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Abstract

Background: Hypoxia and hypertrophy are the most frequent pathophysiological consequence of congenital heart
disease (CHD) which can induce the alteration of Ca2+-regulatory proteins and inhibit cardiac contractility. Few
studies have been performed to examine Ca2+-regulatory proteins in human cardiomyocytes from the hypertrophic
right ventricle with or without hypoxia.

Methods: Right ventricle tissues were collected from children with tetralogy of Fallot [n = 25, hypoxia and
hypertrophy group (HH group)], pulmonary stenosis [n = 25, hypertrophy group (H group)], or small isolated
ventricular septal defect [n = 25, control group (C group)] during open-heart surgery. Paraffin sections of tissues
were stained with 3,3′-dioctadecyloxacarbocyanine perchlorate to measure cardiomyocyte size. Expression levels of
Ca2+-regulatory proteins [sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), ryanodine receptor (RyR2), sodiumcalcium
exchanger (NCX), sarcolipin (SLN) and phospholamban (PLN)] were analysed by means of real-time PCR, western
blot, or immunofluorescence. Additionally, phosphorylation level of RyR and PLN and activity of protein
phosphatase (PP1) were evaluated using western blot.

Results: Mild cardiomyocyte hypertrophy of the right ventricle in H and HH groups was confirmed by comparing
cardiomyocyte size. A significant reduction of SERCA2a in mRNA (P<0.01) was observed in the HH group compared
with the C group. The level of Ser16-phosphorylated PLN was down-regulated (P<0.01) and PP1 was increased
(P<0.01) in the HH group compared to that in the C group.

Conclusions: The decreased SERCA2a mRNA may be a biomarker of the pathological process in the early stage of
cyanotic CHD with the hypertrophic right ventricle. A combination of hypoxia and hypertrophy can induce the
adverse effect of PLN-Ser16 dephosphorylation. Increased PP1 could result in the decreased PLN-Ser16 and inhibition
of PP1 is a potential therapeutic target for heart dysfunction in pediatrics.
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Background
Congenital heart disease (CHD) is a major birth defect
around the world [1]. Cyanotic congenital heart diseases ac-
count for approximately 25% of all CHDs [2,3]. Tetralogy
of Fallot (TOF) is the most common form of cyanotic CHD
which involves a large ventricular septal defect (VSD),
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pulmonary stenosis, right ventricular hypertrophy and an
overriding aorta [4]. Hypoxia and right ventricular hyper-
trophy (RVH) are the major pathophysiological change of
TOF. Pulmonary stenosis (PS) and the associated right ven-
tricular outflow tract obstruction (RVOTO) are acyanotic
CHD with RVH. All the above CHDs offer natural human
disease models for the study of right ventricular hyper-
trophic cardiomyocytes with or without hypoxia.
Ca2+ is a key component of cardiomyocyte excitation-

contraction (E-C) coupling. Ca2+-regulatory proteins regu-
late intracellular free Ca2+ concentrations and maintain
intracellular Ca2+ homeostasis so it is very important for
E-C coupling and for myocyte contractility [5]. The most
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important Ca2+-regulatory proteins include sarcoplasmic
reticulum (SR) Ca2+-ATPase (SERCA2a), ryanodine recep-
tor (RyR2, the cardiac isoform of RyR), sodiumcalcium ex-
changer (NCX), sarcolipin (SLN), and phospholamban
(PLN) [5]. Abnormal parts of Ca2+-regulatory proteins in
ventricular hypertrophy (LVH) are well established from
animal models [6]. Few, if any, studies have examined
these proteins in human LVH or RVH, due to a lack
of tissue availability. Bartelds and colleagues have
reported pressure load can induce different functional
and molecular adaptations in the right ventricle (RV)
from left ventricle (LV) [7]. In addition, it is import-
ant that the reported Ca2+-regulatory proteins changes
have not been consistent among all animal models of
LVH [8,9]. Such discrepancies further emphasize that it is
necessary to examine these proteins changes associated
with RVH in the human heart, rather than generalizing
from LVH of animal models. Furthermore, hypoxia is a se-
vere pathophysiological condition that can induce RVH
[10,11] and can also alter the expression of Ca2+-regulatory
proteins in hearts from animal models, however there is
no evidence of this in the human heart [10,12]. Therefore,
research about the alteration of Ca2+-regulatory proteins in
RVH with or without hypoxia will help to understand the
cellular and molecular bases of RVH and hypoxia in the
populations of children with CHD.
In the present study, heart tissues from the RV were

