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Abstract

Background: Myeloid-derived Suppressor Cells (MDSC) have been identified as tumor-induced immature myeloid
cells (IMC) with potent immune suppressive activity in cancer. Whereas strict phenotypic classification of MDSC
has been challenging due to the highly heterogeneous nature of cell surface marker expression, use of functional
markers such as Arginase and inducible nitric oxide synthase (iNOS) may represent a better categorization strategy.
In this study we investigated whether iINOS could be utilized as a specific marker for the identification of a more
informative homogenous MDSC subset.

Methods: Single-cell suspensions from tumors and other organs were prepared essentially by enzymatic digestion.
Flow cytometric analysis was performed on a four-color flow cytometer. Morphology, intracellular structure and
localization of INOS™ ring cells in the tumor were determined by cytospin analysis, immunofluorescence microscopy
and immunohistochemistry, respectively. For functional analysis, INOS™ ring subset were sorted and tested in vitro
cell culture experiments. Pharmacologic inhibition of iINOS was performed both in vivo and in vitro.

Results: The results showed that intracellular INOS staining distinguished a granular iNOS™ SSC™ CD11b* Gr-19™
F4/80" subset with ring-shaped nuclei (ring cells) among the CD11b™ Gr-17 cell populations found in tumors.
The intensity of the ring cell infiltrate correlated with tumor size and these cells constituted the second major
tumor-infiltrating leukocyte subset found in established tumors. Although phenotypic analysis demonstrated that
ring cells shared characteristics with tumor-associated macrophages (TAM), morphological analysis revealed a
neutrophil-like appearance as detected by cytospin and immunofluorescence microscopy analysis. The presence
of distinct iNOS filled granule-like structures located next to the cell membrane suggested that iNOS was stored
in pre-formed vesicles and available for rapid release upon activation. Tumor biopsies showed large areas with
infiltrating ring cells primarily surrounding necrotic areas. Importantly, these cells significantly impaired CD8" T-cell
proliferation and induced apoptotic death. The intratumoral accumulation and suppressive activity of ring cells
could be blocked through pharmacologic inhibition of iINOS, demonstrating the critical role of this enzyme in
mediating both the differentiation and the activity of these cells.

Conclusions: In this study, iINOS expression was linked to a homogeneous subset; ring cells with a particular
phenotype and immune suppressive function, in a common and well-established murine tumor model; 4T-1.
Since the absence of a Gr-1 homolog in humans has made the identification of MDSC much more challenging,
use of INOS as a functional marker of MDSC may also have clinical importance.

Keywords: Myeloid-derived Suppressor Cells (MDSC), ring cell, inducible nitric oxide synthase (iNOS), Nitric oxide
(NO), Neutrophil

* Correspondence: mehmetkilinc@genelux.com

'Department of Microbiology and Immunology, School of Medicine and
Biomedical Sciences, University at Buffalo, 3435 Main Street, Buffalo, NY
14214, USA

“Genelux Corporation, San Diego, CA, USA

Full list of author information is available at the end of the article

© 2012 Virtuoso et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative

() BioMed Central Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.


mailto:mehmet.kilinc@genelux.com
http://creativecommons.org/licenses/by/2.0

Virtuoso et al. Journal of Translational Medicine 2012, 10:152
http://www.translational-medicine.com/content/10/1/152

Background

Myelocytic cells that are found in human and mouse
tumors represent a heterogeous mixture of mature and im-
mature myeloid cells (IMC) [reviewed in Refs. [1-3]]. IMCs
arise from a differentiation process called myelopoiesis
that takes place in the bone marrow. Under normal
conditions IMCs differentiate into macrophages, den-
dritic cells (DC) and granulocytes. However, tumor-
derived inflammatory factors prevent proper differen-
tiation of IMC resulting in the appearance of a highly
heterogeneous myeloid cell population with subsets
arrested at different stages of development [2]. They
are known to be activated by various factors secreted
by tumor stroma and produce increased levels of
Arginase (ARG) or iNOS, which have been associated
with T cell suppression [3]. Because of this activity
they are commonly referred as MDSC [4]. A distinct
phenotypic marker that uniquely identifies MDSC
among other myeloid cells has not been identified. In-
stead, CD11b and Gr-1 cell surface markers have
been used for their identification in mice. However,
this combination is not unique to MDSC and in
addition to the phenotypic similarity, functional over-
lap has also been observed between the conventional
myeloid cells and MDSC. Anti-Gr-1 antibody, which
binds to the myeloid differentiation marker Gr-1,
recognizes two epitopes, Ly6C and Ly6G. In
subsequent studies two main subsets of MDSC, i.e.
mononuclear (MO-) MDSC, which display a CD11b"
Ly6G~  Ly6CMIL-4Ra’phenotype and polymorpho-
nuclear (PMN-) MDSC, which have a CD11b* Ly6G*
Ly6C°IL-4Ra*phenotype, were identified [5,6]. In
more recent studies the MDSC have been categorized
into multiple subsets further complicating phenotypic
classification. Greifenberg et al. divided CD11b" Gr-1*
double positive (DP) myeloid cells into six different subsets
according to their differential expression of Gr-1 and
CD11b, identifying two different MO- and two PMN-
MDSC populations all with suppressive function [7]. A year
later, a study by Dolcetti et al. subdividled MDSC into 3
fractions of MDSC based on Gr-1 intensity; Gr-1'°, Gr-1™,
Gr-1" [8]. The same year Movahedi et al. showed at least
seven tumor-infiltrating subsets and among those, 4 subsets
could readily be distinguished based on the differential ex-
pression of Ly6C and MHCIIL. They recognized these sub-
populations as TAM [9]. In another study, a novel marker,
CD49d, was suggested as an alternative marker for Gr-1 to
differentiate between the subpopulations of MDSC [10]. As
evidence by all these recent studies, identification of an in-
dividual MDSC subset with a specific function has been dif-
ficult because of the lack of unique cell surface markers
that can distinguish between different myeloid subtypes.
Their classification was further complicated by the plasticity
of MDSC [reviewed in Refs. [11,12]]. An example of the
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phenotypic switch among the myeloid cell population is
that F4/80" monocytes have been shown to be the precur-
sors of functionally distinct subsets of TAM [9] and DC
[13,14].

