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Abstract

Background: Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly
dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As
MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent
need for new and efficient treatment options.

Methods: In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic
mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic
model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of
subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE.
Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this
subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma.

Results: We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung
adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-
derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of
the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a
single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment.

Conclusions: Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus

represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer.
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Background

More than 226,000 new cases of lung cancer are
projected to occur in 2012 in the United States, and its
high mortality rate makes it the leading cause of cancer-
related death [1]. Malignant pleural effusion (MPE) is a
common complication of patients with highly symptom-
atic and advanced-stages of lung cancer. In the clinic,
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these patients are difficult to manage and have, in gen-
eral, a short life expectancy of 4—9 month after diagnosis
[2]. In addition to lung cancer, MPE is a serious complica-
tion associated with different other tumor types including
breast cancer and lymphomas affecting altogether 175,000
patients in the United States each year [3]. Today, only
palliative therapies such as thoracentesis and chemical
pleurodesis are available in the clinic [4]. Therefore, novel
approaches for the therapy of MPE are needed.

Despite being a frequent and serious complication in
cancer patients, the underlying mechanism of MPE for-
mation is not fully understood. In all cases, fluid accu-
mulates in the pleura as a result of increased pleural
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fluid formation and/or reduced drainage. However, in-
creased local fluid formation is the principal underlying
abnormality in the genesis of most exudative effusions,
even if obstruction of fluid drainage co-exists [5]. MPE
formation is considered to develop on the basis of a lo-
cally disturbed tumor-microenvironment, with leakiness
of local endothelial cell layers and pleural invasion by
tumor cells [6,7]. In various studies, vascular endothelial
growth factor (VEGF) has been identified as a key medi-
ator contributing to the formation of malignant effusions
(ME) in solid tumors by modulation of the tumor vascu-
lature [6,8]. Strategies to antagonize the VEGF activity at
various target points of the corresponding signaling
pathway have shown success in vitro and in animal
models of ME and ascites [5,9-13].

Oncolytic virotherapy of tumors is an up-coming, prom-
ising therapeutic modality of cancer therapy based on the
lytic destruction of solid tumors mediated by infection of
the malignant tissue by tumor-specific viruses [14-17]. A
multitude of different virus strains with oncolytic potential
have been described and promising pre-clinical data as
well as clinical trial reports from oncolytic virotherapy are
available [18-20]. Recently, Zhang et al. [21,22] have intro-
duced the attenuated recombinant Vaccinia virus (rVACV)
GLV-1h68 which was used as an oncolytic agent in several
pre-clinical tumor models [23-27] and is currently applied
in clinical trials (http://www.clinicaltrials.gov; references
NCTO00794131 and NCT01443260).

In the present study, we showed that the oncolytic
VACV GLV-1h68 and its derivative GLV-1h108 [28],
which encodes for a single chain antibody (scAb) against
VEGF revealed significant tumor growth control and
prevented formation of ME in a subcutaneous advanced-
stage lung adenocarcinoma model. In addition, we showed
for the first time that oncolytic virotherapy led to a reduc-
tion of tumor cell-derived VEGE-levels, to decreased inva-
sion of tumor cells into the peritumoral tissue, and to viral
infection of blood vessel-invading tumor cells, thereby
preventing formation of ME. These data support the use
of oncolytic virotherapy against both the primary tumor
as well as tumor-associated effusions.

Methods

Cell lines

PC14PE6-RFP human lung adenocarcinoma cells were
stably transduced with the full-length dsRed2 cDNA as de-
scribed by Kienast el al. [29] and kindly provided to us by
F. Winkler (University of Heidelberg, Neurooncology,
Heidelberg, Germany) in 2008. The PCI4PE6-RFP cells
used in this study were authenticated by the Leibniz-
Institut DSMZ (Deutsche Sammlung von Mikroorganismen
und Zellkulturen GmbH, Braunschweig, Germany) by STR
profiling to be identical with the parental cell line PC14
(Riken, Japan) in 2012. PC14PE6-RFP cells were cultured in
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DMEM supplemented with 1x MEM non-essential amino
acids, 2 mM GlutaMAX, 10% FBS, 100 Units/ml penicil-
lin, and 100 pg/ml streptomycin. Cells were maintained at
37°C and 5% COs,.

Virus strains

Construction of the attenuated Vaccinia virus strains
GLV-1h68 and GLV-1h108 was described previously by
Zhang et al. [21] and Frentzen et al. [28], respectively.
Briefly, three expression cassettes (encoding for Renilla
luciferase-GFP fusion protein, p-galactosidase and [-
glucuronidase) were recombined into the FI4.5L, J2R
and AS56R loci, respectively, of the LIVP strain virus gen-
ome. In case of GLV-1h108 the glaf-1 coding sequence
was recombined into the /2R locus of the parental GLV-
1h68 virus strain. Viruses were propagated in CV-1 cells
and purified through sucrose gradients.

Tumor inoculation and administration of the virus

All animal experiments were carried out in accordance
with protocols approved by the Institutional Animal
Care and Use Committee (IACUC) of Explora Biolabs
(San Diego, USA, protocol number EB11-025) or the
government of Unterfranken (Wiirzburg, Germany,
protocol number AZ 55.2-2531.01-17/08).