collected from young patients during open-heart surgical
repair, and then the expression of a series of important
Ca2+-regulatory proteins, which including SERCA2a,
RyR2, NCX, SLN, PLN and its phosphorylation sites
PLN-Ser16 and PLN-Thr17, were analyzed at the mRNA
and protein level respectively [13]. This study aims to in-
vestigate whether an altered Ca2+-handling system might
be associated with RVH with or without hypoxia in chil-
dren with CHD.

Methods
Patients and study design
All experiments were carried out in accordance with
Council for International Organizations of Medical
Sciences guidelines. Our local ethics committee (Fuwai
Hospital Research Ethics Committee) approved this study,
and informed consents were obtained from all patients.
In total, 75 children with CHD undergoing surgical

heart defect repair were enrolled in this study. 25
patients with TOF were included in the Hypoxia and
hypertrophy group (HH group); 25 who had PS without
hypoxia were in the Hypertrophy group (H group). CHD
only with small isolated VSD, had little effect on infants’
haemodynamics [4], so 25 children who had small iso-
lated VSD without hypoxia or hypertrophy, served as the
Control group (C group). No pulmonary hypertension in
the C group was hinted by echo before surgery and
evaluated by intraoperative measurements of pulmonary
artery pressure (pulmonary arterial mean pres-
sure<25 mmHg in all C group patients). The RV was
described as hypertrophy by the surgeon in all H and
HH groups, but was not described in all C group
patients. Clinical and demographic characteristics of the
patients enrolled in the study are reported in Table 1.

Heart tissue collection
Because excising obstructing muscle bands was a necessary
procedure during TOF and PS repair, the myocardium spe-
cimens (60–200 mg net weight) were resected through the
right ventricular outflow tract (RVOT) incision in H and
HH groups. Endomyocardial biopsies of RV were obtained
across the tricuspid valve from VSD patients in C group
[5] and the net weight of myocardium specimens was
much lower (only 30–50 mg). Tissues were then immedi-
ately immersed in liquid nitrogen for RNA and protein ex-
traction [5]. For cell size and immunofluorescence (IF)
analysis, the samples were fixed overnight in formalin and
then embedded by paraffin [14].

Measurement of cell size
Paraffin sections of RVOT tissues were stained with
3,3′-dioctadecyloxacarbocyanine perchlorate (DiO, Beyo-
time Institute of Biotechnology, Shanghai, China) that
highlighted the cell membrane of cardiomyocytes. Surface
areas of cardiomyocytes were measured using NIH Image
J 1.32j software (http://rsb.info.nih.gov/ij/). Approximately
250 cardiomyocytes cells were chosen at random for the
measurement of cell sizes [15].

RNA isolation and cDNA synthesis
Deep-frozen biopsies were homogenized by a micro-
homogenizer (Kimble, USA). Total RNA was isolated
from each specimen using Trizol Reagent (Invitrogen,
Carlsbad, CA, USA) and PureLink RNA Mini Kit (Invi-
trogen) according to the manufacturer recommended
procedures [16]. Double-stranded complementary DNA
(cDNA) was synthesized from 0.5 μg total RNA samples
using PrimeScriptW RT reagent Kit (TaKaRa Biotechnology
Co., Dalian, China) according to the manufacturer’s
instructions [16].