Although, recent studies have started to combine
phenotypic characterization based on Ly6G/C staining
with cytospin analysis and functional testing to further
describe individual subpopulations of myeloid cells, a
clear categorization strategy has not yet emerged. There-
fore, the conflicting phenotypic descriptions of the popu-
lations necessitate further studies to sort out individual
subsets based on functional markers associated with
specific morphological and functional characteristics.

While staining with Gr-1 in mice, is becoming a gener-
ally accepted basis for evaluating MDSC, there is no cor-
responding counterpart to this in humans. The absence
of a Gr-1 homolog has made the identification of human
MDSC much more challenging. But it is generally agreed
that they are suppressive with a CD33", CD11b*, CD15",
HLA-DR"/, CD14*/~ phenotype [15].

In this study we identified and characterized a homo-
geneous subset within the tumor- infiltrating CD11b*
Gr-17cells using functional marker iNOS. This bone
marrow (BM)-derived population expressed the mono-
cyte/macrophage marker F4/80, accumulated rapidly in
the growing tumor and the periphery, and constituted
the second major tumor-infiltrating leukocyte subset.
Further phenotypic characterization coupled with mor-
phological analysis revealed that this subset consist of
ring cells which phenotypically resembled TAM to some
extent but morphologically were more akin to neutro-
phils. In vitro studies showed that the iNOS" subset can
inhibit T cell proliferation through the production of
nitric oxide (NO) and induce their apoptosis. In vivo
iNOS inhibition significantly repressed the accumulation
of ring cells in the spleen and the tumor and concomi-
tantly resulted in increased CD8" T-cell numbers.

Methods

Mice, tumor induction and reagents

Six- to 8-wk-old BALB/c and C57BL/6 mice were
purchased from Taconic Laboratories. Clone-4 mice
that bear T cells transgenic for a HA- specific (IYST
VASSL) T-cell receptor and FVBneuN mice (FVB/
N-TgNMMTVreuo0oMul) were bred in the Laboratory
Animal Facility of University at Buffalo [16]. The BALB/c
syngeneic mammary carcinoma cell line 4T1 has been
described [17]. CT26 colon carcinoma cell line was main-
tained in DMEM/F-12 (Invitrogen Life Technologies) sup-
plemented with 10% heat-inactivated FBS (Equitech-bio),
2 mM L-glutamine, 100 U/ml penicillin, 100 pg/ml
streptomycin (Mediatech). Same medium with an add-
itional 2-mercaptoethanol was used for B16 cell line.
Briefly, mice were injected s.c. with 0.5 x 10°-1 x10° viable
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tumor cells in 0.1 ml sterile PBS behind the neck just
above the scapula. Tumors were allowed to reach a size
of 350-450 mm?®. For inhibition of iNOS activity, N6-
(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) or 1,3-
PB-ITU dihydrobromide (1,3-PB-ITU) was injected i.p.
(0.2 mg/100 pl PBS) daily. At least five mice per group
were analyzed. For the determination of the absolute
number of specific cell populations, the percentage of each
population was multiplied by the number of cells recov-
ered from the respective tissue [18]. All animals were
housed and treated according to NIH guidelines under the
auspices of the UB IACUC.

Preparation of single-cell suspensions, enrichment and
fluorescence-activated cell sorting

Single-cell suspensions from tumors and other organs
were prepared essentially by enzymatic digestion as pre-
viously described [18]. Bone marrow cells were obtained
from the femurs and tibias [19]. To purify iNOS" cells,
single-cell suspensions were magnetically labeled with
Anti-Ly-6G microBeads. Then, the cell suspension
was loaded onto auto MACS in order to deplete Gr-1™
Ly-6G* cells (MiltenyiBiotec). Unlabeled cells ran
through; this cell fraction was thus depleted of Gr-1™
Ly-6G* and pre-enriched for Gr-1'" Ly-6G™ myeloid cells.
Pre-enriched fraction was further enriched for F4/80"
subset using F4/80-PE along with anti-PE microBeads
(Positive selection).In the final step, F4/80" subset were
further sorted using a BD FACSAria II (BD Biosciences)
using SSC profile as distinguishing criteria among iNOS*
and iNOS" subpopulations. The purity of the total SSC™
F4/80" iNOS" population was typically higher than 95%.

