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Abstract

Background: Cancer vaccines are considered a promising therapeutic approach. However, their clinical results are
not yet satisfactory. This may be due to the the difficulty of selection of an efficient tumor associated antigen (TAA)
and immunization protocol. Indeed, the weak antigenicity of many TAA impairs the design of robust procedures,
therefore a systematic analysis to identify the most efficient TAA is mandatory. Here, we performed a study to
compare different gp100 vaccination strategies to identify the best strategy to provide a 100% protection against
experimental melanoma in a reproducible manner.

Methods: C57BL/6J mice were challenged subcutaneously with B16F10 melanoma cells, after vaccination with: a)
mouse or human gp1005.33 peptide plus CpG adjuvant; b) mouse or human gp100 gene; ¢) mouse or human
gp 100,533 peptide-pulsed dendritic cells (DC). Alternatively, a neutralizing anti-IL-10 monoclonal antibody (mAb)
was subcutaneously administered at the site of tumor challenge to counteract regulatory cells. Finally,
combinatorial treatment was performed associating human gp100,5_33 peptide-pulsed DC vaccination with
administration of the anti-IL-10 mAb.

Results: Vaccination with human gp100,5 33 peptide-pulsed DC was the most effective immunization protocol,
although not achieving a full protection. Administration of the anti-IL-10 mAb showed also a remarkable protective
effect, replicated in mice challenged with a different tumor, Anaplastic Large Cell Lymphoma. When immunization with
gp100,5 33 peptide-pulsed DC was associated with IL-10 counteraction, a 100% protective effect was consistently
achieved. The analysis on the T-cell tumor infiltrates showed an increase of CD4+granzyme+ T-cells and a decreased
number of CD4+CD25+Foxp3+ Treg elements from mice treated with either gp100,5 33 peptide-pulsed DC vaccination
or anti-IL-10 mAb administration. These data suggest that processes of intratumoral re-balance between effector and
regulatory T cell subpopulations may play a critical protective role in immunotherapy protocols.

Conclusions: Here we demonstrate that, in the setting of a cancer vaccine strategy, a comparative analysis of different
personalized approaches may favour the unveiling of the most effective protocol. Moreover, our findings suggest that
counteraction of IL-10 activity may be critical to revert the intratumoral environment promoting Treg polarization, thus
increasing the effects of a vaccination against selected TAA.
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Background

Cancer immunotherapy is considered a promising thera-
peutic approach in oncology, and the recent successes
obtained by Provenge and Ipilimumab support this view
[1-3]. However, despite the discovery of a great number of
tumor associated antigens (TAA) [4] and the setting of a
large variety of immunotherapy protocols [5], their clinical
efficacy remains dismal [4,6]. This is likely due to: (a) poor
immunostimulatory efficacy of immunotherapy proce-
dures, and (b) escaping mechanisms, as the accumulation
of regulatory lymphocytes (Treg) within the tumor envir-
onment causing the impairment of anti-tumor cytotoxic
cells [7]. Therefore, in presence of a wide array of TAA [8]
and a variety of immunotherapy protocols [5], a systematic
analysis leading to the identification of reference parame-
ters for the selection and application of each single TAA is
mandatory. This is the daunting challenging effort run by
the NCI [8] and informative guidelines came from the
CIC [9]. Thus, in the setting of an immunotherapy proto-
col using a specific TAA, a preliminary comparative ana-
lysis is recommended in order to identify the most
immunogenic strategy able to achieve an optimal anti-
tumor response.

