously, which
conveniently matches the schedule of bevacizumab and
vaccine. Based on reported effects, this schedule and
dose of cyclophosphamide should reduce Treg cells.
The concomitant administration of intravenous low-
dose cyclophosphamide and bevacizumab has never
been tested before. Importantly, Treg cells and VEGF
are interconnected; hypoxia (which drives expression of
VEGF) induces also accumulation of CCR10+ Treg cells
in ovarian tumors, while Treg cells can in turn reprogram
the tumor microenvironment towards angiogenesis [132].
Thus, in theory although VEGF blockade as monotherapy
could attenuate the blood-tumor barrier, it could also pro-
duce a rebound increase in Treg accumulation in the
tumor microenvironment, promoting tolerance and angio-
genesis. In this case, concomitant suppression of Treg
could deprive tumors from a critical homeostatic tolerance
mechanism and could produce a synergistic immunomod-
ulatory interaction at the tumor microenvironment,
allowing a relatively weak antitumor immune response
induced by cancer vaccine to become clinically effective.
The growing understanding of these complex networks
has revealed that the same cell populations or soluble
factors can simultaneously promote angiogenesis and
mediate immunosuppression in the tumor microenvir-
onment, suggesting that successful cancer vaccine ther-
apy may indeed benefit from effective blockade of
multiple mechanisms [161]. We propose to block VEGF
while also suppressing Treg using readily available FDA
approved drugs, such as bevacizumab and low-dose
cyclophosphamide (Figure 4).
In summary, this study responds to the urgent need

created by the above observations to test in the clinic a
combinatorial regimen that administers cancer vaccine
in combination with Treg and VEGF blockade. The
present trial will enable us to take the first step in this
clinical development endeavor, testing the feasibility and
safety of such an approach while we collect pilot
biological data from the periphery and the tumor micro-
environment. Upon completion of this phase I study, we
will be in a position to dissect the individual contribu-
tion of bevacizumab or cyclophosphamide to vaccine
therapy through rationally designed and adequately
powered phase II randomized studies, based on the re-
sults of the present study.
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