Flow cytometry

Flow cytometric analysis of single-cell suspensions
prepared from tumors and other peripheral organs was
performed on a four-color FACSCalibur flow cytometer
(BD Pharmingen) using established protocols as previ-
ously described [18]. Fluorochrome-conjugated anti-
mouse monoclonal Antibodies (mAbs) to iNOS (6/
iNOS/NOS type II), Gr-1 (RB6-8 C5), CD11b (M1/70),
Ly6C (AL-21), Ly6G (1A8), CD45 (30-F11),CD138 (281-
2), CDI193(CCR3/83103), CD54(ICAM-1/3E2), CD119
(IFNGR1/2E2), CD124 (mIL4R-M1), Flk-1 (VEGFR2/
Avas12al), CD14 (rmC5-3), Siglec-F (E50-2440) and all
isotype controls were purchased from BD Pharmingen.
Anti-CD184 (CXCR4/2B11), CD49d (R1-2), CD115
(CSFR1/AFS98), CD282 (TLR2/12-9021), F4/80 (BMS)
were obtained from eBioscience and Anti-CD182
(TG11/CXCR-2) was purchased from Bio Legend. All
other mAbs and intracellular iNOS staining were as
described previously [20-22]. 7-AAD viability staining
solution was purchased from BD Pharmingen.
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Cytospin analysis, immunofluorescence microscopy

and Immunohistochemistry

Sorted cells were centrifuged in 200 ul PBS onto a
microscope slide using a Cytospin 3 cytocentrifuge
(Shandon Instruments, PA) and stained with Protocol
Hema 3 kit (Fisher Diagnostics). Preparation of Alcian
blue cover slips was done as previously described [23].
Briefly, cover slips were coated in a 1% Alcian blue 8
GX dye solution at low heat. Following sorting, cells
were affixed to cover slips and incubated in a humid
chamber. Cells were stained for visualization by immu-
nofluorescence confocal microscopy as follows. Fixed
cells were incubated directly with fluorescently conju-
gated Gr-1, CD11b or F4/80 antibodies followed by the
permeabilization using BD Cytofix/Cytoperm buffer (BD
Pharmingen). For iNOS staining, FITC-conjugated iNOS
(BD Pharmingen) was used in (1:100) in BD block/perm
buffer. Stained slides were mounted with the ProLong®
Gold antifade reagent with DAPI (Molecular Probes)
and analyzed by Zeiss LSM-510 laser scanning confocal
microscope. Tissue sections of formalin-fixed and
paraffin-embedded 4T-1 tumors were deparaffinized and
re-hydrated. Antigens were retrieved using microwave
irradiation in citrate buffer pH 6.0 for 15 minutes.
Endogenous peroxidase activity was inhibited with 3%
(vol/vol) H202 in methanol, and nonspecific binding
of antibodies was blocked with 1% (wt/vol) BSA for
30 min at room temperature. Tissue sections were incu-
bated overnight with rabbit anti-iNOS (1:1000; Thermo
Scientific). Specimens were incubated with horseradish
peroxidase (HRP)-conjugated anti-rabbit IgG (Dako) for
30 minutes at room temperature. Peroxidase activity was
developed using 3,3-diaminobenzidine tetrahydrochlor-
ide (Dako) and H202. Hematoxylin was used as a nu-
clear counter stain in tissue sections. Stained slides were
dehydrated and mounted with Cytoseal* 60 (Richard-
Allan scientific).

In vitro cell culture experiments

iNOS™ cells were isolated as described above. They were
resuspended in MLR media (DMEM plus 5% FBS with
10 mM HEPES [pH 7.4], 1% sodium pyruvate, 1% peni-
cillin/streptomycin, 1% l-glutamine, 0.4% L-arginine HCl,
1% folic acid/l-asparagine, and 0.2% 2-ME). In vitro sup-
pression assay was carried out as previously described
[16]. For detection of apoptosis, cells were first stained
for the CD8 antigen and then with anti-Annexin V- allo-
phycocyanin (APC) Ab according to the manufacturer’s
protocol (Annexin V apoptosis detection kit; BD Phar-
mingen) [21]. For nitrite quantification iNOS" cells were
cultured (1x10° cells/ml) in the presence of recom-
binant mouse IFN-y (20 ng/ml) for 6-12 h. A Griess
reagent system kit (Promega) was used according to the
manufacturer's instructions. Briefly, 50 pl of culture
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supernatant were added to the plate, followed by the
addition of 50 pl of sulfanilamide solution (10 min)
and 50 pl of naphthylethylenediamine dihydrochloride
(NED) (10 min). Absorbance at 540 nm was measured
using a Biotekmicroplate reader and compared to a
standard nitrite curve ranging from 0-100 pM.

Statistical analysis

Student's t test was used for comparison between groups
in all of the experiments. In all analyses, P<0.05 was
considered significant.