Six-week-old female athymic nude FoxnI™ mice were
obtained from Harlan Laboratories (Netherlands and
Indianapolis). PC14PE6-RFP tumor cells (4 x 10°/100 pl
PBS) were subcutaneously (sc) injected into the abdominal
right flank. Tumor volume was calculated as length x
width® x 0.52. For all experiments, tumors were grown up
to 100-200 mm? in size (13—14 days) before viral admin-
istration. A single viral dose of 1x 10’ plaque forming
units (pfu) in 100 pl PBS was injected intravenously (iv)
via the tail vein.

Fluorescence live-animal imaging

Tumor cell growth and viral infection were monitored
directly by the RFP expression of tumor cells and GFP
expression of Vaccinia virus-infected cells and quantified
with the Maestro EX imaging system (CRI, Woburn,
MA) using appropriate filters for RFP (tumor; excitation:
503-555 nm, emission: 580 nm cut-in) and GFP (virus;
excitation: 445-490 nm, emission: 515 nm cut-in). Im-
ages were evaluated and quantified using the Maestro
Version 2.10.0 software.

FACS analysis

For flow cytometric analysis of tumors and exudates,
four end-stage PC14PE6 tumor-bearing mice (28 dpim)
were sacrificed by CO, inhalation. Effusions were punc-
tured and 400 pl of the exudates were collected. Prepar-
ation of tumors were performed as previously described
[30]. In both effusion and tumor preparations lysis of
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erythrocytes using an isotonic ammonium cloride lysis
buffer was performed and DNA was digested using 5
MU/ml DNase 1.

Blocking of unspecific binding-sites and antibody-
labeling using anti-mouse CD45-PECy7 (eBioscience,
San Diego, CA, USA) was performed as decribed else-
where [30]. Immediately before use, dead cells were
labeled with propidium iodide (PI) solution.

Labeled cells were subsequently analyzed, using the
Accuri C6 Cytometer and FACS analysis software CFlow
Version 1.0.227.4 (Accuri Cytometers, Inc. Ann Arbor,
MI USA).

In vivo MRI

In vivo MRI measurements of tumor-bearing mice were
performed at room temperature on a 7 Tesla Bruker
Biospec System (Bruker BioSpin GmbH, Reinstetten,
Germany) using a 35 mm diameter home-built quadra-
ture birdcage coil. For in vivo imaging the animals
received inhalation anesthesia (1-2% isoflurane) during
the measurement and were placed in a home-built meas-
urement container according to safety regulations.

T, weighted (T;,,) spin echo experiments were per-
formed at different time points following an injection
(iv) of 0.1 mmol/kg body weight Gadopentetate-
Dimeglumine (Gd-DTPA, Magnevist, Bayer Schering
Pharma AG, Berlin, Germany) of exemplary mock
infected animals. Furthermore, for the shown data, a T,
weighted (T5,,) spin echo experiment was performed for
anatomical correlation approximately half an hour after
injection of the contrast agent.

For n = 4 additional animals (n = 2 mock/ GLV-1h68)
multi spin echo (MSE) experiments were performed for
the evaluation of tissue T, times (without contrast
agent). Data processing of the MRI data was performed
in MATLAB (The MathWorks Inc., Natick, USA) using
home-written software routines. The chosen MRI se-
quence parameters are provided in the Additional file 1.

Protein isolation and hVEGF/mVEGF ELISA of tumor
samples

Quantitative evaluation of VEGF concentrations in tumor
tissues was performed using a human (Thermo Scientific,
EHVEGF) and mouse specific VEGF ELISA kit (abcam,
ab100751) according to the manufacturer’s protocol. Tu-
mors were isolated 7 dpi, lysates were prepared as de-
scribed previously [25]. Absorbance was measured using a
Tecan sunrise absorbance reader (Tecan, Crailsheim,
Germany). Protein concentrations for each sample were
interpolated from a VEGF-specific standard curve.

RT-PCR of B-actin
Tissue samples were analyzed for the presence of
PC14PE6-REP cells by RT-PCR. Brains, lungs, and livers
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of PC14PE6-bearing mice (28 dpim) were homogenized in
TRIzol Reagent (Invitrogen) to isolate total RNA. Samples
were further treated as described elsewhere [25]. Primer se-
quence for human f$3-actin: (forward: 5’-CCT CTC CCA
AGT CCA CAC AG-3"and reverse: 5’- CTG CCT CCA
CCC ACT C-3’) and for murine f3-actin: (forward: 5’-
CGT CCA TGC CCT GAG TC- 3’ and reverse: 5-GCT
GCC TCA ACA CCT CAA C-3’). PC14PE6-RFP cell ly-
sates were used as positive control for human 3-actin. The
PCR reaction was performed in a T-Gradient Thermoblock
PCR machine (Biometra, Gottingen, Germany).