Real-time PCR
Primers for the SERCA2a, RyR2, NCX, SLN, PLN and
calsequestrin (CASQ) were all designed by Autoprime
software (http://autoprime.de). The specificity of each
primer was verified by the Basic Local Alignment Search
Tool (BLAST) (http://www.ncbi.nlm.nih.gov/BLAST/)
[4]. The sequences of the used primers are listed in
Table 2. Gene-specific real-time PCR primers were
synthesized by TaKaRa Biotechnology Co. Real-time PCR
was performed in a 50 μl reaction, 96-well format using
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Table 1 Clinical and demographic characteristics of patients

C group H group HH group P-value

Used in real-time PCR and western blot analysis

Number of patients 20 20 20

Age (months) 24.6 ± 8.30 21.4 ± 13.4 22.4 ± 7.67 ns

Body weight (kg) 12.1 ± 2.48 11.1 ± 3.59 11.1 ± 1.89 ns

Sex (female/male) 10/10 11/9 12/8 ns

Peak systolic pressure gradient across the pulmonary valve (mmHg)* 6.5 ± 3.09 78.8 ± 40.51 86.2 ± 14.75 <0.001 vs C group

O2 (% saturation)* 98.4 ± 1.15 98.3 ± 1.59 81.5 ± 5.49 <0.001 vs HH group

Used for cell size and IF analysis

Number of patients 5 5 5

Age (months) 17.8 ± 5.97 17.4 ± 5.81 19.0 ± 5.70 ns

Body weight (kg) 11.0 ± 2.21 9.6 ± 1.88 11.7 ± 1.17 ns

Sex (female/male) 2/3 3/2 2/3 ns

Peak systolic pressure gradient across the pulmonary valve (mmHg)* 8.2 ± 3.28 61.4 ± 9.94 79.2 ± 11.03 <0.001 vs C group

O2 (% saturation)* 98.5 ± 0.87 97.8 ± 1.10 82.3 ± 5.94 <0.01 vs HH group

* Peak systolic pressure gradient across the pulmonary valve was evaluated by Echo before surgery; O2 saturation was evaluated before surgery.
C group, Control group; H group, Hypertrophy group; HH group, Hypoxia and hypertrophy group; IF, immunofluorescence.
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SYBRW Premix Ex TaqTM II (TaKaRa Biotechnology) in
an 7300 real-time PCR system (Applied Biosystems,
Foster City, CA, USA) according to the manufacturer’s
instructions [17]. A minimum of three independent
experiments was done for each sample [16].
The relative amount of target mRNA normalized to

CASQ was analyzed by using the 2-4Ct method [18]. CASQ
is a calcium storage protein of the SR with unchanged ex-
pression on mRNA and on the protein level in both animal
models of cardiac hypertrophy and hypoxia in heart failure
and patients with cardiovascular disease [4,19].

Western blot analysis
The protein expression levels of SERCA2a, RyR2, NCX,
PLN, phosphorylation state of RyR (PRyR), phosphoryl-
ation state of PLN (PLN-Ser16 and PLN-Thr17), protein
phosphatase (PP1) and CASQ were evaluated by western
blot analysis. By using the NuPAGE electrophoresis sys-
tem (Invitrogen), electrophoresis and blotting of the pro-
teins were performed according to the instructions of
the manufacturer [5]. NuPAGEW Novex 4–12% Bis-Tris
Gel were used with MES or MOPS buffer. After blotting,
Table 2 Primers applied in real-time PCR

Target gene Forward primer

SERCA2a 5'-GACCCACGAGCTGTCAACCA-3'

RyR2 5'-CCGGAAACAGTATGAAGACCAGCTA-3'

NCX 5'-TTCGTCGCACTTGGAACATCA-3'

SLN 5'-GGAGTTGGAGCTCAAGTTGGAGAC-3'

PLN 5'-CAACTGTTCCCATAAACTGGGTGA-3'