Results

Identification of an iINOS* subset among the
tumor-resident myeloid cell populations

In the tumor microenvironment, NO activity by infiltrat-
ing myeloid cells has been suggested to represent a
mechanism for their immunosuppressive properties. Of
the three isoforms of NOS which produce NO, inducible
(iNOS), endothelial (eNOS) and neuronal (nNOS), only
iNOS produces high amounts of NO [24]. In the great
majority of the previous studies, NO production by
iNOS was monitored via qRT-PCR, immunohisto-
chemistry, Western blotting analysis, or in vitro NO pro-
duction. A few studies examined intracellular iNOS
production by flow cytometry in tumor-infiltrating or
peripheral cells [9,25], but did not further trace it back
to the origin and see whether an iNOS based
categorization strategy would lead to a distinct myeloid
cell subset. To determine whether iNOS™ cells constitute
a distinct subset among heterogeneous tumor-resident
myeloid cell populations, single-cell suspensions from
primary tumors were stained for extracellular markers
CD11b, Gr-1 and F4/80 followed by intracellular iNOS
staining. Figure 1 depicts representative flow cytometry
panels identifying intratumoral iNOS™ cell subsets.
Among four different tumor-infiltrating DP myeloid
subpopulations, only two subsets; P1a; CD11b™ Gr-14™
F4/80" cells and P2a; CD11b" Gr-1%™ F4/80  cells
stained positive for iNOS whereas the Gr-1™" CD11b™
F4/80" (P3) and the Gr-1™ CD11b" F4/80" (P4) popula-
tions did not (Figure 1A). Since more than 95% of the
total iNOS was made by Pla subset, we focused only on
this particular subpopulation and the other myeloid sub-
sets, i.e. P1b, P3 and P4 were not pursued further in this
study as they did not express iNOS. A back gating ana-
lysis of DP subsets based on their forward and side scat-
ter (FSC/SSC) profile revealed Pla, P1b and P4 cells as
distinct populations on a dot plot graph (Figure 1B).
Although Pla and P4 subsets showed comparable size as
measured by FSC, their granularity level based on SSC
differed considerably. Because the Gr-1 Ab recognizes
both Ly6C and Ly6G epitopes, iNOS and F4/80 gated P1
and CD11b and F4/80 gated P4 subpopulations were
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further characterized separately with anti-Ly6C and anti-
Ly6G Abs. We found Pla, Plb, P4 subsets displayed
Ly6G™ Ly6CY™, Ly6G™ Ly6C™, Ly6G™ Ly6C™ pheno-
types, respectively (Figure 1B). The P4 subset carrying
CD11b™ Gr-1" Ly6G™ and ly6C™ corresponded to the
classical PMN phenotype [reviewed in Ref.[1-3]. The P1b
subset, equivalent to the P1b population in Figure 1A, on
the other hand, was positive for MHCII and CXCR4
(data not shown). As previously described by Movahedi
et al, these cells with the SSC'°“F4/80*Ly6C™CCR3"
phenotype were defined as tumor-induced monocytes
which can be progenitors of TAM in vivo [5]. In contrast,
CD11b"™ Gr-1%™ and F4/80"Pla cells expressed Ly6C
weakly and did not match the previously described MO-
MDSC [1-3]. Histogram with isotype control for iNOS is
shown in Figure 1C. We also detected iNOS™ Pla subset
in the tumors of three other distinct models; implant-
able CT26 colon carcinoma, B16 melanoma and trans-
genic spontaneously arising FVBneuN (Additional file 1:
Figure S1A).

Accumulation kinetics and quantification of iNOS™

P1a subset

Next, we wanted to determine the prevalence of the
iNOS™ subset in the tumor and the periphery and
whether their accumulation was dependent on tumor
growth. As can be seen in Figure 2A, Pla and P4
populations represented the great majority of the tumor-
infiltrating leukocyte in comparison to regulatory T-
(Treg; CD4" Foxp3"), Thelper (Th; CD4" Foxp3’), CD8"
T, Dendritic (DC; CD11c* MHC II*) and Natural Killer
(NK; CD3” NKG2D" DX5") cells. Specifically, the aver-
age absolute number of Pla subset (~1.85x10°g of
tumor) was >2-fold higher than the P1b, DC, NK and P3
subsets, >3.5-fold higher than P2 and CD8" T-cells and
20-fold higher than Treg cells. Analysis of the iNOS™
Pla subset infiltration kinetics revealed that accumula-
tion of these cells was completely dependent on tumor
growth (Figure 2B). Their expansion was gradual during
early tumor growth (up to 200 mm?®) but increased rap-
idly thereafter. The same trend was also observed in
the spleen. Significant accumulation of CD11bMGr-14™
F4/80" and iNOS* cells was observed after tumor
induction, increasing from 1% of all splenocytes
(2.4 x 10° + 45 x 10%) to 4-6% of cells (2.6 x10° + 8.5 x10°)
at a tumor size of 400 mm®. In separate experiments, we
further evaluated the presence of iNOS™ subset in differ-
ent peripheral organs such as liver, lung, brain and
tumor draining lymph nodes (TDNLs) along with bone
marrow and blood of tumor-bearing mice by gating only
on high side-scatter subset in single-cell suspensions. As
seen in Figure 2C, cells exhibiting SSC™ were clearly dis-
tinguishable and among the R1 gated cells, the CD11b"
Gr-19™ subset was composed entirely of the iNOS*
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Figure 1 Identification of iINOS™ cells in 4 T-1 tumor. A. Single-cell suspensions were prepared from established tumors. FACS analysis of
tumor-resident heterogeneous myeloid cell populations identified four distinct subsets by the expression of the surface markers CD11b and Gr-1.
Expression of iNOS coupled with F4/80 was evaluated within each gated population. The P1 subset was divided into two subfractions P1a and
P1b based on iNOS expression B. Ly6G/C and FSC/SSC dot plots are shown for gated P1a, P1b and P4 cell subsets. A back gating strategy
revealed distinct locations for these subsets on a dot plot graph based on their FSC and SSC profile. P1a (F4/80%INOS™), P1b (F4/80%INOS), and
P4 (F4/80°CD11b") subsets were further evaluated based on Ly6G andLy6C expression. C. The isotype antibody staining (gray filled area) from
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subset (gated on R1+R2); validating the back gating
strategy shown in the prior figure. The highest rela-
tive number of iINOS" cells were detected in the
spleen (2.1 x 10° + 4.5 x 10*) compared to lowest number
in the DNLs (7x10°+21x10% and the brain
(4x10®+7 x 10% (Figure 2D). They were also found in
the liver (3x10°+1.3x10%, lung (1.5 x 10° 5.5 x 10%),
BM (1.3x10°+3.4x 10* per femur & tibia) and blood
(1.4 x 10* 8.4 x 10°/200 cc). Their presence in the BM
and blood suggested that they originated in the BM and
circulated to the major sites through blood.