Immunohistochemistry

For histological studies, tumors were excised and snap-
frozen in liquid N,, followed by fixation in 4% parafor-
maldehyde/PBS pH 7.4 for 16 h at 4°C. Fixed tumors
were rinsed in PBS followed by dehydration in 10% and
30% sucrose/PBS (Carl Roth, Karlsruhe, Germany) and
finally embedded in Tissue-Tek® O.C.T. (Sakura Finetek
Europe B.V., Alphen aan den Rijn, Netherlands). Tumor
samples were sectioned (15 pm) with a cryostat 2800
Frigocut (Leica Microsystems GmbH, Wetzlar, Germany)
and stored at —80°C. Antibody-labeling was performed fol-
lowing fixation in ice-cold aceton. The primary antibody
was incubated for 1 h. After washing with PBS, sections
were labeled for 30 min with the secondary antibody and
finally mounted in Mowiol 4—88.

Whole animal sectioning and H&E staining of tissue
sections

Mice were euthanized, perfused with 4% paraformalde-
hyde, and whole mice were fixed in 4% formalin for 2
days followed by decalcification in 10% formic acid/4%
formalin for up to 5 days. Decalcified specimens were
dehydrated and embedded in paraffin. Tissue sections
(5 pm) were stained by H&E staining.

Fluorescence microscopy

The fluorescence-labeled preparations were examined
using a MZ16 FA Stereo-Fluorescence microscope (Leica)
equipped with a digital DC500 CCD camera and the Leica
IM1000 4.0 software (1300 x 1030 pixel RGB-color im-
ages). Furthermore, a Leica TCS SP2 AOBS confocal laser
microscope equipped with argon, helium-neon and UV la-
sers and the LCS 2.16 software (1024 x 1024 pixel RGB-
color images) was used. Digital images were processed
with Photoshop 7.0 (Adobe Systems, Mountain View, CA)
and merged to generate overlay images.

Fluorescence intensity measurements and microvessel
density

Fluorescence intensity of the CD31-, Ly-6G-, MHCII-
labeling as well as the vascular density was measured in
15-um-thick cryostat sections of control tumors and
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infected areas of GLV-1h68-colonized tumors on digital
images as described earlier [27]. For all experiments the
mean value was calculated for nine images (three images
each of three different control and GLV-1h68-infected
tumors) and presented with standard deviation.

Antibodies, reagents and treatment of animals
Endothelial cells of blood vessels were labeled with ham-
ster anti-mouse CD31 antibody (Chemicon, International,
Temecula, CA). Platelets were labeled with rat anti-mouse
CDA41 antibody (GeneTex Inc., Irvine, CA). Immune cells
were labeled using rat anti-mouse MHCII antibody
(B, dendritic cells, monocytes, macrophages) and rat-anti
Ly-6G antibody (neutrophils) (eBioscience, San Diego,
CA). Vaccinia virus was labeled with rabbit anti-Vaccinia
virus (abcam, Cambridge, UK).

The DyLight649-conjugated secondary antibodies
(donkey) were obtained from Jackson ImmunoResearch
(West Grove, PA).

For the labeling of functional blood vessels in tumors,
mice were intravenously injected with 100 pg of
biotinylated-Lycopersicum esculentum Lectin (Vector La-
boratories, Burlingame, CA). Three minutes later, tumors
were removed and prepared for histology. Tumor cross-
sections (15 um) were labeled with DyLight649-conjugated
streptavidin (Sigma Aldrich, Taufkirchen, Germany) to
visualize the Lectin-labeled functional tumor vasculature.

Statistics

A two-tailed Student’s ¢ test was used for statistical ana-
lysis. P values of < 0.05 were considered statistically sig-
nificant (*p < 0.05, ** p < 0.01, *** p < 0.001).

Results

Subcutaneously implanted PC14PE6-RFP lung
adenocarcinomas developed malignant effusions in
athymic nude mice

Recently, Yano and colleagues reported the formation of
MPE of orthotopically generated PC14PE6 lung adenocar-
cinomas in athymic nude mice [6,7]. In our study, we used
the PC14PE6-RFP cells [29] for subcutaneous tumor gener-
ation on the flank of athymic nude mice. Despite the differ-
ent local microenvironment of the lung and the subcutis,
we observed the formation of subcutaneous ME 12-14
days post cell implantation (dpim). These peritumoral
effusions were visible by eye due to massive subcutane-
ous blood leakage showing different stages of hematoma
formation around the tumor site (Figure 1A). At about
3—4 weeks after implantation all of the tumor-bearing
mice developed large and bloody tumor-associated effu-
sions, which consisted of fluid-like as well as semi-solid
compartments (up to 800 ul) as depicted by representa-
tive T,,, images using MRI (Figure 1B).
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Exemplarily, the injection of the contrast-agent Gd-
DTPA into a tumor-bearing mouse with ME followed by
a time course analysis of the contrast agent distribution
using T;,, MRI revealed a fast and strong accumulation
of the contrast agent in well-vascularized tumor areas
(blue, Figure 1C, D) as well as in the effusion (green,
Figure 1C, D). During the time course the signal to noise
ratio (SNR) within the vascularized tumor areas (blue)
started to decline 5 min after injection while it further
accumulated in the effusion (blue, light blue) reaching a
plateau after approximately 15 min.

