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Abstract

Background: Helium inhalation protects myocardium, brain and endothelium against ischemia/reperfusion injury in
animals and humans, when applied according to specific “conditioning” protocols. Before widespread use of this
“conditioning” agent in clinical practice, negative side effects have to be ruled out. We investigated the effect of
prolonged helium inhalation on the responsiveness of the human immune response in whole blood ex vivo.

Methods: Male healthy volunteers inhaled 30 minutes heliox (79%He/21%O2) or air in a cross over design, with two
weeks between measurements. Blood was withdrawn at T0 (baseline), T1 (25 min inhalation) and T2-T5 (1, 2, 6, 24 h
after inhalation) and incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), T-cell stimuli anti-CD3/
anti-CD28 (TCS) or RPMI (as control) for 2, 4 and 24 hours or not incubated (0 h). An additional group of six
volunteers inhaled 60 minutes of heliox or air, followed by blood incubation with LPS and RPMI. Tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interferon-γ (IFN-γ) and interleukin-2
(IL-2) was analyzed by cytometric bead array. Statistical analysis was performed by the Wilcoxon test for matched
samples.

Results: Incubation with LPS, LTA or TCS significantly increased TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison
to incubation with RPMI alone. Thirty min of helium inhalation did not influence the amounts of TNF-α, IL-1β, IL-6,
IL-8, IFN-γ and IL-2 in comparison to air. Sixty min of helium inhalation did not affect cytokine production after LPS
stimulation.

Conclusions: We conclude that 79% helium inhalation does not affect the responsiveness of the human immune
system in healthy volunteers.

Trial registration: Dutch Trial Register: www.trialregister.nl/ NTR2152
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Background
Helium, a colorless, odorless and tasteless gas with a lower
density than air, was first used in patients with respiratory
diseases [1]. Recently it was shown that beside volatile
anesthetics (e.g. isoflurane, sevoflurane, desflurane) and
the anesthetic noble gas xenon, the non-anesthetic noble
gas helium also reduces ischemia-reperfusion injury when
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reproduction in any medium, provided the or
administered before (preconditioning) or after (postcondi-
tioning) organ ischemia [1,2]. Experimental studies in
rabbits and rats suggested that helium conditioning pro-
tects myocardial and neuronal tissue against ischemia/
reperfusion damage [3-8]. In a forearm model of ischemia-
reperfusion injury in humans, helium preconditioning
protected the endothelium against ischemic damage [9].
This suggests that helium can be a therapeutic agent
against ischemia-reperfusion injury. However, before
using helium as a “conditioning” agent in clinical set-
tings, any negative effect on other organ systems such as
the immune system should be ruled out.
. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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Host immunity is classically divided into the innate
and the adaptive immune system. The innate immune
response involves monocytes, neutrophils, dendritic cells
and macrophages but also parenchymal cells such as epi-
thelial and endothelial cells. Upon danger sensing, secre-
tion of cytokines and chemokines results in monocyte
and neutrophil migration to inflamed tissues and antigen
presentation. This initial and aspecific cascade induces
secondary antigen specific events known as the adaptive
immune system involving T- and B-lymphocytes. Vola-
tile anesthetics and xenon exert immunomodulatory
effects by affecting endothelial expression of adhesion
molecules and the secretion of cytokines and chemo-
kines [10] as well as lymphocytes [11-13].
We investigated whether helium breathing in healthy

volunteers affects the ability of the immune system to
respond to ex vivo stimulation of whole blood. For the
innate arm, we measured the proinflammatory cytokines
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β)
and interleukin-6 (IL-6) and chemokine interleukin-8
(IL-8) after stimulation with lipopolysaccharide (LPS)
and lipoteichoic acid (LTA). To assess effects of helium
on the adaptive immune system, interferon-γ (IFN-γ)
and interleukin-2 (IL-2) production after T cell receptor
specific stimulation was determined.

Methods
The study was approved by the ethical committee of the
Academic Medical Centre, Amsterdam (www.trialregister.
nl/ NTR2152) and was conducted in accordance with the
International Conference on Harmonization on Good
Clinical Practice Guidelines and the Declaration of Hel-
sinki. After written informed consent, twelve healthy,
non-smoking, male volunteers (age 22–35) were included
and were asked to use no caffeine or alcohol containing
drinks, and not to exert heavy physical exercise twelve
hours before the experiment. Volunteers did not use any
medication influencing the immune system, or were
known to have any condition that could influence the im-
mune system. A second group of 6 volunteers (age 19–31)
inhaled 60 min of helium and air.