CASQ 5'-GGGAGAAGACTTTCAAGATTGACCT-3'
PVDF membranes were stained with ponceau red (Beyo-
time Institute of Biotechnology) and then photographed
(ChemiDoc XRS, Bio-Rad, Hercules, CA, USA). Mem-
branes were blocked for 1 h with Tris–HCl 10 mmol/L,
NaCl 150 mmol/L, pH 7.4 buffer (TBS) containing 5%
non-fat dry milk and 0.1% Tween 20, incubated over-
night with the first antibody (SERCA2a, Abcam,
Cambridge, MA, USA; RyR2, Affinity BioReagents,
Waltham, MA, USA; NCX, Abcam; PLN, Affinity
BioReagents; PRyR-S2808, Abcam; PLN-Ser16, Millipore,
Billerica, MA, USA; PLN-Thr17, SantaCruz Inc., CA,
USA; PP1-alpha, Millipore; CASQ, Abcam) diluted in a
specific concentration with TBS containing 5% non-fat
dry milk, washed six times with TBS containing 0.1%
Tween 20 (TTBS), and then incubated for 1 h with the
secondary antibody labelled with peroxidase (1:10000,
goat anti-rabbit IgG, Sigma-Aldrich, St. Louis, MO, USA;
1:10000, goat anti-mouse IgG, Sigma-Aldrich). Membranes
were then washed with TTBS and developed with a chemi-
luminescent substrate (Immobilon Western Chemilumin-
escent HRP Substrate, Millipore). Quantification of
immunoblots was done by scanning on ChemiDoc XRS
Reverse primer Size (bp)

5'-GGATCTTGCCAATTTCGGTGTTA-3' 121

5'-CACACAACGCTGGCAATTCAC-3' 145

5'-ATGGAGGCGTCTGCATACTGG-3' 83

5'-GAACTGCAGGCAGATTTCTGAGG-3' 129

5'-AAGCTGGCAGCCAAATATGAGATAA-3' 152

5'-CAGAAAGCACATCCTCAATCCA-3' 150
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(Bio-Rad) using Quantity One software [5]. CASQ was
used as internal standard [4,19].

Immunofluorescence
The protein expression level of SLN was evaluated by IF on
paraffin sections. Slides were rinsed 3 times in phosphate-
buffered saline (PBS, Invitrogen), blocked with 5% bovine
serum albumin (Invitrogen) for 45 min followed by 3 rinses
in PBS. Then sections were incubated overnight with pri-
mary antibody against SLN (1:1000, SantaCruz Inc.). The
following day, slides were washed 3 times in PBS and incu-
bated with a secondary red fluorochrome-conjugated rabbit
anti-goat antibody (1:1000 dilution; Invitrogen) for 1 h at
room temperature. After rinsing in PBS, The nuclei were
stained with 4′,6-diamidino-2-phenylindole (DAPI, Sigma-
Aldrich) for 5 min at room temperature and then pictures
were taken using a fluorescence microscope (OLYMPUS
BX61, Olympus Corporation, Tokyo, Japan) [20,21]. There
were five patients used for SLN immunofluorescence ana-
lysis in every group. Three paraffin sections were made in
every patient and three fields were evaluated in every
paraffin section [5].

Statistical analysis
Data are expressed as mean ± SD. All the data of the
patients characteristics, the cell size, the gene expression,
western blot and IF were analyzed by one-way analysis of
variance (ANOVA). If the test of homogeneity of var-
iances indicated that there was heterogeneity of variance,
the Welch test was used for robust tests of equality of
means. The least significant difference (LSD) or Dunnett
T3 test was used followed by post hoc analysis with
multiple comparison test to control the increase in the
type I error. The statistical analysis was performed with
SPSS 13.0 statistical software (SPSS, Inc., Chicago, IL). A
value of P< 0.05 (2-tailed) was considered statistically
significant.

Results
Patients characteristics
Age, body weight, and sex were not significantly different
among the three groups (Table 1). All the patients were
younger than 3 years (36 months). The peak systolic
pressure gradient across the pulmonary valve in both H
and HH groups was significantly higher than that in the
C group, and the percutaneous O2 saturation in HH
group was the lowest in the three groups (Table 1).