The Fluorescence-microscopic analysis of the effusion
content revealed a large number of erythrocytes, red-
fluorescent PC14PE6-RFP tumor cells, as well as non-
fluorescent cells, confirming that these effusions are indeed
of the malignant type (Figure 1E). Furthermore, FACS
analysis of the effusion content showed that most of the
cells within the ME were already dead red-fluorescent
PC14PE6-RFP tumor cells (57.46%), however, 6.32% of the
tumor cells were still alive (Figure 1F). When compared to
tumors with only 28.96% dead and 34.32% live tumor cells,
the environment of the effusions seems to be cytotoxic.
Interestingly, CD45-positive immune cells, which were the
other nucleated cell component of effusions, were enriched
in ME (20.26%) when compared to tumors (11.63%) indi-
cating an inflammatory environment of ME.

Taken together, the results showed that PC14PE6 tumor-
associated ME can be established in the flank area of mice
indicating that the local microenvironment of the lung is
not essential for ME formation.

PC14PE6-RFP tumors exhibited enlarged CD31-positive
blood vessels containing clusters of tumor cells
Orthotopically established PC14PE6-RFP lung adenocar-
cinomas contained a significant proportion of blood
vessels with a large lumen and some of them with trans-
luminal bridges of endothelial cell branches, which are
hallmarks of non-sprouting angiogenesis [31]. In this
study, we performed confocal-laser scanning micros-
copy of whole tumor cross-sections of subcutaneously
established PC14PE6-RFP tumors and detected enlarged
CD31-positive vessels. However, within these enlarged
CD31-positive blood vessels we observed clusters of
RFP-positive PC14PE6 tumor cells, which either lined
the inner surface of the vessels or filled the lumen of the
vessels (Figure 2A, B). We termed these tumor cell-
containing CD31" blood vessels as TCCBVs. Enlarged
CD31" TCCBVs were localized mainly in outer tumor re-
gions or peritumoral areas and showed a heterogeneous
morphology — reaching from complex vascular structures
such as glomeruloid bodies to structures with variable
intussusceptive vascular growth (Figure 2C, D). Labeling
of CD41-positive platelets revealed a co-localization of
TCCBVs and platelets indicating the connection to the
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Figure 1 Generation of subcutaneous PC14PE6-RFP lung adenocarcinomas and tumor-associated ME. (A) Photographic image of a mouse
bearing a subcutaneous PC14PE6-RFP tumor on the right flank 14 dpim showing a hematoma around the tumor site and the beginning of
exudate accumulation in the groin (arrowhead). (B-C) exemplary T;,, MRI of a PC14PE6-RFP-bearing mouse 22 dpim revealing tumor-associated
effusion in the groin containing fluid (black asterisks, B) and solid/semi-solid cellular material (white asterisk, B). Using Ty,, MRI the time-
dependent distribution of (iv) injected Gd-DTPA was recorded in different tumor regions and areas of the ME as indicated by regions of interest
(ROIs) in (C); the corresponding SNR over time of the different ROIs were plotted in (D). ROl coloring: red — necrotic tumor region, blue —
enlarged blood vessel, yellow — non-necrotic tumor region, green — outer effusion region, pink — solid effusion content, light blue - fluid effusion
content, black — control muscle tissue. (E) micro-photographic image overlayed with the red fluorescent image of an exudate smear revealing
numerous erythrocytes as well as red-fluorescent tumor cells and non-fluorescent cells. (F) FACS analysis of PCT4PE6-RFP tumors (28 dpim, n = 4)
and ME (n = 3); shown are the percentage of RFP-positive tumor cells, propidium iodide (Pl)/RFP-positive dead tumor cells, and CD45-positive
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circulation (Figure 2E). To further analyze the function-
ality of CD31" TCCBVs, we injected (iv) biotinylated
Lycopersicon esculentum Lectin to only label blood ves-
sels which are actively connected to the blood stream.
We could identify Lectin-labeled TCCBVs indicating
that these special blood vessels were still functional
(Figure 2F).

Since PC14PE6-RFP tumors were described to be highly
metastatic and easily form brain metastases [31], the
intra-vascular PC14PE6-RFP cells may be actively migrat-
ing metastatic tumor cells. Therefore, we analyzed differ-
ent organs of late-stage PC14PE6-RFP tumor-bearing
mice (28 dpim) for local metastases using human-specific
3-actin primers as target for RT-PCR analysis. Interest-
ingly, neither brains nor lungs or livers of the analyzed
mice were positively tested for human PCI14PE6-RFP
tumor cells (Figure 2G). Thus, we assume that TCCBVs
are statically associated with the tumor vasculature of
PC14PE6-RFP lung adenocarcinomas rather than are be-
ing snapshots of metastatic seeding.

rVACV colonization of PC14PE6-RFP tumors retained both
tumor growth and ME formation

To test efficacy of an oncolytic virotherapy of PC14PE6-
RFP lung adenocarcinomas using the recombinant

Vaccinia virus GLV-1h68, we monitored tumor growth
after systemic treatment. As shown in Figure 3A rVACV
significantly reduced overall tumor growth and
prolonged survival time, however, with high interindividual
variation in the therapeutic effectiveness. For example, the
first rIVACV-treated mouse had to be euthanized due to
tumor burden already 23 dpi, compared to another
rVACV-treated mouse with complete tumor disappearance
51 dpi. At the same time, we monitored the formation of
ME in all rFVACV-treated and untreated tumor-bearing ani-
mals. Most of the animals already developed ME initially
shown as hemorrhagic areas around the tumor site at the
onset of the treatment. Interestingly, in approximately 50%
of the rVACV-treated mice the effusions completely
disappeared, in the other cases ME formation was at least
highly attenuated (Figure 3B).