Interleukin 10 (IL-10) is a pleiotropic cytokine se-
creted by a wide array of immune cells, including mono-
cytes, macrophages, T cells, dendritic cells (DC), B cells,
natural killer (NK) cells, mast cells, neutrophilic and eo-
sinophilic granulocytes, and by several tumor cells
[10,11]. This cytokine signals mainly via STAT3 regulat-
ing immunomodulating activities [12]. In particular, it
decreases the antigen presenting activity of macrophages
and DC mainly through HLA and co-stimulatory mole-
cules down-regulation. Moreover, IL-10 suppresses the
production of pro-inflammatory cytokines (i.e. IL-1«, IL-
1B, TNF-a, IL-6, IL-8, IL-12, IL-18, granulocyte—macro-
phage colony-stimulating factor [GM-CSF], macrophage
inflammatory protein-1, RANTES, leukemia inhibiting
factor, IFNy), and inhibits nuclear translocation of NEF-
kB [13,14]. At the same time, this cytokine is a NK cell
activator [15] and a co-stimulator of mast cell prolifera-
tion [16,17]. Finally, IL-10 promotes B lymphocyte dif-
ferentiation and immunoglobulin production [18], and
plays a relevant role in immune regulation, mediating
the activity of different regulatory T cell (Treg) subsets
[19-21]. This pivotal role, associated with the finding
that the tumor environment is usually rich in IL-10 se-
creted by tumor cells [22,23] and/or by tumor infiltrat-
ing elements [24], suggests that this cytokine has a
critical function in tumor immune escaping. Thus, the
inhibition of IL-10 has been proposed as a useful strat-
egy in anti-cancer therapy [25,26].

In this study, we focused on a single TAA, gpl00, in
an established melanoma model, analyzing different gp-
100 centred vaccination strategies. Our main aim was to
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identify a protocol able to consistently provide 100%
tumor protection, and this aim was achieved only when
the most efficacious effector strategy was associated with
IL-10 blockade to counteract Treg activity.

Materials and methods

Cell lines

The cell lines used in this study were: a) B16F10 melan-
oma cells (a spontaneous C57BL/6]J-derived melanoma
widely used for the evaluation of therapy [27]); b) RMA/
S cells, a murine T-lymphoma cell line deficient in the
presentation of endogenously synthesized antigens by
MHC class I molecules [28] (kindly provided by Dr. G.
Pietra from the Advanced Biotechnology Center of
Genoa); ¢) VAC cell line, which is an immortalized line
from primary lymphoma derived from a NPMALK-
transgenic mouse backcrossed onto the BALB/c back-
ground (CD4+/ALK+ lymphoblastic lymphoma) [29],
and used for generating syngenic s.c. tumorgrafts of An-
aplastic Large Cell Lymphoma (ALCL).

All lines were cultured in RPMI 1640 medium (GIBCO,
Life Technologies Ltd., Paisley, UK) containing 10% heat-
inactivated fetal bovine serum (FCS, Euroclone, Wetherby,
UK), 2 mM/L L-glutamine, 100 U/ml penicillin, 100 pg/ml
streptomycin (GIBCO) in a humidified atmosphere at
37°C and 5% CO..

Mice

C57BL/6], 6- to 8-week old, female mice were purchased
from Harlan Laboratories (S.Pietro al Natisone, Udine,
Italy). BALB/c mice were purchased from Charles River
Laboratories (Calco, Lecco, Italy).

Animal procedures were conducted in accordance
with the institutional guidelines and experiments have
been reviewed and approved by Ethics Committee for
Experimentation on Animals (CSEA) of Genoa and
Turin.

Synthesis of the highly immunogenic peptide

encompassing residues 25-33 of mouse and human gp100
Mouse (EGSRNQDWL) and human (KVPRNQDWL)
gpl00,5_33 peptides, as well as influenza virus nucleo-
protein A NP3g6.374 (ASNENMETM) peptide, were in
house synthesized at the biochemical facility of the
Centre of Excellence for Biomedical Research by stand-
ard methods of solid phase peptide synthesis, which fol-
lows a 9-fluorenylmethoxycarbonyl (Fmoc) strategy with
minor modifications [30]. Synthesized compounds were
purified by reverse-phase high performance liquid chro-
matography (HPLC) and molecular weights confirmed
by electrospray ion-trap mass spectrometry. The purifi-
cation of individual compounds was obtained on a
Shimadzu LC-9A preparative HPLC (Shimadzu, Kyoto,
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Japan) equipped with a Waters C18 pBondapack column
(19 x 300 mm; Waters, Milford, MA).

