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Abstract 

Cirrhosis represents a significant global health challenge, characterized by high morbidity and mortality rates 
that severely impact human health. Timely and precise prognostic assessments of liver cirrhosis are crucial for improv-
ing patient outcomes and reducing mortality rates as they enable physicians to identify high-risk patients and imple-
ment early interventions. This paper features a thorough literature review on the prognostic assessment of liver 
cirrhosis, aiming to summarize and delineate the present status and constraints associated with the application 
of traditional prognostic tools in clinical settings. Among these tools, the Child–Pugh and Model for End-Stage Liver 
Disease (MELD) scoring systems are predominantly utilized. However, their accuracy varies significantly. These systems 
are generally suitable for broad assessments but lack condition-specific applicability and fail to capture the risks 
associated with dynamic changes in patient conditions. Future research in this field is poised for deep exploration 
into the integration of artificial intelligence (AI) with routine clinical and multi-omics data in patients with cirrhosis. 
The goal is to transition from static, unimodal assessment models to dynamic, multimodal frameworks. Such advance-
ments will not only improve the precision of prognostic tools but also facilitate personalized medicine approaches, 
potentially revolutionizing clinical outcomes.
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Introduction
Cirrhosis refers to the terminal phase of severe func-
tional and structural impairment in the liver, attributable 
to various chronic liver diseases (CLD). This condition 
is pathologically manifested with extensive hepatocellu-
lar necrosis, fibrosis, and inflammations, culminating in 
the substitution of normal hepatic tissue with scar tissue, 
thereby precipitating hepatic dysfunction [1–3]. These 
exhibitions are displayed in Fig. 1. Data from the Global 
Burden of Disease (GBD) study revealed that, in 2019, 
the global prevalence of cirrhosis was approximately 169 
million individuals, accompanied by roughly 1.47 million 
cirrhosis-related fatalities. The significant morbidity and 
mortality rates underscore the urgency of cirrhosis as a 
critical global public health concern [4]. The develop-
ment and refinement of dependable tools for predicting 
the progression and outcomes of cirrhosis remain pivotal 
challenges in clinical research. This study aims to conduct 
a systematic review of the current global status of cirrho-
sis prognosis, the methodologies employed in prognos-
tic evaluations, and recent advancements in prognostic 
approaches for cirrhosis. This work aims to conduct a 
systematic review of the current global status of cirrho-
sis prognosis, the methodologies employed in prognostic 

evaluations, and recent advancements in prognostic 
approaches for cirrhosis. It seeks to offer innovative per-
spectives and methodologies to enhance the early and 
precise prognosis of patients with cirrhosis.

The prognostic status of liver cirrhosis
The etiology of cirrhosis encompasses a diverse array of 
factors, including viral hepatitis forms (predominantly 
hepatitis B and C), chronic alcohol consumption, obe-
sity, non-alcoholic fatty liver disease (NAFLD), autoim-
mune liver disease (ALD), and cholestatic liver diseases 
[5, 6]. The morbidity and mortality rates among cirrhosis 
patients exhibit notable variations based on the under-
lying etiology [4, 7] (Table 1). Globally, hepatitis B virus 
(HBV) and hepatitis C virus (HCV) infections contrib-
ute to over 45% of cirrhosis cases, with an estimated 50% 
of cirrhosis-related deaths attributed to these infections 
[6]. Alcohol consumption leads to a significant rise in 
the incidence of alcoholic cirrhosis from 18.7% to 21.3%, 
resulting in a mortality rate of up to 2.5% for patients 
with alcohol-induced cirrhosis [4, 8, 9]. Moreover, the 
rising prevalence of obesity and type 2 diabetes mellitus 
has promoted the incidence of cirrhosis associated with 
NAFLD from 5.5% to 6.6% [6, 9].