To determine the anatomical context of ME, we
scanned untreated and virus-treated animals first by
in vivo MRI (Figure 3C) followed by whole mouse
sectioning (Figure 3D-F). In untreated PC14PE6-RFP
tumor-bearing mice ME was visualized already 7 dpi by
MRI (Figure 3C). These animals showed highly necrotic
tumors surrounded by enlarged effusions. In contrast,
rVACV-treated tumors showed highly attenuated ME.
Histological analysis of PC14PE6-RFP tumor-associated
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Figure 2 Enlarged tumor cell-containing CD31-positive blood vessels (TCCBVs) in PC14PE6-RFP tumors. (A-F) Confocal microscopic
images of 15 um-thick PC14PE6-RFP tumor sections 21 dpim showed enlarged CD31-positive blood vessels (blue) containing RFP-expressing
tumor cells (red, arrowheads) in peritumoral regions (A) and tumor border areas (B). In tumor sections enlarged CD31-positive TCCBVs appear in
various morphological formations resembling glomeruloid bodies (C) or garland-like vessels with intussusceptive vascular growth (D).
Functionality of enlarged TCCBVs was confirmed by co-localization of CD41-positive platelets with garland-like TCCBVs (E) and Lectin-labeling of
TCCBVs upon systemic injection of Lectin into PC14PE6-RFP-bearing mice. Both microscopic images indicate the connection of TCCBVs to the
blood circulation. (G) RT-PCR analysis of lung, brain and liver homogenates of end-stage PC14PE6-RFP-bearing mice (28 dpim) using human- (h,
205 bp) and mouse-specific (m, 216 bp) B-actin primers (n = 4). Human PC14PE6-RFP cells were used as a positive control for human B-actin and
as a negative control for mouse -actin. All images are representative examples. Scale bars represent 300 um (A, B, F), 75 um (C, D), and

40 um (E).
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Figure 3 Therapy of ME in PC14PE6-RFP tumor-bearing mice upon systemic injection of GLV-1h68. (A-B) PC14PE6-RFP tumor-bearing
mice were either mock-infected or treated with 1 x 107 pfu GLV-1h68 (iv) 14 dpim (n = 6). (A) PC14PE6-RFP tumor growth was monitored by
measuring the tumor volume revealing a continuous tumor growth in the mock-infected group and a significantly retarded growth rate in the
GLV-1hé8-treated group; all mice of the mock-infected group were euthanized due to tumor burden and ME formation 14 dpi; in the GLV-1h68
-treated group two mice were euthanized due to ME formation (23, 42 dpi) before end of the study. Shown are the mean values +/— standard
deviations. (B) same mice as shown in A were individually monitored for ME formation during the study; ME formation was evaluated by skin
color of the tumor area (hematoma) and exudate accumulation in the groin; skin color index indicating increased hematoma: skin-coloured — light
blue — middle blue - dark blue; red dot: palpable cyst in the groin (exudate accumulation), white square: area of tumor necrosis, cross: euthanization.
(C) in vivo MR T, maps of two mock- and two GLV-1h68-infected PC14PE6-RFP tumor-bearing mice 7 dpi. Tumor-associated effusions (arrow) with
accumulation of solid/semi-solid cellular components (asterisk) are indicated in T, images. The T, maps are scaled from 0 to 200 ms. (D) the
corresponding photographic images of the paraformaldehyde-fixed and decalcified mouse abdomen demonstrated the extended hematoma in the
peritumoral area of mock-infected mice; in GLV-1h68-treated mice no peritumoral hematoma was detected. (E, F) H&E staining of the corresponding
whole abdominal mouse sections revealed erythrocytes-containing blood lakes (black asterisks, E) in mock-treated and necrotic tumor areas (white
asterisk, ) in GLV-1h6é8-treated mice. Different histopathology of the tumor margin of mock- and GLV-1h68-treated tumors (arrowheads, E) is shown
with higher magnification in (F). All images are representative examples. Scale bars represent 2 mm (E) 20 um (F).
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ME revealed erythrocyte-containing blood lakes with
highest frequency at the tumor rim in untreated tumors
(Figure 3E, F). Moreover, these tumors did not show de-
fined tumor borders and blood leaks into the surrounding
tissue/cavity. In GLV-1h68-treated tumors defined tumor
border regions and extended necrotic tumor areas were
observed.