Culture of bone marrow derived DC and activation for the
expression of gp100 on its surface

Bone marrow (BM) derived DC were generated as de-
scribed [31]. BM cells were harvested from thigh-bones
and tibias of naive C57BL/6] mice and washed with
phosphate-buffered saline (PBS) (Invitrogen, Life Tech-
nologies). Cells (1x10%/ml) were suspended in DC
medium consisting in RPMI 1640 supplemented with
10% heat-inactivated FCS (HyClone, Logan, UT), 2 mM
L-glutamine, 100 U/ml penicillin, 100 pg/ml strepto-
mycin, 100 mM sodium pyruvate, 10 mM Hepes buffer
solution, 100 mM non essential amino acids solution,
50 uM B-mercaptoetanol (GIBCO), and plated plate with
20 ng/ml murine GM-CSF (6 well plates, PeproTech,
Rocky Hill, NJ). On day 3, fresh medium was added plus
5ng/ml murine GM-CSF (PeproTech). On day 7, the
DC phenotype was checked using the following mAbs:
fluorescein isothiocyanate (FITC) conjugated anti-MHC
class II (HLA DR), phycoerythrin (Pe) cyanin 7 conjugated
anti-CD11c, allophycocyanin (APC) conjugated anti-CD86
(Biolegend, San Diego, CA). More than 90% of the cells
showed high expression of all DC markers. Before adminis-
tering DC to animals, DC (1x10%/ml) were activated with
CpG (1 pg/ml) for 8 hours; then, activated DC (2x10%/ml)
were pulsed by incubation with mouse or human
gp100,5_33 peptide (2 pM) at 37°C for 2 hours.

gp100 vaccination of C57BL/6J mice against B16F10
melanoma

In vivo experiments were performed analyzing at least 5
animals per group; each experiment was repeated for 3
times.

C57BL/6] mice were immunized against gpl00 mol-
ecule following three different protocols: 1) peptide plus
adjuvant; 2) gene immunization; 3) peptide-pulsed DC
immunization (summarized in Additional file 1: Figure
S1 in Additional files). Peptides plus adjuvant protocol:
peptides were administered by injecting subcutaneously
either mouse (mgpl00y533) or human (hgpl00,5 33)
gpl100,5.33 preparations (100 pg/mouse) in association
with CpG (30 pg/mouse), as adjuvant. The unrelated
NP346.374 peptide from influenza virus nucleprotein A
was used as negative control in preliminary experiments.
Gene immunization: this protocol was executed adminis-
tering intramuscularly plasmids expressing either mouse
or human gpl00 gene sequence (100 pg/mouse). A
pCMVscript plasmid (Stratagene) was used as gene vec-
tor. The gene coding for mouse gpl00 molecule was
amplified from cDNA obtained after extraction of RNAs
from B16F10 melanoma cells. The construct coding for
human gpl100 was kindly provided by Prof. N. Restifo

Page 3 of 11

(NIH, Bethesda). PCR amplified products were first
cloned into a sequencing vector (TOPO TA cloning
from Invitrogen) and then Sanger sequenced. Both
mouse and human gpl00 cloned genes were subse-
quently transferred in the eukaryotic expressing vector
pCMVscript.The empty pCMVscript plasmid was used
as negative control in preliminary experiments. Peptide-
pulsed DC immunization: this protocol was performed
injecting in the right flank DC (2x10°/mouse) pulsed
with either mouse or human gp100,5_33 peptide. Unpulsed
DC or DC pulsed with the unrelated NP3s6.374 peptide
were used as negative control in preliminary experiments.
The schedule of each protocol consisted in three immuni-
zations, administered weekly. At the time of the third
immunization, mice received the tumor challenge, that
consisted in sc. injection in the controlateral limb of
B16F10 cells (1x10°cells/mouse). Tumor masses were
measured with calipers at 2—3 days intervals by measuring
long and short axes. Area was calculated according to the
formula: tumor area = length x width in mm? Mice were
sacrificed when tumors reached >100 mm? or when ulcer-
ation and/or bleeding developed.