Phenotypic characterization of tumor-infiltrating iNOS*
P1a subset

In the past several years numerous studies attempted to
categorize immune suppressive MDSC subpopulations

based on various combinations of cell surface markers.
Murine MO-MDSC have been classified as CD11b*
Ly6G™ Ly6C™ cells that express lower levels of F4/80
and higher levels of Gr-1 compared to TAM [1]. Both
MDSC and TAM have been found to be positive for
IL-4 receptor-a (CD124) and M-CSF receptor (CD115)
[1]. Other studies suggested that MO-MDSC represented
a mixture of myeloid cells in varying stages of differenti-
ation, from less differentiated to terminally differentiated
[9,11,26,27]. In order to link iNOS expression to a par-
ticular phenotype, we determined the overall differenti-
ation/maturation stage and further characterized iNOS*
Pla cells based on the differential expression of selected
phenotypic markers. To be able to compare the relative
expression level of each marker, we also included the P4
subset as a control. iNOS™ cells did not express typical
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Figure 2 Accumulation kinetics and quantification of iNOS* subset (P1a). A. Primary tumors were 400 mm? in size when they were
harvested and weighed. The absolute numbers of tumor-infiltrating leukocytes were determined by flow cytometry. Results are expressed as the
average number of cells per gram of tumor tissue and were obtained from two separate experiments with 4-5 mice. Error bars represent mean
and SD B. To determine the time course of expansion of the iINOS* cell subset in the tumor and spleen, mice with various tumor sizes (from

50 mm? to 400 mm?) were sacrificed and the absolute number were calculated per gram of tumor tissue or per spleen. C. In all of the tested
samples the iINOS™ cell subset (gated on R1+R2) was identified as CD11b" Gr-19™ cells (R2) within SSC™ subfraction (R1). D. The quantification of
the iINOS™ cell subset was carried out following the gating strategy shown in C. Error bars =SD, n=4-5 mice per group. The above experiments
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neutrophils markers CXCR2 (chemokine receptor for
neutrophils) or Ly6G in contrast to the iNOS™ P4 subset
(Table 1). Therefore, these cells were distinct from PMN
as described in literature [1-3]. They were also negative
for CCR3 which is a typical chemokine receptor for eosi-
nophils. iNOS™ cells however, expressed low levels of
Siglec-F which is found on immature cells of the mye-
lomonocytic lineage and eosinophils. Moreover DC
markers such as CD11c, MHC II and CD86 were absent
(Additional file 1: Figure S1C). Ly6C, a marker that has
been reported to be associated particularly with MO-
MDSC, was weakly-expressed on the iNOS™ cell subset. It
has been hypothesized that monocytic-like MDSC
(CD11b* Gr-1'° and F4/80'° CD124") could differentiate
into F4/80" TAM in tumor microenvironment [5,28].

To determine whether the iNOS" cell subset belongs
to TAM or MO-MDSC we included two other markers,
CD115& CD124 that are co-expressed by those cells [1].
Pla subset was found to be negative for both of
these markers (Table 1&Additional file 1: Figure S1C).
Thus, these data suggested that iNOS* Pla subset dis-
played a phenotype that is not consistent with that of
MO-MDSC or TAM and therefore are unlikely to be
of monocytic origin. P4 subset however, differentially
expressed CD309 (VEGFR2), CD86 (B7-2), CD138
(Syndecan-1) and CD124. Together, these results show
that the iNOS" cells were phenotypically distinct from
PMN as well as MO subsets and shared few markers with
TAM but could not be classified into any standard MDSC
subset.
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Table 1 Phenotypic analysis of tumor infiltrating iNOS™
P1a and negative P4 subpopulations

P4 Pla
Monocyte/PMN subset marker/Migration
Ly6C + -/+
Ly6G ++ -
CXCR2 ++ -
CCR3 + -
Siglec-F - -/+
F4/80 - ++
CXCR4 - -
CDe2L - -
CD49d ++ ++
Adhesion/Activation Molecules ++
CD44 ++ ++
CD43 ++ -
CD103 - -
CD138 ++ ++
CD54 (ICAM-1) ++ ++
Antigen presentation -
MHC | ++ -
MHC I - -
CD86 (B7-2) + +
CD11c - -
Differentiation -
CD119 (IFNGR1) ++ -
CD124 (IL-4Ra) ++ +
CD115 (CSFRT) - -
CD309 (VEGFR2) + +
Potential T-cell suppressive marker
B7H1 (PD-L1) + +
B7DC (PD-L2) - -
FASL + -
Pattern recognition receptor -
CcD14 - -
TLR2 + ++

Expression of the indicated cell surface markers was evaluated on gated
SSCM CD11b" Gr-19™ F4/80" P1a and Gr-1" CD11b" F4/80 (P4) cells. “-"
indicates no expression and “+”, “++", increasing amount of expression to
isotype-matched controls.