In summary, oncolytic therapy using rVACV proved to
be an effective treatment modality for both growth con-
trol of lung adenocarcinomas and therapy of ME.

rVACV colonization of PC14PE6-RFP tumors activates the
tumor endothelium

Since rVACYV inhibits the formation of ME in PC14PE6-
RFP tumor-bearing mice, we investigated the direct
effect of rVACV infection on the tumor vasculature.
Contrary to our hypothesis that rVACV treatment may
reduce vascular density and thus prevents ME formation,
we detected a significant increase in the CD31-positive vas-
cular density of rVACV-treated tumors (Figure 4A). Fur-
thermore, we identified an increased CD31-fluorescence
intensity on endothelial cells in rVACV-treated tumors.
This indicates an enhanced accumulation of leukocytes,
since CD31 is involved in leukocyte trafficking to sites of
inflammation (Figure 4B). Indeed, we found increased ac-
cumulations of macrophages and neutrophils in rVACV-
treated tumors (Figure 4C, D).

Altogether, rVACV treatment of PC14PE6-RFP tumors
led to inflammation-mediated activation of the endothe-
lium and did not lead to a direct destruction of the
tumor vasculature.

rVACV colonization of PC14PE6-RFP tumors led to a
decrease in the intratumoral human VEGF (hVEGF)
content and to infected TCCBVs

Previously, it was shown that tumor-cell derived VEGF
is one of the most important factors contributing to ME
formation in PC14PE6-RFP tumors [6]. Therefore, we
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analyzed the effect of rVACV treatment on the levels of
tumor cell-derived hVEGF (7 dpi). We found significant
decreased levels of tumor cell-derived hVEGF in rVACV-
treated tumors (Figure 5A). In contrast, the murine VEGF
deriving mostly from host immune cells was not affected
(Figure 5B), indicating the tumor cell specificity of r'VACV
infection.

Investigation of rVACV-treated tumors (7dpi) revealed
that tumor cells located in CD31-positive TCCBVs did
express GFP, a direct visual marker for viral infection
(Figure 5C). Interestingly, different morphologies of
TCCBVs such as glomeruloid bodies and vessels with in-
tussusceptive vascular growth were infected by rVACV
(Figure 5D-F). Moreover, specific anti-VACV antibody la-
beling of tumor sections confirmed viral infection of
TCCBVs by positively labeling of GFP-positive tumor areas
(Figure 5@G). In addition to the VEGF over-expression the
invasive potential of the tumor cells seems to be critical for
ME formation [6]. The investigation of the tumor border
region in rVACV-treated tumors revealed GLV-1h68
-infected PCI4PE6-RFP tumor cells, thereby directly
preventing tumor cell invasion of the peritumoral tissue
(Figure 5H).

In summary, viral colonization of PC14PE6-RFP tumors
decreased tumor cell-derived hVEGF levels, directly
infected TCCBV’s, and inhibited tumor cell invasion of the
peritumoral tissue, thereby rVACV potentially prevented
the formation of ME.

rVACV encoding for GLAF-1 significantly enhanced both
therapy of lung adenocarcinomas and ME

Recently, we showed that the anti-VEGF single-chain
antibody GLAF-1 encoded by oncolytic Vaccinia virus
(GLV-1h108) significantly enhanced anti-tumor therapy
in different tumor models [28]. Here, we investigated
whether the increased capture of the intratumoral over-
expressed hVEGF by viral encoded GLAF-1 may im-
prove therapy of ME. Monitoring of tumor growth after

-
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Figure 5 VACV treatment decreased tumor cell-produced hVEGF and infected TCCBVs in PC14PE6-RFP tumors. (A, B) PC14PE6-RFP
tumor-bearing mice were either mock-infected or treated with 1x 107 pfu GLV-1h68 (iv) 14 dpim. Tumor homogenates of mock- and GLV-1h68-
treated tumors (7dpi, n = 6) were used for ELISA of human VEGF (A) and murine VEGF (B). Shown are the mean values +/— standard deviations.
(C-F) Histological analysis of GLV-1h68-infected PC14PE6-RFP tumor sections 7 dpi revealed a GLV-1h68-infection of TCCBVs; PC14PE6-RFP tumor
cells (red), GLV-1h68-infected cells express GFP (green), blood vessels were labeled with the CD31 antibody (blue), nuclei were labeled with
Hoechst 33324 (white). All the different morphological formations of TCCBVs such as glomeruloid bodies (D) and garland-like vessels (E, F) were
GFP-positive. (G) anti-VACV antibody labeling (blue) of tumor sections revealed VACV-positive labeling in GFP-positive areas. (H) Histological
analysis of GLV-1h68-infected PC14PE6-RFP tumor sections revealed GLV-1h68-infection of invasive PC14PE6-RFP tumor cells at the tumor margin
(arrowhead); PC14PE6-RFP tumor cells (red), GLV-1h68-infected cells (green), CD31-positive blood vessels (blue). All images are representative
examples. Scale bars represent 300 pm (C, G), 75 um (D-F), and 150 um (H).
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Figure 6 Enhanced therapeutic efficacy in tumor xenografts with ME using an anti-VEGF scAb-encoding VACV. (A-F) PC14PEG-RFP
tumor-bearing mice were either iv infected with 1 X 10 pfu GLV-1hé8 or 1 x10” GLV-1h108 14 dpim (n = 7). (A) PC14PE6-RFP tumor growth was
monitored over 21 days pi by measuring the tumor volume revealing a continuous tumor growth in the GLV-1h68-infected group and a
significant tumor regression in the GLV-1h108 treated group. Shown are the mean values +/— standard deviations. (B) same mice as shown in A
were individually monitored for ME formation during the study; ME formation was evaluated by skin color of the tumor area (hematoma); skin
color index indicating increased hematoma: skin-coloured — light blue — middle blue; white square: area of tumor necrosis, cross: euthanization. (C, D)
real-time fluorescence imaging of tumor growth (RFP) and viral infection (GFP) during growth curve analysis at day 7, 14, and 21 pi using the Maestro
EX imaging system. (C) representative fluorescence image of GLV-1h68- and GLV-1h108-infected PC14PE6-RFP-tumor-bearing mice 14 dpi. (E,F)
representative microscopic images of 15 um-thick PC14PE6-RFP tumor sections 21 dpi either infected with GLV-1h108 (E) or GLV-1h68 (F); PC14PE6-
RFP tumor cells (red), viral infected GFP-expressing cells (green). All images are representative examples. Scale bars represent 5 mm (E, F).