Immunotherapy of B16F10 melanoma in C57BL/6J mice
or ALCL in BALB/c mice based on IL-10 neutralization
In vivo experiments were performed analyzing 5 animals
per group; each experiment has been repeated 3 times.
C57BL/6] were s.c. challenged with B16F10 melanoma
(1x10° cells/mouse) while BALB/c mice were injected s.c.
withVAC (1x10° cells/mouse) cells. The neutralizing
anti-IL-10 (Anti-Mouse IL-10 Functional Grade Purified,
clone JES5-16E3) (eBioscience, San Diego, CA) mAb
(150 pg/mouse) was administered subcutaneously at the
site of tumor challenge immediately after tumor cell
injection as well as after one and two weeks from baseline.
A rat IgG2b,k control isotypic antibody (Biolegend,
San Diego, CA) was administered using the identical
schedule adopted for the anti-IL10 mAb. When IL-10
blockade was associated in combinatorial treatment to
gpl00 vaccination, the neutralizing anti-IL-10 mAb
(150 pg/mouse), or its isotypic control, were subcuta-
neously administered as described above.

Purification of splenocytes and intratumor lymphocytes

Spleens or tumors, removed from sacrificed mice, were
minced with a sharp sterile blade, placed in a 40-pm nylon
cell strainer (BD Biosciences, Franklin Lakes, NJ), and
pressed with the plunger of a syringe until cellular ele-
ments were released. Red blood cells were lysed with red
blood cell lysing buffer (Sygma Aldrich), and washed.
Tumor or splenocyte suspensions were collected in RPMI
1640 medium supplemented with 10% FCS. Splenocytes
from treated and untreated mice (2.5x10°/ml) were plated
in flasks in the presence of irradiated (3000 rad)
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splenocytes (1x10%/ml) and gpl00,5_33 peptide (10 pg/ml)
and cultured for 5 days. After incubation, splenocytes were
collected and separated by density gradient (Biochrom AG,
Berlin, Germany). Splenocyte samples were used for pheno-
typical analysis, the remaining portion for ELISPOT assay.
In the ALCL model, we applied two overnight incuba-
tions with ALK inhibitor CEP28122 (20 ng/ml) followed by
separation by density gradient before phenotype analysis.

Immunofluorescence and flow cytometric (FACS) analysis
Phenotypes of tumor infiltrating T lymphocytes (TIL)
and whole splenocytes were analyzed by immunofluores-
cence incubating the cells (1x10° lymphocytes in 100 pl
of PBS) with specific mAbs at 4°C for 30 minutes in
the dark. The following mAbs were used: FITC conju-
gated anti-GranzymeB (eBioscience), Pe-conjugated
anti-Foxp3 (eBioscience), Peridinin chlorophyl protein
(PerCP)-cyanin 5.5-conjugated anti-CD8 (Biolegend),
anti-CD28(Biolegend), PeCy 7-conjugated anti-CD3
(BD Pharmingen), APC-conjugated anti- (BD Pharmingen),
APCCy 7-conjugated anti-CD4 (BD Pharmingen). For
intracellular staining, cells were permeabilized and fixed
using FOXP3 Fix/Perm Buffer Set (Biolegend) according
to manufacturer’s instructions and then incubated with
fluorochrome conjugated anti-GranzymeB and anti-
Foxp3mAb; fluorochrome-conjugated isotype matched
Abs were also used as controls. After the staining, the
analysis was performed by flow cytometry using a
FACSCanto II flow cytometer equipped with FACS Diva
software (BD).

Elispot assay

Detection of IFNy production by splenocytes in response
to peptide stimulation was carried out using an enzyme-
linked immunospot (Elispot) assay (Millipore, Merck
KGaA, Darmstadt, Germany) according to the manufac-
turer’s instructions. Briefly, splenocytes (2x10°/well) from
treated and untreated mice, cultured for 5 days with irra-
diated splenocytes plus peptide (10 pg/ml) were harvested,
and dead cells were removed by centrifugation on density
gradient (Biochrom). Then, cells were collected and
washed before incubating them overnight at 37°C with ei-
ther mgp100,5.33- or hgpl00y5 33-pulsed RMA/S cells
(1x10* cells) in 96-well plates coated with 10 pg/ml of un-
labeled anti-mouse [FNy rat monoclonal capture antibody
(clone ANI18, Millipore). At the end of incubation, a
biotinylated detection antibody (2 pg/ml) was added to the
wells and reacted with alkaline phosphatase-streptavidin
(100 pl/well) and the development with BCIP/NBT Phos-
phatase substrate (50 ul/well) (KPL, Kirkegaard & Perry
Laboratories, Inc.). Frequencies of IFNy producing cells
were measured using a BioReader 3000 Elispot Reader
(Bio-Sys GmbH). Data are expressed as the mean number
of spots per duplicate.