Comparison of cardiomyocyte size
A slight increase in cardiomyocyte size was found in H
(+31%, P<0.001 vs C group) and HH groups (+22%,
P<0.001 vs C group) when compared with C group
(Figure 1).
mRNA expression of Ca2+-regulatory proteins
SERCA2a, as a key regulator of intracellular Ca2+, in the
HH group showed a decreased transcription level when
compared with the C group (P= 0.002). However, al-
though the similar trend of decrease was detected in the
H group in comparison to the C group, there was not a
statistically significant difference (Figure 2A).
The mRNA expression levels of RyR2 (Figure 2B),

NCX (Figure 2C), SLN (Figure 2D), and PLN (Figure 2E)
were not significantly different among the three groups.

Protein expression of Ca2+-regulatory proteins
By using western blot analysis, the protein expression
levels of SERCA2a, RyR2, NCX, PLN, and CASQ were
evaluated. Unfortunately, the protein amount of SER-
CA2a was unaltered in the H and HH groups when com-
pared with the C group (Figure 3A and I). Protein levels
of other proteins including RyR2 (Figure 3B and I), NCX
(Figure 3C and I) and PLN (Figure 3D and I) was also
unaltered in the H and HH groups. Additionally, the
relative protein expression level of SLN was obtained by
IF. As shown in Figure 4, the protein amount of SLN
was not significantly altered in the H and HH groups.

Phosphorylation level of Ca2+-regulatory proteins
To investigate whether the phosphorylation status of
RyR and PLN had been altered, PRyR, PLN-Ser16 and
PLN-Thr17 were examined by western blot. There was
no statistically significant difference among the three
groups regarding PRyR (Figure 3E and I) and PLN-Thr17

(Figure 3G and I) levels. However, PLN-Ser16 was signifi-
cantly decreased in the HH group when compared to the
C group (P= 0.004) (Figure 3F). A similarly decreased
trend was also detected in the H group although it was
not statistically significantly different (Figure 3F and I).

Activity of protein phosphatase PP1
Because phosphorylation of PLN can be regulated by
PP1 in cardiomyocytes [5], its expression was examined
by means of western blot. Figure 3H showed that PP1 in
the HH group was statistically significantly higher than
that in C group (P= 0.009) (Figure 3H). A similarly
increased trend was also detected in the H group but
there was no statistically significant difference (Figure 3H
and I).

Discussion
Previous studies have reported that immature cardio-
myocytes have characteristics of Ca2+-regulatory proteins
which are different from that of mature cardiomyocytes
[22-25]. During normal cardiac development in rabbits
and rats, NCX expression is maximal near the time of
birth and then declines postnatally [22,25]. Conversely,
SERCA2a expression levels increased during this period



Figure 1 Cardiomyocyte size quantification. (A, B, C). Paraffin sections of right ventricular tissues were stained with 3,3′-
dioctadecyloxacarbocyanine perchlorate that highlighted the cell membrane of cardiomyocytes (A. Control group, B. Hypertrophy group, C.
Hypoxia and hypertrophy group. cropped from× 400 magnification); (D). Comparision of cardiomyocyte size (*P<0.001 vs C group). C group,
Control group; H group, Hypertrophy group; HH group, Hypoxia and hypertrophy group.
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[23-25]. The characteristics of Ca2+-regulatory proteins
in immature cardiomyocytes during hypertrophy with or
without hypoxia has not been studied extensively, how-
ever the results of research will be beneficial for choosing
an optimal time of therapy and interpreting the develop-
ment process of cardiomyocytes in children with CHD.
To our knowledge, this study could be the first effort