Experimental design
Experiments were conducted in a crossover design in a
quiet room with standardized circumstances. All partici-
pants underwent two experimental cycles: once with 30
or 60 minutes of heliox (79%He/21%O2, BOC, Mordon,
UK) inhalation using a non-invasive delivery system
(HelontixTMvent, Linde Therapeutics, Eindhoven, The
Netherlands) via a normal face mask with pressure sup-
port of 3 cm H2O, and once with air inhalation, with
two weeks in between cycles. Venous blood was sampled
at baseline (T0), at 25 min of inhalation (T1), or 1 (T2),
2 (T3), 6 (T4), or 24 h after inhalation (T5), respectively.
C-reactive protein (CRP), leukocyte and lymfocyte counts
were determined in ethylenediamine tetraaceticacid–
anticoagulated blood, and heparin-anticoagulated blood
was used for incubation with immune stimulants.

Whole blood stimulation
After sampling, heparinized whole blood (0,5 ml) was
diluted with an equal volume of RPMI-1640 (Invitrogen,
Breda, the Netherlands) serving as control (CON), or
RPMI-1640 containing LPS (Ultra pure LPS from
Escheria coli 0111:B4, InvivoGen, San Diego, United
States) in a final concentration of 200 ngml-1, RPMI-
1640 containing LTA ( Purified LTA from Staphylococ-
cus aureus, InvivoGen, San Diego, United States) in a
final concentration of 20 μgml-1, or RPMI-1640 contain-
ing T-cell stimuli anti-CD3/anti-CD28 (TCS; murine
monoclonal antibodies CLB-T3/3 against the CD3 mo-
lecular complex and CLB-CD28/1 against the T-cell dif-
ferentiation antigen CD28, provided by dr. R. van Lier,
Academic Medical Centre, Amsterdam, The Nether-
lands) in a final concentration of 10 μgml-1, respectively.
Incubation was done in aliquots of 0,5 ml in sterile tubes
(Sarstedt, Etten-Leur, the Netherlands) at 37°C for 0, 2, 4
or 24 hours, all performed in duplicate. After incubation,
plasma was prepared by centrifugation at 1200 RPM for
10 minutes at 4°C. Plasma was stored at −20°C until fur-
ther analysis.
Established in our research institution by the labora-

tory of van der Poll, the use of whole-blood cultures
now is a widely used method to screen for influences of
treatments on the immune response [14]. The whole
blood induced cytokine production by specific bacterial
antigens has important advantages. In this system, cell
populations that are important for the defense against
pathogenic organisms (e.g. neutrophils, monocytes, and
lymphocytes) and soluble factors like complement, anti-
bodies, and other serum components can interact thus
resembling the in vivo situation. LPS is a major constitu-
ent of the cell wall of Gram-negative bacteria, LTA a
constituent of the cell wall of Gram-positive bacteria.
Using both stimuli thereby covers a broad range of mi-
crobial agents and the resulting activation of monocytes
and neutrophils induces synthesis of proinflammatory
cytokines such as TNF-α, IL-1β and IL-6 and chemokine
IL-8 [15-17]. These cytokines and chemokines are in
turn able to activate T lymphocytes.
In contrast to pro-inflammatory cytokines that will

peak within a few hours after exposure to antigens, the
T-cell mediated response usually peaks later and can be
monitored by the production of the typical cytokines
that reflect T cell function, among which IFN-γ and IL-
2. We studied T-cell function by specific activation of
the T cell receptor through application of a combination
of antibodies directed against CD3 and CD28 [18,19].
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Cytokine and chemokine measurement by multiplex
bead-based immunoassays
Plasma TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 con-
centrations were measured simultaneously by cytometric
bead array (CBA), a flow cytometry based fluorescence
detection of antibody-coated beads (‘Human Inflamma-
tory Cytokine Kit’ and ‘Human Th1/Th2 cytokine kit’,
BD Biosciences, Breda, the Netherlands). For measure-
ment and analysis of cytokines, we used the fluorescent
activated cell sorter FACSCalibur (BD Biosciences,
Breda, The Netherlands) with BD FACSComp and BD
CellQuest software.