Page 4 of 11

Proliferation inhibition assay

The suppression activity was evaluated by monitoring
the proliferation of splenocytes isolated from C57BL/6]
and from BALB/c mice by dye dilution approach.
For this assay, splenocytes (used as responder cells)
were stained with carboxyfluorescein succinimidyl ester
(CFSE) 5uM (Molecular Probes, Life Technologies) and
co-cultured with Concanavalin A (Con A) (Sigma Aldrich)
at 5 pg/ml for 5 days in a 96 well flat bottomed plate with
or without tumor infiltrating lymphocytes (TIL) from
melanoma or lymphoma tumors (used as suppressor cells).
Splenocytes:TIL cell ratio was 2:1. Co-cultures with
TIL from both tumors were also performed in the
presence or absence of the neutralizing anti-IL-10 mAb
(clone JES5-16E3 eBioscience) (10 upg/ml) or of its
isotypic control. After 5 days the cultures were washed in
PBS and acquired by FACS Canto flow cytometer equipped
with FACS Diva software (Becton Dickinson, BD). A
total of 50000 CFSE positive responder cells were an-
alyzed. The results were expressed as percentage of
CESE bright splenocytes.

Immuno-histochemical analysis

Tumors specimens were taken from either anti-IL-10 mAb
treated mice or controls and fixed with nitrogen vapors.
Tissue sections, obtained from melanoma specimens, were
stained with monoclonal antibody against IL-10 (Purified
Rat anti-mouse IL-10, clone JES5-16E3, BD, Milano, Italy)
following the manufacturers’ instructions.

Statistical analysis

Comparisons between mean values were performed by
unpaired or paired t test using the Graph-Pad Prism 5.0
software (Graph-Pad Software, Inc, San Diego, CA,
USA). Data were considered statistically significant when
p < 0.05.

Results

Comparative analysis of protective effect among
protocols inducing anti-cancer effector immune

responses

Our studies wanted to compare different strategies of
vaccination. Since each of these strategies would require
specific controls, we preliminarly performed an analysis
of the effects of each control on tumor growth. The con-
trols were: a) s.c. immunization with the NP4; 155 gp100
unrelated peptide plus CpG adjuvant; b) i.m. administra-
tion of the empty pCMVscript plasmid; ¢) s.c. adminis-
tration of DC unpulsed or pulsed with the NPi4; 155
gpl00 unrelated peptide. Additional 1: FigureS2 shows
that in repeated experiments none of these procedures
significantly modified tumor growth. Based on these
data, in order to have a unique, homogeneous control
for all the experiments we performed the following
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studies using spontaneous tumor growth as universal
control.

In a syngeneic setting gpl00,5.33 peptide-pulsed DC
vaccination was the most effective, inducing >50% tumor
mass reduction, while peptide vaccination and gene vaccin-
ation had comparable efficacies (Figure 1A). According to
the protection results, mice treated with peptide-pulsed DC
had among splenocytes a significantly higher frequency of
IFNy-secreting T cells in response to gpl00,533 peptide
stimulation than control animals (Figure 1B), as assessed by
Elispot analysis.

These experiments were repeated in a Xxenogeneic set-
ting, using the human gp100,5 33 peptide or a plasmid cod-
ing the human gp100 protein. In this setting, vaccination
with DC pulsed with the gp100,5.33 peptide remained the
most effective protocol, although peptide plus adjuvant
vaccination achieved comparable results (Figure 2A).

The Elispot analysis of frequency of IFNy-secreting T
splenocytes in response to gp100,5.33 peptide showed a
higher number of positive cells versus controls, in all
groups of treated mice (Figure 2B).

