MEETING ABSTRACT **Open Access** # The effects of mitochondrial Ca²⁺ transport on intracellular Ca²⁺ waves in cardiomyocytes Zhenghang Zhao^{1,2*}, Dandan Xiao¹, Nadezhda Fefelova², Lai-Hua Xie² From 2012 Sino-American Symposium on Clinical and Translational Medicine (SAS-CTM) Shanghai, China. 27-29 June 2012 ### **Background** Recent studies have implicated that mitochondria play important roles in intracellular Ca^{2+} homeostasis of cardiac myocytes. The major pathways for mitochondrial Ca^{2+} transport include mitochondrial Ca^{2+} uniporter and Na^+/Ca^{2+} exchanger, as well as mitochondrial permeability transition pore (mPTP) under certain pathophysiological conditions. However, it is still unclear if mitochondrial Ca^{2+} flux can affect the generation of Ca^{2+} waves and triggered activities in cardiomyocytes. #### Methods and results Cytosolic Ca²⁺ (Ca_i²⁺) was imaged in fluo-4-AM loaded ventricular myocytes isolated from mice. Spontaneous SR Ca²⁺ release and Ca²⁺ waves (CaWs) were induced in the presence of high external Ca^{2+} (Ca_{o}^{2+} , 4 mM). The protonophore carbonyl cyanide p - (trifluoromethoxy) phenylhydrazone (FCCP) reversibly raised basal Ca_i²⁺ levels in the presence, as well as absence of Ca₀²⁺, suggesting Ca²⁺ release from intracellular stores. Mitochondrial membrane potential ($\Delta \Psi m$) was monitored by TMRM fluorescence. FCCP at 0.01- 0.1 μ M, which partially depolarized $\Delta\Psi$ m, increased the frequency and amplitude of CaWs in a dosedependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed after depolarization amplitudes and frequencies, and induction of triggered action potentials. On the contrary, FCCP at higher concentrations (>0.5 μM), which completely dissipated ΔΨm, eliminated CaWs while the basal Ca_i²⁺ remained high. The cease of CaWs was most likely due to the reduction of SR Ca²⁺ content as evaluated by rapid exposure to 10 mM caffeine. Blocking sarcolemmal Na+-Ca2+ exchanger by substituting Na+ with Li+ in the perfusant further elevated basal ${\rm Ca_i}^{2+}$ and restored CaWs. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting $\Delta \Psi m$) or Ru360 (a mitochondrial ${\rm Ca^{2+}}$ uniporter inhibitor), but not by oligomycin (an ATP synthase inhibitor) or iodoacetic acid (a glycolytic inhibitor), excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial ${\rm Ca^{2+}}$ uniporter activator kaempferol. #### **Conclusions** Mitochondrial Ca²⁺ release and uptake control plasma Ca²⁺ levels and plays an important role in regulation of intracellular CaWs and arrhythmogenesis. #### Author details ¹Department of Pharmacology, Medical School, Xi'an Jiaotong University, Xi'an 710061, China. ²Department of Cell Biology & Molecular Medicine, UMDNJ-New Jersey Medical School, Newark NJ07103, USA. Published: 17 October 2012 doi:10.1186/1479-5876-10-S2-A67 Cite this article as: Zhao *et al*.: The effects of mitochondrial Ca²⁺ transport on intracellular Ca²⁺ waves in cardiomyocytes. *Journal of Translational Medicine* 2012 **10**(Suppl 2):A67. Full list of author information is available at the end of the article ^{*} Correspondence: zzh@mail.xjtu.edu.cn ¹Department of Pharmacology, Medical School, Xi'an Jiaotong University, Xi'an 710061. China