Statistical analysis
Normal distribution of the data was tested with the
Kolmogorov-Smirnov test. As data were not normally
distributed, differences between helium and air groups
were tested by the Wilcoxon test for paired measure-
ments and considered significant if p < 0.05. All data in
Figures 1, 2, 3 and 4 are shown as mean ± SEM. An
overview of all p-values (p), number of helium-air pairs
included in the Wilcoxon test at each time point (n)*,
number of experiments in the helium group (n He), and
the air group (n Air) are given in Table 1. The table con-
tains values for all figures included in the manuscript
(Figure 1, 2, 3 and 4). N-numbers vary in some cases
due to technical problems with cytokine and chemokine
measurements.

Results
Helium inhalation does not influence leukocyte and
lymphocyte counts
At baseline, there was no difference in C-reactive protein
between the 30 min inhalation groups; 1.6 ± 0.4 (mg/l)
and 2.3 ± 0.6 (mg/l) in the helium and air group
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Figure 1 TNF-α levels in plasma after 0,2,4, and 24 hours of
incubation with LPS in RPMI (dashed line) or RPMI alone. Blood
was sampled at time point T0 (baseline), before 30 min of helium or
air inhalation. Data (n = 24 per group) shown are means +/− SEM.
respectively (p > 0.05). In the 60 min inhalation group,
there was no difference at baseline in C-reactive protein
either: 0.92 mg/l in the helium group versus 0.82 mg/l in
the air group. Table 2 shows leukocyte and lymphocyte
counts; no differences could be detected between heliox
and air inhalation at baseline, 2 or 24 hours after inhal-
ation (p > 0.05), for both the 30 min and the 60 min in-
halation group. The data are shown as mean ± SEM, no
statistic differences between groups (p > 0.05).
Ex vivo stimulation of whole blood with LPS, LTA or TCS
significantly increased TNF-α, IL-1β, IL-6, IL-8, IFN-γ and
IL-2 in comparison to incubation with RPMI alone
After 2, 4 and 24 hours of incubation with LPS, the
amount of TNF-α was significantly higher in comparison
to incubation with RPMI alone, also see Figure 1.
After 2, 4 and 24 hours of incubation with LPS or

LTA, the amount of TNF-α, IL-1β, IL-6 and IL-8 (pg/
ml) was significantly higher in comparison to incubation
with RPMI alone (data not shown). After 2, 4 and
24 hours of incubation with TCS, the amount of IFN-γ,
and IL-2 was significantly higher in comparison to incu-
bation with RPMI alone (data not shown), indicating
that the used immune agents were able to induce an ad-
equate immune response.
Helium inhalation for 30 and 60 minutes does not
influence inflammatory cytokine and chemokine levels in
whole blood after ex vivo incubation with LPS, in
comparison to inhalation of air
Thirty or 60 min of helium inhalation did not affect the
amount of TNF-α, IL-6, IL-1β and IL-8 (pg/ml) after 0,
2 (data not shown), 4 and 24 hours of incubation of
whole blood with LPS in comparison to room air at all
time points (p > 0.05). Figures 2 (TNF-α, IL-6) and 3 (IL-
1β and IL-8) show cytokine levels after 4- and 24-hour
stimulations with LPS.
Helium inhalation for 30 min does not influence
inflammatory cytokine and chemokine levels in whole
blood after ex vivo incubation with LTA, in comparison to
inhalation of air
After 0, 2, 4 and 24 hours of incubation with LTA the
amount of TNF-α, IL-1β, and IL-8 (pg/ml) did not differ
between heliox and air groups (p > 0.05). The amount of
IL-6 after 24 hours of incubation with LTA was similar
after heliox or air inhalation at baseline (T0), 1 (T2), 2
(T3), 6 (T4) or 24 (T5) hours after inhalation (p > 0.05),
but differed significantly after 25 minutes of helium in-
halation compared to air (T1). Figure 4 shows cytokine
levels after 4 and 24 incubation with LTA, data at 0 and
2 hours are not shown.
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Figure 2 TNF-α (panel A-D) and IL-6 (panel E-H) levels in plasma after 4 and 24 hours incubation with LPS. Time points on y-axis
represent blood sampling time points shown in the experimental protocols above. Panels A, B, E and F show 30 minutes of inhalation of helium
and air, panels C, D, G and H 60 minutes. Data shown are means +/− SEM. Experimental protocol is shown above; T0: baseline, T1: at 25 min
inhalation, T2: 1 h after inhalation, T3: 2 h after inhalation, T4: 6 h after inhalation, T5: 24 h after inhalation.
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Helium inhalation for 30 min does not influence levels of
inflammatory cytokines IL-2 and IFN-γ excreted in whole
blood after ex vivo incubation with T-cell stimuli anti-
CD3/anti-CD28, in comparison to inhalation of room air
After 0, 2, 4 and 24 hours of incubation with anti-CD3/
antiCD28, the amount of IFN-γ and IL-2 (pg/ml) was
not affected by helium inhalation in comparison to room
air at T0, T1, T2, T4, or T5 (p > 0.05), except for statisti-
cally different IFN-γ levels at two time points. After
4 hours of incubation, the amount of IFN-γ 1 hour after
30 min of helium inhalation (T2) was statistically higher
in comparison to air inhalation. After 24 hours of incu-
bation, the amount of IFN-γ 24 hours after air inhalation
was significantly different in comparison to helium in-
halation. IFN-γ and IL-2 levels after 30 min of helium/
air inhalation are shown in Figure 5.