Morphology, intracellular structure and localization of
iNOS* ring cells in the tumor

To confirm that Pla did not represent a mononuclear
cell subset iNOS™ Pla and iNOS™ P4 subsets were evalu-
ated for their morphology using cytospin analysis. The
subsets were first enriched from tumors by magnetic
bead technology followed by cell sorting using the
protocol described in material and methods. Wright-
Giemsa staining of sorted preparations demonstrated
a polymorphonuclear morphology for P4 subset cells
(Figure 3A). In contrast, most of the cells of the Pla
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have displayed ring-shaped nuclei, a unique morphology
distinct from monocytes and macrophages. This type of
morphology with a comparable phenotype has been
reported in in vitro generated MDSC as well as in differ-
ent murine models of inflammation, traumatic stress,
parasitic infections, and cancer [29-33] Although cytos-
pin analysis distinguished this subset from PMN based
on nuclear staining, it did not show the high level of
granularity that would be predicted by the high side-
scatter pattern observed in flow analysis (Figure 1A).
Confocal microscopy analysis of immuno stained cells
isolated from tumors revealed intense punctate iNOS-
staining within the cytoplasm adjacent to the cell mem-
brane, consistent with the presence of iNOS in pre-
formed vesicles (Figure 3Bi-ii&insets). Rapid tumor cell
proliferation causes hypoxic/necrotic areas and F4/80"
cells have been especially shown to accumulate rapidly
in hypoxic regions of tumors [reviewed in Refs. [34,35].
To this end, we wanted to examine the distribution of
iNOS™ ring cells within the tumor in a series of immu-
nohistochemistry sections of tumor tissues. Histological
analysis of a section from a primary tumor illustrated
a central area of necrosis with iNOS™ ring cells being
localized predominantly at the periphery of this area
(Figure 3C).

Functional analysis of iNOS™ ring subset

T cell-suppressive activity through iNOS- or ARG-
mediated mechanisms is a prominent feature of MDSC
[1-3]. To verify whether iNOS" ring cells accumulating
in the tumor were immunosuppressive, ring cells were
sorted from tumors and tested for in vitro NO produc-
tion and T-cell proliferation assay. The live gate (CD45"
7-AAD") from single-cell suspensions and the expression
of iNOS in pre- and post-sort cells are shown in Add-
itional file 1: Figure S1B. iNOS expression overlapped
with the appearance of significant nitrite concentrations
in the cultures, indicative of high NO production (Add-
itional file 1: Figure S1D). iNOS" ring cells were co-
cultured with clone4 CD8" T-cells expressing a TCR
specific for the influenza virus hemagglutinin (HA) at a
1:1 ratio for 48 hours in the presence of HA peptide.
As shown in Figure 4A, they inhibited the proliferation
of CD8" T-cells by 2-fold in an iNOS-dependent
manner, as addition of the iNOS inhibitor L-NIL into
culture restored T-cell proliferation. Similarly, we tested
selective iNOS inhibitors L-NIL and 1,3-PB-ITU in vivo
to determine whether NO was critical to tumor progres-
sion. Mice were treated with L-NIL or 1,3-PB-ITU (both
potent and selective inhibitor of iNOS) via daily ip
injections starting from day 1 following 4T-1 injection
(Figure 4B). In vivo blocking of iNOS activity with these
inhibitors significantly inhibited the overall rate of tumor
growth when compared with the 4T-1 cells alone group
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Figure 3 Morphology and immunohistochemistry analysis of iINOS* cells. A. Tumor-purified iINOS* (P1a) and iINOS™ (P4 =PMN) fractions
were first evaluated by cytospin followed by Wright-Giemsa staining. Pictures are shown in two different magnifications (x40 and x100). Data

are representative of at least two experiments. B.Bi: Confocal microscopy optical section of a mixture of PMN and iNOS* ring cells, with red
representing Gr-1, green iNOS and blue nuclear (DAPI) staining. Inset: 3D volume rendering of an iINOS* cell demonstrating iINOS-positive vesicles
surrounding the nucleus. Bii: 3D volume rendering derived from a stack of confocal optical sections with green representing iNOS staining, red as
DAPI and blue as Gr-1 staining. Inset: 3D volume rendering of a single iINOS™ cell showing the torus shaped nucleus as seen after using clipping
planes to "remove" half of the volume along the z-axis. The nucleus in this cell is orientated at right angles to those seen in A (x100).