These data clearly indicate that the protocol with
gpl100,5.33 peptide-pulsed DC was the most effective
strategy. To verify which protocol between the syngeneic
and the xenogeneic setting could produce the most
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vaccination protocols in a syngeneic setting. (A) B16F10
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Figure 2 Comparison of gp100 vaccination protocols
performed either in syngeneic or xenogeneic setting. (A)
Comparative analysis of the different gp100 vaccination protocols in
a xenogeneic setting. B16F10 melanoma growth curves in differently
treated and control mice (*p = 0.05; **p = 0.01); (B) Elispot analysis
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and control mice in a xenogeneic setting; (C) Comparison of gp100
vaccination protocols performed in syngeneic (light grey columns)
or xenogeneic (dark grey columns) settings. Data refer to the
assessment performed after 21 days from B16F10 melanoma
challenge when mice were sacrificed.

protective action against tumor growth, we combined all
data and compared them. Figure 2C shows that vaccin-
ation performed with the human gp100,5 33 peptide was
able to reduce melanoma growth more than the vaccin-
ation performed with the mouse corresponding peptide.
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Analysis of effector and regulatory T cells in mice
vaccinated with gp100,5_35 peptide-pulsed DC

To understand the cellular mechanisms underlying the
effects of pulsed DC vaccination, the frequencies of CD4+
granzyme+ and CD8+granzyme+ T cells (representative
of effector T cell populations) and of CD4+CD25+FoxP3+
Treg (representative of regulatory lymphocytes) were
analyzed in spleens and in tumors from treated and
untreated mice. Figure 3A shows that the frequency of
CD4+granzyme+ T cells in treated mice was signifi-
cantly higher than in controls both in spleens and in the
host tumor microenvironment. No significant variations
were observed in the CD8+granzyme+ T cell compartment
(not shown). Moreover, a decrease of CD4+CD25+Foxp3+
Treg was observed in treated mice with respect to un-
treated controls in the tumors but not in the spleen
(Figure 3B).

Protective effect of IL-10 neutralization against melanoma
and ALCL growth

Since none of the immunization protocols exerted a
complete protection against B16F10 melanoma engrafting,
we hypothesized that a specific counteraction of the
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regulatory T cell compartment could increase the effi-
ciency of spontaneous and/or vaccine induced anti-tumor
effector mechanisms. This hypothesis was supported by
the data generated using Ipilimumab in human protocols
[1,32]. Indeed, the observation that TIL purified from mel-
anoma lesions exerted a regulatory activity in an IL-10
dependent fashion confirmed this idea (Figure 4A). More-
over, melanoma sections stained with an anti-IL-10 mAb
demonstrated the presence of the cytokine in the tumor
microenvironment (data not shown).

Hence, we decided to verify whether in vivo IL-10 neu-
tralization could represent a useful mean for counteracting
the activity of the regulatory T cell compartment.

Indeed, IL-10 blockade by an anti-IL-10 mAb, admin-
istered in monotherapy at the site of tumor challenge,
led to a significant delay in melanoma growth, reminis-
cent of what observed in different experimental settings
[33] (Figure 4B). Importantly, the same anti-IL-10 mAb
added in vitro (20 pg/ml) to B16/F10 melanoma cell cul-
ture did not change either cell proliferation rate or cell
viability, ruling out the possibility of any direct toxic ef-
fect (not shown).

In order to understand whether the effects mediated
by IL-10 neutralization were melanoma-specific or could
be replicated in a different unrelated type of tumor, the
same experiment was performed using mouse anaplastic
large cell lymphoma (ALCL) cells (ALK+ VAC cells, [29])
as challenging tumor. Preliminarly, the IL-10-dependent
regulatory activity exerted by TIL was also demonstrated
for this model (Figure 4C). Indeed, in vivo IL-10 blockade
resulted in a significant protection against ALCL growth
(Figure 4D).

In the attempt to understand the mechanisms respon-
sible for the protective effect of IL-10 blockade, phenotypic
analyses were performed on TIL of mice treated with the
neutralizing anti-IL-10 mAb. These analyses showed that
in both tumor microenvironments, IL-10 treatment caused
a significant increase of CD4+granzyme+ T cells with a
concomitant decrease of CD4+CD25+FoxP3+ Treg, remin-
iscent of what observed after vaccination with gp100,5 33
peptide-pulsed DC (Figure 5). No changes in the per-
centage of either CD4+granzyme+ T cells or CD4+
CD25+FoxP3+ Treg were observed in splenocytes when
we compared treated and untreated mice (not shown).