systemic injection of both viral strains (GLV-1h68 and  RFP signal outgrows the GFP signal at later time points
GLV-1h108) revealed significantly increased tumor re- indicating that the viral infection progressed slower than
gression in the GLV-1h108-treated in comparison to the  tumor growth per se. In contrast, in GLV-1h108-injected
GLV-1h68-treated group (Figure 6A). Moreover, the ini- animals both the RFP and the GFP signal simultaneously
tially observed tumor-associated hematoma disappeared declined indicating the progress of virus-dependent
in all the mice of the GLV-1h108-treated group at 7 dpi ~ tumor growth elimination. Whole tumor sections 21 dpi
(Figure 6B). Fluorescence-imaging of PCI4PE6-RFP  confirmed the imaging data and demonstrated that the
tumor growth (RFP) and GLV-1h68 or GLV-1h108 infec-  GLV-1h108 virus spreads throughout most of the tumor
tion (GFP) revealed that in GLV-1h68-infected animals  tissue, whereas GLV-1h68 showed a patchy viral distri-
both the RFP and the GFP signal increased during the bution pattern with large areas of active tumor growth
21-day observation period (Figure 6C, D). However, the (Figure 6E, F).
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Taken together, these data indicate that both tumor
growths of PC14PE6-RFP lung adenocarcinomas as well
as formation of ME was efficiently controlled by treat-
ment with oncolytic rVACV GLV-1h108 encoding for
the scAb against VEGF in mice.

Discussion

Late-stage cancer is often accompanied by the formation
of ME, which are often resistant to conventional anti-
neoplastic therapy and thus represent a major challenge
in oncology. In this study, we showed that virotherapy
using Vaccinia virus as an oncolytic agent and as a drug-
delivering vehicle may become a promising therapeutic
strategy for the treatment of lung adenocarcinoma-
associated ME. So far, using a Measles virus strain as
oncolytic agent, only lankov et al. [32,33] reported thera-
peutic effectiveness of oncolytic virotherapy in a malig-
nant pleural effusion breast cancer model. In addition,
we showed for the first time that oncolytic virotherapy
decreases tumor-derived hVEGF levels, leads to viral
infection of TCCBVs, and inhibits tumor cell invasion of
the peritumoral tissue, thereby preventing formation of
ME. Interestingly, VACV treatment did not lead to de-
struction of the tumor vasculature. Therefore, therapy of
ME was not dependent on virus-mediated vessel destruc-
tion. Finally, the use of the recombinant Vaccinia virus
strain GLV-1h108 encoding for a scAb against VEGF sig-
nificantly enhanced the oncolytic mono-therapy.

In the present study, we found that the formation of
ME in the PC14PE6 lung adenocarcinoma model was in-
dependent of the local pleural microenvironment. After
generation of subcutaneous lung xenografts on the flank
of mice we observed tumor-associated ME, elevated
intratumoral VEGF levels, enlarged blood vessels and
tumor cells invading the peritumoral space in 100% of
the mice. These findings are in accordance with previous
findings for the orthotopic model [6]. Despite of the “arti-
ficial” character of the subcutaneous tumor ME model
several aspects contribute to the direct relevance of this
model to MPE pathogenesis in cancer patients. First of all,
in the subcutaneous tumor-ME model as well as in pa-
tients ME are the results of fluid accumulation in body
cavities due to increased fluid formation and/or reduced
drainage. Second, in both situations VEGF and the inva-
sive potential of tumor cells are main contributors to in-
creased fluid accumulation and leakage in nearby body
cavities. Finally, the main differences of MPE in patients
and ME in the subcutaneous tumor-ME model are the
location of the body cavities where the exudates accumu-
late — the pleura versus the “cavity” between the subcutis
and the peritoneum.

In contrast to orthotopic MPE, subcutaneous ME at
the flank are non-invasively detectable due to hematoma
formation in the skin and/or exudates accumulation in
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the groin. Thus, for monitoring of ME there is no need
to sacrifice the mice or need for special instrumentation
such as MRI scanners. Therefore, we propose that this
subcutaneous model of ME may be an easier-to-handle
model with comparable characteristics of the published
orthotopic model and is especially suited for the screening
of therapeutic interventions for tumor-associated ME.