C. Histological analysis of a section from a primary tumor. The necrotic areas could be differentiated by debris. The results are representative of

J

(control). Furthermore, L-NIL showed the same effect in
another model; B16 melanoma. Every day treatment
starting from the day of tumor cell inoculation and up
to 24 days attenuated tumor growth (Additional file 1:
Figure S1E). Superior tumor regression in L-NIL or 1,3-
PB-ITU-treated mice was associated with a decreased
number of ring cells both in tumor (Figure 4C) and
spleen (data not shown) on day 9 after tumor injection.
The highly significant decrease in iINOS" ring cell accu-
mulation kinetic was accompanied by an enhancement
of tumor-resident CD8" T-cell quantity in both of the
iNOS inhibitor-treated groups (Figure 4D). Finally, the
effect of tumor-derived iNOS™ ring cell on CD8" T-cell
survival was evaluated in an in vitro co-culture
assay. Ring cells purified from tumor were cultured with
CD8" T-cell sorted magnetically from the DNLs of the

same mice for 24-48 h. The histogram data shown
in Figure 4E demonstrate that Ring cells induced CD8"
T-cell apoptosis depending on the cell number as
detected by Annexin V staining. 80 +10% of CD8" T-
cells became apoptotic in the co-cultures at 1:2 ratio
(CD8" T/Ring cell) compared to 60 + 15% at 1:1 ratio.

Discussion

Immature myeloid cells are a heterogeneous population
and include precursors of granulocytes, macrophages
and DC. MDSC, a sub-population of immature myeloid
cells, have been defined primarily by their immune sup-
pressive activity. In mice, MDSC have been character-
ized by the co-expression of CD11b and Gr-1 antigens.
They can weakly express mature myeloid cell markers
such as CD11c, F4/80 and MHC class II. However, none
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co-cultured in the presence or absence of sorted ring cells from 4T1 tumors. Selective iINOS inhibitor L-NIL was added to some wells. T cell
proliferation was measured by CFSE dilution assay using flow cytometry. Data are plotted as percent CD8" T-cells proliferation and are from
one of three independent experiments. Error bars show SD. B. Effect of selective iNOS inhibitors L-NIL and 1,3-PB-ITU on tumor growth. Mice
were treated with L-NIL or 1,3-PB-ITU via daily i.p injections starting one day after 4T-1 injection. Tumor volume was determined daily using the
formula a® x b/2, where a and b are the shortest and longest perpendicular dimensions of the tumor, respectively. * The differences between
the L-NIL or 1,3-PB-ITU-treated group and control (4T-1 only) were significant (p <0.0004 on days 6-15). Error bars=SD, n=5-7 mice per
group. Representative of 2 independent experiments. C&D. Intratumoral Ring and CD8" T-cells numbers were quantified by flow cytometric
analysis of day 9 tumors. Graphs represent the mean (+SD) of at least 5 mice from 2 independent experiments. D *The differences between the
L-NIL- treated and control groups was significant (P <0.05), the differences between the 1,3-PB-ITU-treated group and control was not (p <0.1).
E. The ability of Ring cells to kill CD8" T-cells was evaluated in an in vitro co-culture assay. Ring cells were sorted and added at different ratios
with CD8" T-cells and apoptosis of CD8" T-cells was measured via staining with Annexin V. The apoptosis effect was related to ring cell
abundance. The gray histogram represents CD8" T-cells alone versus thin open histogram (1:1 ratio of CD8" T/Ring) and thick open histogram
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Annexin V

of these cell surface markers is definitive since their
expression varies based on inducing tumor. Absence of a
unique marker that is specific to MDSC has often led to
diverse and sometimes contradictory descriptions of the
subpopulations. On the other hand it has been well
established that MDSC metabolize L-arginine as a result
of increased ARG or iNOS expression making these pro-
teins hallmarks of suppression. The great majority of the
early in vitro and in vivo studies on the origins and func-
tion of these cells utilized indirect methods for iNOS
detection. In this study we asked whether iNOS could

serve as a specific marker in the direct identification
of a homogenously distributed subset of IMC. Among
tumor-infiltrating DP myeloid populations iNOS expres-
sion was primarily detected in the CD11b" F4/80"
Gr-19subset; a common phenotype shared mostly by
TAM [1,9] and to some extent MO-MDSC, which are the
potential progenitors of strongly suppressive macrophages.
A similar phenotype, SSC™ F4/80" Gr-1"CD11c was also
used to describe eosinophils [7,9], PMN [10,33] and in-
flammatory monocytes [36,37] in different studies. Be-
cause of the close phenotypic resemblance, we screened
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INOS™ cells with a large set of different markers known to
be associated with different cell populations. The F4/80*
iINOS* Pla cells were phenotypically different from
macrophages/monocytes and MO-MDSC in that they
weakly expressed Gr-1 and Ly6C, and most importantly
were negative for CD115, CD124 and CXCR4 [1,26,38].
Pla cells were not eosinophils since they did not express
CCR3 and weakly expressed Siglec-F which is a marker
for immature cells of the myelomonocytic lineage. They
also lacked neutrophil markers Ly6G and CXCR2 [1,26].
We also tested the expression of CD49d which was sug-
gested as an alternative marker for Gr-1 when used
together with CD11b [10]. In our tumor model, CD49d
did not distinguish between the PMN and iNOS" cells as
both the P4 and Pla subsets expressed it equivalently
(Table 1). Overall, INOS™ Pla cells could not be phenotyp-
ically classified into any MDSC subset described here.
However, morphological analysis by Wright-Giemsa stain-
ing revealed the presence of ring-shaped nucleus suggest-
ing a PMN-like etiology (Figure 3A). Ring-shaped nuclei
were previously described as a characteristic of immature
neutrophils as opposed to the typical segmented multilob-
ular nucleus detected in polymorphonuclear neutrophils
[33,39]. Granulocytes and macrophages differentiate from
a common, committed progenitor cell. It has been previ-
ously shown that signals that lead to myelopoiesis affect
the maturation process and cause the accumulation of
cells which retain their neutrophil-like ring nuclei while
acquiring macrophage differentiation markers such as
F4/80 on the cell surface in the BM [30,40].