specifically dedicated to the evaluation of the gene and
protein expression of Ca2+-regulatory proteins on human
immature cardiomyocytes from RV. There were three
major findings in this study. We found that SERCA2a, as
a key regulator of intracellular Ca2+, showed a decreased
transcription level in the early stage of cyanotic CHD
with hypertrophic right ventricle. We also found that a
combination of hypoxia and hypertrophy can induce the
adverse effect of PLN-Ser16 dephosphorylation in human
immature cardiomyocytes. The third major finding was
that the decreased PLN-Ser16 results from an increased
PP1 which can regulate phosphorylation of PLN in
cardiomyocytes.
Ca2+-regulatory proteins regulate intracellular free Ca2+

concentrations and maintain intracellular Ca2+ homeostasis
and thus have a very important role in the process of
myocardial contraction and relaxation [5]. Hypoxia and
hypertrophy are the most frequent pathophysiological
consequence of CHD which can induce the alteration of
parts of Ca2+-regulatory proteins and thus inhibit cardiac
contractility [10,12,26]. The changes of RV are the key
pathologic changes of CHD [27]. However, few studies
have been performed to examine Ca2+-regulatory proteins
in human RV during hypoxia and hypertrophy, due to a
lack of tissue sources.
We investigated the expression alteration of Ca2+-

regulatory proteins of RV during hypoxia and hyper-
trophy in children disease models. Because it was
difficult to obtain ventricular tissue from healthy age-
matched children, we chose children with small isolated
VSD as the control group. The left to right intracardiac
shunt was much less in small isolated VSD, so increased
pulmonary pressure did not occur [28]. Additionally, there
was no right to left intracardiac shunt, so there was no
hypoxia in patients with small isolated VSD [28]. Therefore,
there was no pressure overload-induced ventricular hyper-
trophy and hypoxia in RV in patients with small isolated
VSD [28]. The relative normal peak systolic pressure
gradient across the pulmonary valve (Table 1), cardio-
myocyte size (Figure 1), and percutaneous O2 saturation
(Table 1) in the C group was evidence that this group was
suitable to serve as the control group. A slight increase in
cardiomyocyte size in H (+31%, P<0.001 vs C group) and



Figure 2 Real-time PCR analysis of Ca2+-regulatory proteins. Sarcoplasmic reticulum Ca2+-ATPase showed a significant decrease in mRNA
levels in the HH group when compared with C group (*P<0.01 vs C group) (A). No significant changes were observed for ryanodine receptor (B),
sodiumcalcium exchanger (C), sarcolipin (D) and phospholamban (E) expression. SERCA2a, sarcoplasmic reticulum Ca2+-ATPase; RyR2, ryanodine
receptor; NCX, sodiumcalcium exchanger; SLN, sarcolipin; PLN, phospholamban; C group, Control group; H group, Hypertrophy group; HH group,
Hypoxia and hypertrophy group.
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HH groups (+22%, P<0.001 vs C group) (Figure 1) sug-
gests that pressure overload and hypoxia can induce myo-
cardial hypertrophy. Hyperplasia maybe also exisit in this
response, however, only the contribution of hypertrophy
to the increase in muscle mass was measured because of
the limitation of method.
SERCA2a (the cardiac isoform of SERCA) is a Ca2+-