Discussion
Our study suggests that prolonged inhalation of helium
does not affect the ability of the innate and early
adaptive immune system to respond to immune stimuli
LPS, LTA or anti-CD3/anti-CD28 ex vivo. TNF-α, IL-1β,
IL-6, IL-8, IFN-γ and IL-2 levels did not differ at various
time points before and after helium inhalation compared
to air inhalation. These results are of interest for a broad
field, as the use of helium-oxygen mixtures for respira-
tory disease or with the purpose of cell protection
against ischaemia/reperfusion injury in the critical care
unit and the operating theatre might expand.
Two in vivo studies using a forearm model of

ischaemia-reperfusion injury investigated the protective
effect of helium inhalation on endothelial function and
additionally looked at systemic immune parameters
[9,20]. Our results are in line with results found in the
first study, in which similar concentrations of helium/
oxygen were used [9]. This study showed that applica-
tion of three 5-minute cycles of helium (79%He/21%O2)
interspersed with 5 min of air breathing before the is-
chemic episode induces preconditioning in human endo-
thelium [9]. To investigate the influence on the innate
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Figure 3 IL-1β (panels A-D) and IL-8 (panels E-H) levels in plasma after 4 and 24 hours incubation with LPS. Time points on y-axis
represent blood sampling time points shown in the experimental protocols above. Panels A, B, E and F show 30 minutes of inhalation of helium
and air, panels C, D, G and H 60 minutes. Data shown are means +/− SEM. Experimental protocol is shown above; T0: baseline, T1: at 25 min
inhalation, T2: 1 h after inhalation, T3: 2 h after inhalation, T4: 6 h after inhalation, T5: 24 h after inhalation.
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immune system, venous blood was collected at the non-
injured arm for analysis of systemic levels of adhesion
molecules sVCAM-1, sICAM-1, E-selectin, and proin-
flammatory cytokines IL-1β and IL-8 at 10 minutes and
3 hours after reperfusion. No effects of forearm ischae-
mia/reperfusion or helium conditioning could be found
on all of these parameters, suggesting no net effect of
helium on the investigated immune parameters [9].
In contrast, Lucchinetti and colleagues found immuno-

modulatory effects after 35 minutes of helium breathing
in a concentration of 50%He/50%O2 [20]. Venous blood
was taken from the injured arm at baseline, and after 5,
10 and 30 minutes of reperfusion to investigate proin-
flammatory markers on leukocytes. A decrease of CD11b
on monocytes at 10 and 30 minutes of reperfusion and a
decrease of ICAM-1 on monocytes at 5 minutes of reper-
fusion was found under helium inhalation in comparison
to control. Although no effects on other markers were
found, these findings implicated a net negative effect of
helium inhalation on systemic immune parameters [20].
However, differences in duration and concentration of
the inhaled helium/oxygen mixtures make a direct com-
parison between the aforementioned studies difficult.
Another difference is the proximity of the induced tissue
damage (forearm ischemia-reperfusion) and the point of
blood sampling for analysis of immune parameters. In
the latter study, blood collection took place from the
injured arm – closer to the site of injury - in contrast to
the first study in which blood collection took place from
the non-injured arm [9,20]. It might be possible that the
immunomodulatory effect of helium can only be found
locally or that helium exerts anti-inflammatory effects
only when tissue damage is present. An example is the
anti-inflammatory effect of helium in comparison to ni-
trox breathing that was found in a pig model of acute
lung injury [21]. Anti-inflammatory effects were shown
in lung tissue as a reduction of pro-inflammatory cyto-
kine IL-8 and myeloperoxidase, a measure for neutrophil
activity. The big difference with the current study is the
lack of tissue damage at the time of helium breathing:
stimulation of the immune system is done after helium
breathing and blood sampling. This provides an objective
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way of assessing the immunomodulatory characteristics
of this noble gas per se.
The main rationale behind the present study was to