To achieve a detailed description of the ring cells,
tumor-isolated cells were further analyzed in 3D by con-
focal microscopy. F4/80" iNOS™ Pla cells represent an
immature stage of neutrophil maturation with incom-
pletely condensed, non-segmented torus-shaped nuclei
(dumbbell-shaped cross section) (Figure 3Bii, inset).
We detected BM-derived ring cells in diverse peripheral
locations but found them excessively in the tumor and
spleen. Analysis of their kinetics in both tumor and
spleen showed that accumulation of these cells was com-
pletely dependent on tumor growth indicating the role
of tumor-derived factors in their generation and preva-
lence. Their presence in the circulation suggests that
they migrate via blood however we cannot rule out
the possibility that they may also expand directly in
organs due to extra medullary hematopoiesis which
has been observed in both inflammatory diseases and
cancer [32,41].

The presence of ring cells in the BM as myeloid pre-
cursor cells with ring-shaped nuclei and to some extent
in the peripheral organs has been reported; however this
population had not been isolated to uniformity or char-
acterized and assigned a particular function. Premature
tumor-infiltrating ring cells may play an essential role in
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establishment of tumor immuno supression by decreas-
ing T-cell proliferation and/or survival via NO produc-
tion. Our findings are consistent with this notion such
that inhibition of iNOS by selective inhibitors resulted in
an increase in intratumoral CD8 T-cell numbers and
enhanced tumor suppression. Importantly, the inhibition
of iNOS also resulted in a significant reduction of intra-
tumoral ring cells without inducing their apoptosis
(data not shown). This finding that suggests that in
addition to its immune suppressive activity NO is
required for the accumulation of ring cells in tumors.
When we examined the distribution of iNOS™ ring cells
within the tumor by histology, the areas of strong
iNOS expression were observed to be associated with
highly necrotic areas (Figure 3C). These data were
consistent with earlier studies that had shown iNOS*
cells infiltrated into and around the necrotic areas in
different disease models [42,43]. This pattern of locali-
zation occurs presumably because of hypoxia-inducible
factors which stimulates iNOS™ cell accumulation around
hypoxic/necrotic areas, which is also linked to other
events such as angiogenesis and metastasis [29,44].

In our previous study we had investigated the specific
role of NO in IL-12-mediated tumor regression in a lung
carcinoma model and we demonstrated that NO was a
significant impediment to IL-12 immunotherapy in mice
with established tumors [19]. In that study, the source of
NO was traced to the TAM-like, CD11b" Gr-1'° F4/80"
iNOS*subset which had been associated with post-IL-12
NO production however these cells were not character-
ized further. The current study identifies this subset as a
unique MDSC population (ring cells) distinct from TAM
or MO-MDSC and more akin to PMN-MDSC. On the
other hand, these data cannot rule out the possibility
that iNOS™ subset include the precursors of inflamma-
tory M1 type classical macrophages or DCs. In vitro
manipulation studies to differentiate these cells into
mature myeloid cells are currently ongoing.

Conclusion

Together our data provide novel insights for iNOS
expressing MDSC and suggest iNOS as a marker to
identify a particular subset. The greatest barrier to fully
describing IMC between disease models and between
species lies in the lack of appropriate phenotypic mar-
kers, and mechanistic studies. Classification of MDSC
subsets based on unique functional markers may sim-
plify their analysis and lead to the design of functionally-
targeted superior immunotherapeutic strategies. In this
study, iNOS expression was linked to homogenously
distributed ring cells with a particular phenotype and
immune suppressive function. To our knowledge, this
is the first report to reveal the functional identity of
tumor-infiltrating ring cells. Since the absence of a Gr-1
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homolog in humans has made the identification of MDSC
much more challenging, the use of INOS as a functional
marker of MDSC may also have clinical importance.

Additional file

Additional file 1: Figure 1. Panel A. Tumor-infiltrating F4/80+

iINOS+ cells in single-cell suspensions from three other distinct tumor
models are shown. Panel B. Tumor infiltrated single viable cells were
identified as CD45+ and 7-AAD-. Next, histogram analysis for iNOS
expression on pre-sort live cells (dashed line) and post-sort cells (bold
line) is shown. All cells are SSChi and F4/80+ . Gray filled in peaks
represent isotype control. Panel C. Sorted iNOS+ cells (black line) were
analyzed for the expression of mature APC markers (CD11c, MHCI,
CXCR4, CD124) and Siglec-F relative to isotype controls (gray filled). Panel
D. INOS+ cells were isolated from the spleen and plated. Supernatants
were collected after 6-12 h and analyzed for nitrite concentration.
Columns, mean of triplicate wells with SD. Experiment was repeated two
times with equivalent results. Panel E. Effect of selective iNOS inhibitor L-
NIL on B16 tumor growth. Every day treatment starting from the day of
tumor cell inoculation and up to 24 days attenuates B16 melanoma
tumor growth.
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