ATPase pump in SR that pumps Ca2+ back to SR during
myocardial relaxation [29]. In previous studies, reports
about SERCA2a expression during hypertrophy were incon-
sistent in animal models [30-33]. Song et al. and Wong
et al. reported that a decreased mRNA and protein level in
SERCA2a was in pressure overload-induced LVH [30,31],
but Carvalho et al. and Diaz et al. reported no change of it
was found [32,33]. Inconsistent reports were also present
about the SERCA2a expression during hypoxia
[10,12,34,35]. Sharma et al. and Ronkainen et al. reported
that there was a downregulation of SERCA2a gene and pro-
tein expression in cardiomyocytes during hypoxia [10,12],
but Yeung et al. and Larsen et al. reported that the amounts
of SERCA2a were not changed [34,35]. Different animal
models and different periods of ventricular hypertrophy
may partly explain these inconsistencies. Our data showed
that right ventricular cardiomyocytes with hypertrophy and
hypoxia were associated with decreased mRNA levels for
SERCA2a and the cardiomyocytes only with hypertrophy
had a similar decreased trend but this was not statisti-
cally significant (Figure 2A). This suggested that in
human immature cardiomyocytes, the hypertrophy
alone was not enough to induce the significant alter-
ation of SERCA2a mRNA, which can be aggravated by
hypoxia. However, these alterations at the transcript level,
are not accompanied by the corresponding change in pro-
tein level (Figure 3A). Our study was consistent with an
earlier study performed in adult patients with LVH [26].
Further, findings similar to ours have been reported in
human heart failure [36]. Our finding of downregulation of
mRNA expression without concurrent decreases in protein
levels suggests an uncoupling between the two processes
[26]. The regulation of translation after transcription may
play an important role in this process [26]. These findings
suggest that because the damage effect of decreased SER-
CA2a mRNA can compensate in the protein level, human
immature cardiomyocytes have good adaptability to hyp-
oxia and hypertrophy, and alterations of SERCA2a in tran-
script levels may be markers of the pathological process,
but do not result in altered protein expression.
RyR2 is a Ca2+ release channel of SR and NCX is a

Na+/Ca2+ exchanger in cytomembrane that can remove a
part of Ca2+ to extracellular milieu after muscle contraction



Figure 3 Western blot analysis of Ca2+-regulatory proteins, phosphorylation level of RyR and PLN, and PP1. The bar graphs of protein
expression of SERCA2a (A), RyR2 (B), NCX (C), PLN (D), PRyR (E), PLN-Ser16 (F), PLN-Thr17 (G) and PP1 (H) (*P<0.01 vs C group). (I). Representative
graphs for western blot. Calsequestrin (CASQ) was used as internal standard; PRyR and PLN-Ser16 or PLN-Thr17 were normalized to RyR or PLN,
respectively.
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[37]. Our data show no change in the mRNA or protein ex-
pression of RyR2 and NCX in the child heart during RVH
with or without hypoxia (Figure 2 and 3), similar to what
has previously been shown by Yeung and others [32,34].
The two small homologous intrinsic membrane proteins
SLN and PLN in the sarcoplasmic reticulum, which inhibits
the activity of SERCA2a, are potentially critical regulators
of cardiac contractility [5]. The data from our study also
show no change of SLN and PLN in mRNA or protein
level in human immature cardiomyocytes during hyper-
trophy with or without hypoxia (Figure 2, 3 and 4). Also,
no alteration of PLN in cardiomyocytes during hypoxia or
hypertrophy was reported by Larsen and others [32,35].
But there was few report about SLN during hypoxia or
ventricular hypertrophy. Our data demonstrate that, child
RVH with or without hypoxia, is not accompanied by a
significant reduction in RyR2, NCX, SLN and PLN, and
this suggests that it is not suitable for improving cardiac
contractility by regulating these protein expressions in the
early stage of CHD only with RVH and/or hypoxia.
The functional interaction between SERCA2a and PLN is

regulated by the phosphorylation of PLN. PLN can be
phosphorylated at distinct sites by different protein kinases:
phosphorylation at the Ser16 residue by protein kinase A
(PKA) or at the Thr17 site by Ca2+/calmodulin-dependent
protein kinase II (CaMKII) [35]. Phosphorylation of Ser16

in PLN can occur independently of Thr17 in vivo and may
be a prerequisite for Thr17 phosphorylation during β-agon-
ist stimulation [5]. We found that Ser16-phosphorylated
PLN was significantly reduced in human immature