investigate whether the use of helium gas against organ
ischemia/reperfusion injury may have detrimental effects
on the immune response. Ischemic and pharmacologic
conditioning protocols described in the literature nor-
mally do not exceed a total of 30 minutes of intervention
[22-24]. Therefore, 30 minutes of helium inhalation
resembles a clinically relevant time frame of gas applica-
tion. Investigation of the innate immune response after
60 min of helium and air inhalation was done in an add-
itional group, to rule out that prolonged inhalation did
exert effects. Furthermore, a concentration of 79% he-
lium is the maximum from a clinical point of view, al-
though a variety of lower helium concentrations have
also been used [25]. Higher percentages of helium lead
inevitably to hypoxic gas mixtures. It is highly unlikely
that lower concentrations have detrimental effects on
the immune system, when a higher dose does not.
In this study, we mainly focused on pro-inflammatory
components of the immune system. However, in some
cases it is not so clear whether cytokines exhibit purely
pro- or anti-inflammatory actions, such as IL-2. This
cytokine has pro-inflammatory effects, but might play an
anti-inflammatory role in diabetes [26]. The finding that
no effects on pro-inflammatory components were found
suggests that no net-effect of helium inhalation on the
immune response exists. It has to be noted that clinical
outcome of infections is the result of a balance in quan-
tity and time course of pro- and anti-inflammatory com-
ponents. Therefore, several other anti-inflammatory
components of the immune system, as well as other con-
stituents of the innate and early adaptive immune sys-
tem still need further investigation. In our study we did
not investigate cytokine production in fractionated blood
leukocytes. Instead, we investigated total amounts of
cytokines in whole blood, as this model represents a
condition in which many of the physiologically present
cellular interactions remain intact. Given the fact that



Table 1 P- and n- values

Figure 2 A (TNF-α, 30 min He, 4 h LPS) B (TNF-α, 30 min He, 24 h LPS) C (TNF-α, 60 min He, 4 h LPS) D (TNF-α, 60 min He, 24 h LPS)

p n n He n Air p n n He n Air p n n He n Air p n n He n Air

T0 0.68 12 12 12 0.42 12 12 12 0.84 6 6 6 0.53 6 6 6

T1 0.91 12 12 12 0.73 12 12 12 0.44 6 6 6 0.35 6 6 6

T2 0.73 12 12 12 0.52 12 12 12 0.06 5 6 5 0.50 6 6 6

T3 0.38 12 12 12 0.79 12 12 12 0.81 5 5 6 0.72 6 6 6

T4 0.27 12 12 12 0.73 12 12 12 0.44 5 5 6 0.53 6 6 6

T5 0.52 12 12 12 0.68 12 12 12 0.56 6 6 6 0.70 6 6 6

E (IL-6, 30 min He, 4 h LPS) F (IL-6, 30 min He, 24 h LPS) G (IL-6, 60 min He, 4 h LPS) H (IL-6, 60 min He, 24 h LPS)

p n n He n Air p n n He n Air p n n He n Air p n n He n Air

T0 0.91 12 12 12 0.65 10 10 11 1.00 6 6 6 0.09 6 6 6

T1 0.83 11 11 12 0.08 11 11 12 0.16 6 6 6 0.44 6 6 6

T2 0.42 12 12 12 0.62 10 10 12 0.44 6 6 6 0.84 6 6 6

T3 0.91 12 12 12 0.11 11 11 11 1.00 4 4 5 1.00 6 6 6

T4 0.76 11 12 11 0.23 10 10 12 1.00 5 6 5 0.44 6 6 6

T5 1.00 12 12 12 0.77 11 11 11 0.69 5 6 5 0.69 6 6 6

Figure 3 A (IL-1β, 30 min He, 4 h LPS) B (IL-1β, 30 min He, 24 h LPS) C (IL-1β, 60 min He, 4 h LPS) D (IL-1β, 60 min He, 24 h LPS)