VEGEF is a well established mediator of vascular perme-
ability and can be found in significant higher concentra-
tions in effusions of malignant compared to non-malignant
origin [34-36]. Several groups have already shown that
the anti-VEGF-based therapy using Bevacizumab pro-
foundly counteracts effusion formation in patients with
various solid tumors [37,38]. Therefore, VEGF seems to
be one of the important factors contributing to local
hyperpermeability leading to tumor-associated ME. Sev-
eral cell types such as leukocytes, mesothelial cells, and
cancer cells may serve as a potential source for vaso-
active VEGF. By the use of human tumor cells in a mur-
ine host context, we were able to differentiate between
the hVEGF produced by tumor cells and the mVEGF
produced by host cells such as leukocytes. As oncolytic
virotherapy specifically reduces hVEGF and not mVEGF
accompanied by resolution of ME, the results indicate
that the most important sources for VEGF were the
tumor cells itself. Furthermore, the results demonstrated
that mVEGEF-producing cells were not efficiently infected
and lysed by oncolytic virotherapy using rVACV. The im-
portant role of tumor cell-derived VEGF in this model of
ME was further demonstrated by the use of a rVACV strain
encoding for therapeutic antibodies against VEGF (GLAF-
1) in the direct local proximity to VEGF-producing cancer
cells, which significantly enhances the therapeutic effect on
ME formation.

Moreover, the invasive potential of PCI14PE6 tumor
cells seems to be critical for the formation of ME [6].
This is due to the disruption of the tumor capsule,
which facilitates the leakage of interstitial fluid into the
peritumoral tissue or body cavities. Interestingly, on-
colytic virotherapy seems to alter the invasive potential
of PC14PE6 tumor cells hence VACV-treated tumors re-
vealed defined tumor capsules.

Yano and colleagues established the orthotopic
PC14PE6 malignant effusion lung adenocarcinoma
model and reported in elegant publications the presence
of an abnormal tumor vasculature in PC14PE6 tumors
[6,31]. Nowadays, it is widely accepted that the abnor-
malities of the tumor vasculature contribute significantly
to the disturbed microenvironment of solid tumors. This
may finally result in a highly disturbed blood flow which
does not follow a constant, unidirectional path in tumors
resulting in local hyperpermeability or zones of ischae-
mia [39]. Furthermore, Yano et al. reported that a large
proportion of blood vessels exhibited large lumina with
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transluminal bridges of endothelial processes [31], which
are hallmarks of non-sprouting angiogenesis [40]. In ac-
cordance, we observed the existence of enlarged blood
vessels with transluminal bridges in PC14PE6 tumors.
Moreover, by the use of REP-expressing PC14PE6 tumor
cells, mouse-specific anti-CD31 antibodies, and Vaccinia
virus infection, we were able to identify tumor cells
within these enlarged vessels (TCCBVs) forming translu-
minal bridges. Our data furthermore indicated that the
invasive tumor cells did not contribute to distant metasta-
ses formation, however, we do not know whether TCCBVs
were the result of the abnormal high intratumoral VEGF
level or other microenvironmental abnormalities. How-
ever, a study from Dvorak et al. [41] indicated that VEGF
is synthesized by tumor cells in vivo and accumulates in
nearby blood vessels. Furthermore, it was reported that
the chemotactic action of VEGF enables tumor cell-trans
-endothelial migration [42] and tumor cells may more eas-
ily penetrate a retracted endothelial monolayer caused by
VEGF than a tightly arranged monolayer. This suggests
that the vascular permeability activity of VEGF contributes
to an “offensive ability” of the tumor cells, allowing them
to penetrate blood vessels [43]. Taken together, we specu-
late that TCCBVs may be the result of an abnormal high
VEGF accumulation in blood vessels of tumors followed
by migration and invasion of the endothelium by tumor
cells.

Besides the strong effect of the rVACV-mediated in-
hibition of VEGF on ME formation other mechanisms
such as the VACV-induced inflammatory host response
may contribute to the resolution of ME. Reports of using
bacterial cell-derived immunomodulatory preperations
such as OK-432 as successful therapeutics in patients
with MPE indicate the importance of the host immune re-
sponse to therapy outcome [44-46]. In addition, recently
published data showed that an immunostimulatory trans-
gene encoded by oncolytic measles virus significantly en-
hanced the anti-tumor effect in xenograft models of
metastatic cancer, including malignant pleural effusion
model. To elucidate whether the VACV-mediated host
immune response contributes to the resolution of ME is
the focus of ongoing research.

Conclusions

In conclusion, this study showed that oncolytic
virotherapy of lung adenocarcinomas resolved and
prevented formation of ME mainly via decreasing tu-
moral VEGF production, infection of TCCBVs and in-
hibition of invasion of the peritumoral space. The
significantly enhanced therapeutic efficacy using rVACV
encoding for scAb against VEGF further highlights the
promising application of recombinant oncolytic Vaccinia
viruses encoding for specific immuno-therapeutic anti-
bodies enabling targeted therapy.
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experiments.
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