Figure 4 Immunofluorescence analysis of sarcolipin. Representative micrographs (cropped from× 400 magnification) showing there were no
statistically significant change of sarcolipin in C group (A), H group (B) and HH group (C). Nuclei are stained blue with DAPI and sarcolipin is
stained red with phalloidin conjugated with TRITC. (D). Semi-quantitative analysis after immunostaining of sarcolipin.
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cardiomyocytes during hypertrophy with hypoxia, but no
change in the level of Thr17-phosphorylated PLN was
observed (Figure 3F and G), that indicated a reduction in
the PKA-dependent PLN phosphorylation during hypoxia
and hypertrophy [5]. Similarly, a decreased trend of PLN-
Ser16 was also detected in child RV only with RVH,
although this was not statistically significant (Figure 3F). In
the unphosphorylated state, PLN inhibits SERCA2a by low-
ering its Ca2+ affinity [5]. The inhibitory function of PLN is
relieved by its phosphorylation [5]. When the amount of
PLN was not altered (Figure 3D), the reduction of PLN-
Ser16 indicates a relative increase of unphosphorylated PLN
that enhances inhibition of SERCA2a and thus damages
cardiac contractility. These findings have important impli-
cations for the CHD treatment. Because the adverse effect
was induced by a combination of hypoxia and hypertrophy,
correcting hypoxia by early surgical repair may recover the
phosphorylated state of PLN and contribute to the
improved cardiac contractility in cyanotic congenital heart
diseases with RVH.
The abnormalities in the PKA-dependent phosphoryl-

ation pathway could result from an increased PP1 [5].
Several lines of evidence demonstrate that PP1 depho-
sphorylates PLN-Ser16 [38]. The PP1 catalytic subunits
consist of three distinct genes, PP1α, PP1β, and PP1γ
[39]. A previous study revealed that the PP1α transcript
appeared to be the highest in the heart among the three
isoforms, followed by PP1γ and then PP1β [39]. There-
fore, in this study, we only examined the expression of
PP1α by means of western blot. Our present study provides
the first evidence of increased PP1 with decreased PLN-
Ser16 in child RV during hypertrophy with hypoxia
(Figure 3F and H). Boknik et al. reported PP1 activity was
increased after long-term beta-adrenergic stimulation [40].
Furthermore, beta-adrenergic receptor activation can be
induced by both hypoxia and hypertrophy [41-43], which
can explain why the co-effect of hypoxia and hypertrophy
can induce the significant increase of PP1 in human imma-
ture cardiomyocytes. Overexpression of PP1 observed in
heart failure was associated with dephosphorylation of
PLN, depressed cardiac function, dilated cardiomyopathy,
and premature mortality [44]. Enhancement of cardiac
function and suppression of heart failure progression by in-
hibition of PP1 were successfully done in the transgenic
mice [45]. The present findings suggest regulating PLN
phosphorylation by inhibiting PP1 may improve cardiac
function when the right heart failure occurs in cyanotic
congenital heart diseases with RVH.

Study limitations
To study the change of all PP1 isoforms, the actual PP1
activity and its upstream regulator such as Inhibitor-1
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will help us to further understand the mechanism of
decreased PLN-Ser16 in cyanotic CHD with RVH.
However, because the collected heart tissue from the sick
kids was quite limited (especially in the Control group),
we didn’t examine these items. We plan to investigate
them in our future study.
In addition, the study is a cross-sectional study in children

aged 1 month to 3 years, therefore whether the conclusions
is suitable for neonatal or adult CHD requires further
research.

Conclusion
The decreased SERCA2a in transcript levels may be a
biomarker of the pathological process in the early stage
of cyanotic CHD with RVH. Because the protein levels
of Ca2+-regulatory proteins were not altered, regulating
their expressions in the early stages of CHD may not
improve cardiac contractility. Our study suggests that a
combination of hypoxia and hypertrophy can induce the
adverse effect of PLN-Ser16 dephosphorylation, and early
surgical repair might accelerate the recovery of the phos-
phorylated state of PLN and thereby contribute to
improved cardiac contractility in cyanotic CHD with
RVH. Furthermore, an increased PP1 was associated with
the reduction of PLN-Ser16, and hence, the inhibition of
PP1 might improve cardiac function and could be a poten-
tial therapeutic target for right heart failure in cyanotic
CHD with RVH.
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