p n n He n Air p n n He n Air p n n He n Air p n n He n Air

T0 0.30 12 12 12 0.28 12 12 12 1.00 6 6 6 1.00 5 6 5

T1 0.42 12 12 12 0.42 12 12 12 0.56 6 6 6 0.44 6 6 6

T2 0.34 12 12 12 0.30 12 12 12 0.19 6 6 6 0.31 6 6 6

T3 0.13 12 12 12 0.97 12 12 12 0.44 5 5 5 0.44 6 6 6

T4 0.70 11 12 11 0.97 12 12 12 1.00 6 6 6 1.00 6 6 6

T5 1.00 12 12 12 0.34 12 12 12 0.69 6 6 6 0.69 6 6 6

E (IL-8, 30 min He, 4 h LPS) F (IL-8, 30 min He, 24 h LPS) G (IL-8, 60 min He, 4 h LPS) H (IL-8, 60 min He, 24 h LPS)

p n n He n Air p n n He n Air p n n He n Air p n n He n Air

T0 0.34 12 12 12 0.46 10 10 10 0.22 6 6 6 0.22 6 6 6

T1 0.34 12 12 12 0.47 9 10 9 0.31 6 6 6 0.84 6 6 6

T2 0.20 12 12 12 0.31 10 10 10 0.56 6 6 6 0.44 6 6 6

T3 0.51 12 12 12 0.43 11 11 11 0.44 6 6 6 0.16 6 6 6

T4 0.91 11 12 11 0.50 10 11 10 0.84 6 6 6 0.44 6 6 6

T5 0.97 12 12 12 0.13 10 10 11 1.00 6 6 6 0.84 6 6 6

Figure 4 A (TNF-α, 30 min He, 4 h LTA) B (TNF-α, 30 min He, 24 h LTA) C (IL-6, 30 min He, 4 h LTA) D (IL-6, 30 min He, 24 h LTA)

p n n He n Air p n n He n Air p n n He n Air p n n He n Air

T0 0.90 12 12 12 0.68 12 12 12 0.24 11 12 11 0.55 11 11 12

T1 0.68 12 12 12 0.76 12 12 12 0.89 11 12 11 0.02* 11 11 12

T2 0.73 12 12 12 0.79 12 12 12 0.05 11 11 11 0.64 11 11 12

T3 0.30 12 12 12 0.94 12 12 12 0.24 11 12 11 0.24 11 11 12

T4 0.20 11 12 11 0.38 11 12 11 0.07 11 11 12 0.05 11 11 12

T5 0.97 12 12 12 0.91 12 12 12 0.41 11 12 12 0.32 11 11 12

E (IL-1β, 30 min He, 4 h LTA) F (IL-1β, 30 min He, 24 h LTA) G (IL-8, 30 min He, 4 h LTA) H (IL-8, 30 min He, 24 h LTA)

p n n He n Air p n n He n Air p n n He n Air p n n He n Air

T0 0.89 11 11 12 1.00 11 11 12 0.34 12 12 12 0.19 8 8 10

T1 0.62 12 12 12 0.44 11 11 12 0.34 12 12 12 0.63 8 9 8

T2 0.34 12 12 12 0.31 11 11 12 0.20 12 12 12 0.74 10 10 11
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Table 1 P- and n- values (Continued)

T3 0.97 12 12 12 0.44 11 11 12 0.51 12 12 12 0.81 9 9 10

T4 0.38 12 12 12 1.00 11 11 12 0.91 11 12 11 0.07 11 11 11

T5 1.00 11 11 11 0.69 11 11 12 0.97 12 12 12 0.20 11 11 11

Figure 5 A (IL-2, 30 min He, 4 h TCS) B (IL-2, 30 min He, 24 h TCS) C (IFN-Υ, 30 min He, 4 h TCS) D (IFN-Υ, 30 min He, 24 h TCS)