Based on these results, we arrived to the conclusion
that a combinatorial treatment associating Treg coun-
teraction, through IL-10 blockade, with stimulation of
the anti-tumor immune response, through vaccination,
could have addictive/synergic efficacy. Accordingly, the
combinatorial administration of the anti-IL10 mAb,
but not its related isotypic control (not shown), to
gpl00,5 33 peptide-pulsed DC vaccinated mice led to
a complete protection from B16F10 melanoma growth
(Figure 6).
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or its relative isotypic control. Data are expressed as percentage of replicating, CFSE+ cells; percentage of inhibition are indicated in parentheses.
(B and D) Mean tumor dimensions in mice challenged after 21 days with either B16F10 melanoma (B) or VAC ALCL (D) cells and treated or not

Discussion

Our data demonstrate that: a) the vaccination with DC
pulsed with gp100,5_33 peptide was the most effective in
protecting C57BL/6 mice from B16F10 melanoma devel-
opment compared to other gpl00 vaccination protocols
such as peptide plus adjuvant or gene vaccination; b) dif-
ferent protective effects were observed in syngeneic or
xenogeneic settings in gpl00 peptide-centred cancer
vaccination protocols; c) the protective effects exerted
by DC vaccination were related to increased intratu-
moral concentration of granzyme+ CD4+ T cells and de-
creased concentration of CD4+CD25+Foxp3+ Treg; d)
counteraction of IL-10 by a neutralizing mAb lowered
the rate of tumor development, inducing an increase of
intratumoral concentration of granzyme+ CD4+ T cells
and a decrease of CD4+CD25+Foxp3+ Treg; e) only the
combinatorial treatment associating DC vaccination with

IL-10 blockade was able to abrogate completely tumor
growth.

Cancer vaccination is based on the identification at
the molecular level of antigens expressed preferentially
by specific tumors. Although Sipuleucel-T is the first
cancer vaccine that recently reached the clinic after re-
ceiving the authorization for clinical use in prostate can-
cer [34], it is believed that immunological protocols will
reach a full clinical efficacy and wide application in on-
cology only when well defined oncoantigens will be
proved efficient by in vivo protective experiments.
Hence, this process requires a systematic analysis of the
protective effect of the different TAA and related proto-
cols of administration, since several variables, including
type of antigen, route of administration, molecular form
of antigen administration, selection of adjuvants, may
condition the outcome of the treatment [35]. In this



Kalli et al. Journal of Translational Medicine 2013, 11:120
http://www.translational-medicine.com/content/11/1/120

Page 8 of 11

2 100- 5 107
8 — P=005 e P=0.05
804 + 8 _—
+ [}
: —— =
E 601 g 61
d &
2 40 S 4
+ o
3 20 & 2
° ]
R 0 r 2 0
S o g
OOQ\ QON \Q@
g
&
P =0.01
2 100 % 101
@
e 80 P
§ B o P =005
& 60 E —=
g 40 § 4
& 20 3 2
g § ——
B . P T
S 0
é‘u\ oééo Q&v
© %) W
& o
& &
Figure 5 Frequency of CD4+granzyme+ and CD4+CD25+Foxp3+ T lymphocytes in mice treated with an anti-IL-10 mAb. FACS analyses
of frequency of CD4+granzyme+ (A and C) and CD4+CD25+Foxp3+ (B and D) T lymphocytes were performed in mice untreated or treated with
an anti-IL-10 mAb. The analyses were executed on TIL from treated (black columns) or untreated (white columns) mice. (A) and (B) panels refer
to experiments performed in C57BL/6J mice challenged with B16F10 melanoma cells; (C) and (D) panels refer to experiments performed in Balb/c
mice challenged with VAC ALCL cells. In all panels, data are expressed as percentage of positive cells out of the total CD3+ T cell population.

paper, we compare the protective efficacy of different pro-
tocols of cancer vaccination based on a classical, widely
adopted model system constituted by gp100 vaccination in
B16F10 melanoma [27]. Intriguingly, the comparison of
different vaccination protocols, such as peptide plus
adjuvant, gene immunization and peptide-pulsed DC
immunization, showed different levels of protective effi-
cacy among the three protocols, being DC vaccination the
most effective one. This is a remarkable observation since
suggests that adequate stimulation of a single (or limited
number of) T cell clone(s), specific for one specific TAA
epitope, as induced by peptide-pulsed DC vaccination,
may have more pronounced protective effects than multi-
epitope mediated stimulation of a wide TAA-specific T cell
repertoire, as induced by vaccination with a gene coding
for the entire TAA molecule. Importantly, the protective
effects of identical protocols performed in syngeneic or
xenogeneic settings differed greatly. This is not surprising
since the efficacy of xenogeneic immunization has been
already reported in different models of experimental
tumor and associated with the expression of a heteroclitic
epitope by the immunizing agent [36,37]. The use of xeno-
geneic or modified tumor antigens, as a system for in-
creasing the immunogenicity of the vaccine and breaking

tolerance, has been suggested for long time [4,38]. How-
ever recent evidences from human trials seems to disprove
the efficacy of this approach [39]. Taken together, data
reported here further demonstrate the need of experimen-
tal testing to assess the most efficient protocols. Indeed,
our analyses deserve to be replicated in different tumor
model systems in order to verify whether our findings rep-
resent a generalized phenomenon in cancer vaccination.

The protective effect exerted by a cancer vaccination
protocol is likely related to a number of biological fac-
tors concerning the immunogenicity of the antigen, the
competence of the T and B cell repertoires, the level of
activation of innate immunity, the capacity of the anti-
gen to elicit immune responses involving a wide scenario
of lymphocyte subtypes (T helper, CTL, Th17, B lym-
phocytes) and, last but not least, the number of boosts
[40-44]. Hence, monitoring cancer vaccine-induced im-
mune response, should take into consideration a variety
of factors, likely becoming an impossible challenge for
clinical trials.

Trying to simplify what underlies complex biological
networks, the outcome of an immune response may be
function of the ratio between the effector and the regula-
tory response [45-47]. In this study, we selected the
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Figure 6 Combinatorial treatment of B16F10 melanoma: vaccination with gp100,s5.33 pulsed-DC plus neutralizing anti-IL-10 mAb
administration. (A) Schedule of treatment; (B) B16F10 melanoma growth curves in differently treated and control C57BL/6J mice (*p = 0.05).

intratumoral concentration of granzyme+CD4+ or CD8+
T cells as a parameter representative of effector immune
responses. Similarly, we analyzed intratumoral concen-
tration of CD4+CD25+FoxP3+ Treg as a parameter rep-
resentative for regulatory circuits. Strikingly, protective
effects induced by the different protocols of cancer vac-
cination were related and dependent on increasing num-
ber of tumor infiltrating CD4+granzyme+ T cells and
decreasing concentration of Treg. Whether the effector/
regulatory ratio can be further exploited to assess the ef-
ficacy of a cancer vaccine-induced immune response
needs to be analyzed in future studies.

Notwithstanding the clear protective efficacy of peptide-
pulsed DC vaccination, this protocol was not able to pro-
vide abrogation of tumor growth in 100% of treated mice.
This prompted us to test an alternative immunotherapy
based on IL-10 counteraction. This choice derives from
our previous observation related to the presence within
tumors of IL-10-secreting Treg able to strongly impair
anti-tumor immune response [21]. Since presence of both
IL-10 and IL-10-secreting Treg was demonstrated in
B16F10 melanoma [our data and 24], we explored the pos-
sibility to counteract the effects of intratumoral IL-10 to
unleash protective effector responses. In fact, the adminis-
tration of a neutralizing anti-IL-10 mAb exerted protective

effects similar to that demonstrated by peptide-pulsed DC
vaccination, inducing intratumoral recruitment of CD4+
granzyme+ T cells and deplenishing of CD4+CD25+FoxP3+
Treg. These effects were not specific for BI6F10 melanoma
and they could be replicated in the unrelated cancer model
of ALCL. More importantly, when peptide-pulsed DC
vaccination and IL-10 blockade were applied in a combina-
torial protocol, complete abrogation of tumor growth was
achieved in 100% of treated mice.

Conclusions

Taken together, our data show that, in order to improve
vaccine efficacy, comparative experimental testing of the
relative protective effects of different protocols of vac-
cination should be performed before translating the im-
munotherapy to humans. The usage of IL-10 blockade
represents a useful strategy for successful treatment of
cancer in preclinical settings. These findings encourage
the exploitation of this strategy in human settings.
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