p n n He n Air p n n He n Air p n n He n Air p n n He n Air

T0 0.76 11 11 11 0.83 11 11 11 0.92 11 11 11 0.16 11 11 11

T1 0.83 11 11 11 0.97 11 11 11 1.00 11 11 11 0.16 10 11 10

T2 0.58 11 11 11 0.46 11 11 11 0.01* 11 11 11 0.91 10 10 10

T3 0.76 11 11 11 0.85 11 11 11 0.38 11 11 11 0.16 10 12 10

T4 0.28 11 11 11 0.10 11 11 11 0.13 11 11 11 0.85 10 12 10

T5 0.28 11 11 11 0.58 11 11 11 1.00 11 11 11 0.01* 10 11 10
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leukocyte counts did not differ between groups at the
different time points either, we consider the lack of dif-
ference in cytokine levels between groups a good reflec-
tion of the unaltered immune status after helium
inhalation.
Whole blood stimulation is a widely known model

used for various goals. In a recent study it was shown
that ex vivo stimulation of whole blood with pathogenic
Leptospira induced a cytokine response [27]. The whole
blood stimulation model was also used in another study
to show that erythromycin infusion in healthy volunteers
reduces IL-8 production after ex vivo stimulation with
Streptococcus pneumonia [28]. Stress-related suppres-
sion of cytokine production after whole blood incubation
with LPS was shown in a study in which 20 male,
healthy volunteers were exposed to bungee jumping
[29]. In this study it was shown that bungee jumping
was associated with higher epinephrine, norepinephrine
and cortisol levels, but also with increased leukocytes.
Nevertheless, the amount of TNF-α and IL-8 levels after
ex vivo stimulation with LPS was decreased [29].
Despite the evidence for the applicability of our used

model, a limitation of the study is the difficulty of prov-
ing absence of an effect while 3 significant differences
between helium and air inhalation were found. However,
Table 2 Leukocyte and lymphocyte counts

30 min inhalation Leukocytes (109/l) (n = 11–12)

Time point Heliox Room

T0 5,76 ± 0,38 5,54 ± 0

T3 5,79 ± 0,34 5,78 ± 0

T5 5,79 ± 0,41 5,53 ± 0

60 min inhalation Leukocytes (109/l) (n =6)

Time point Heliox Room

T0 5,55 ± 0,29 5,83 ± 0

T3 6,28 ± 0,55 7,02 ± 0

T5 5,57 ± 0,36 5,65 ± 0
with a total of 168 tests being performed in total, 8 can
be significant by chance alone. Furthermore, significant
findings at solely one time point of one cytokine after
one stimulation type are not likely to reflect a clinically
relevant effect of the intervention. As can be seen in the
figures, lines of helium and air inhalation intersect at
random time points, suggesting that even when an effect
seems to be there it does not persist over time.
A second limitation of the study concerns the investi-

gation of healthy, male volunteers only. The target popu-
lation for helium-induced organ protection often suffers
from comorbidity, which might be of influence on the
innate immune response to ex vivo stimulation. We have
chosen to use a model in which possible confounders by
comorbidities were excluded. From literature it is known
that sex differences exist in immune defense capacity
and cytokine production [30]. To minimize the influence
of this possible confounder we have chosen to investi-
gate males only.

Conclusions
The results of the present study indicate that inhalation
of helium for 30 and 60 minutes does not affect
leukocyte counts and does not have detrimental effects
on the ability to evoke an adequate immune response in
Lymfocytes (109/l) (n = 10–12)

air Heliox Room air

,38 1.96 ± 0.18 1.97 ± 0.08

,44 1.77 ± 0.13 1.88 ± 0.12

,34 2.07 ± 0.08 1.93 ± 0.10

Lymfocytes (109/l) (n = 4–6)

air Heliox Room air

,21 1.88 ± 0.24 1.96 ± 0.24

,60 1.99 ± 0.21 2.11 ± 0.26

,48 1.77 ± 0.27 1.73 ± 0.19



(n = 12)

heliumor room air
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Figure 5 IL-2 (panel A-B) and IFN-γ (panel C-D) levels in plasma after 4 and 24 hours incubation with TCS anti-CD3/28. Time points on
y-axis represent blood sampling time points shown in the experimental protocols above. Panels show 30 minutes of inhalation. Data shown are
means +/− SEM. Experimental protocol is shown above; T0: baseline, T1: at 25 min inhalation, T2: 1 h after inhalation, T3: 2 h after inhalation, T4:
6 h after inhalation, T5: 24 h after inhalation.
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healthy volunteers after ex vivo whole blood stimulation
with LPS, LTA and anti-CD3/CD28. These findings have
implications for the use of helium as a conditioning
agent in clinical practice, as it seems unlikely that he-
lium affects innate immunity.
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