Fig. 1 Progression from healthy liver to cirrhosis and major complications. The diagram illustrates the pathogenesis of liver fibrosis due to factors 
such as viral replication, lipid accumulation and oxidative stress, and further outlines the progression from liver fibrosis to cirrhosis, and highlights 
associated complications
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Cirrhosis is typically categorized into two distinct 
phases, the compensated and decompensated stages, 
each exhibiting substantial divergence in prognosis 
[10, 11]. Within the compensated stage of cirrhosis, the 
median length of survival can reach more than 15 years. 
However, upon transitioning into the decompensated 
stage, the median length of survival shrinks to a mere 
1.5  years, spanning a range of 2 to 4 years [12]. For 
instance, the 5-year survival rate of patients with HBV-
related cirrhosis in the compensated stage ranges from 80 
to 85%, significantly reducing to 14%-35% upon progres-
sion to the decompensated stage [13]. Patients transition-
ing into the decompensated stage often face a spectrum 
of complications, including gastroesophageal variceal 
rupture and hemorrhage, ascites, hepatic encephalopa-
thy (HE), and hepatocellular carcinoma (HCC) [14]. The 
repercussions of each complication on prognosis vary 
and frequently contribute to increased mortality rates 
[11, 15–17]. Acute bleeding stemming from the rup-
ture of gastroesophageal varices corresponds to a mor-
tality rate of 15–20% [18]. Individuals with significant 
ascites (classified as grades 2 or 3) exhibit a mere 30% 
5-year survival rate [10]. Those with refractory ascites 
confront a one-year mortality rate exceeding 20% [19]. 
HCC emerges as the predominant form of liver cancer, 
attributed to a minimum of 780,000 annual deaths, with 
cirrhosis serving as a primary risk factor for its develop-
ment [20–22]. Additionally, HE has sustained persistently 
high mortality rates over the preceding decades [23, 24]. 
A survey revealed that the mortality rate among indi-
viduals with HCC had soared to 1.2% by the conclusion 
of the prior decade. A study pointed out that the median 
survival time of adult patients with cirrhosis and hepatic 
encephalopathy in the United States is only 0.92 years 
[5]. The sharp drop in the survival rate of patients with 
decompensated cirrhosis highlights the need for accurate 
prognostic assessment and early intervention, which is 
crucial to improving long-term survival.

Prognosis assessment of patients with liver cirrho-
sis is a key part of clinical management and relies on a 
series of scoring systems such as the Child–Pugh and 

MELD scores. A deeper understanding of the use and 
limitations of these assessment tools is the key and 
basis for accurately assessing patient prognosis, guid-
ing clinical decision-making, and improving prognosis 
[17, 25–27]. Several reviews have extensively discussed 
research progress in prognostic assessment for cir-
rhosis. For instance, Gülcicegi et  al. described novel 
concepts and viewpoints regarding the definition and 
classification of decompensated cirrhosis, outlined the 
clinical applications of emerging predictive scoring 
systems such as CLIF Consortium Acute Decompen-
sation (CLIF-C AD) and Chronic Liver Failure Acute-
on-Chronic Liver Failure (CLIF-ACLF) scores, Early 
Prediction of Decompensation (EPOD) score, and 
albumin-bilirubin (ALBI) score, and discussed non-
invasive methods for assessing portal hypertension and 
the application of new biomarkers in early identifica-
tion of cirrhotic patients at risk of acute decompensa-
tion [28]. Valainathan et  al. compared the differences 
and similarities between six prognostic scoring sys-
tems for cirrhosis severity and prognosis, including 
Child–Pugh score, Model for End-Stage Liver Disease 
(MELD) score, CLIF-C-AD score for patients in acute 
decompensation stage of cirrhosis, Chronic Liver 
Failure Consortium Acute-on-Chronic Liver Failure 
(Clif-C-ACLF), American Association for Respira-
tory Care (AARC), and North American Consortium 
for the Study of End-Stage Liver Disease (NASCELD)-
ACLF scores proposed by European, Asian, and North 
American societies for more severe patients. They dis-
cussed the validation and limitations of these systems 
and indicated that the predictive value of these systems 
for mortality could still be improved as their Receiver 
Operating Characteristic (ROC) curve areas do not 
exceed 0.8, suggesting that incorporating biomarkers 
reflecting the pathophysiology of acute decompensa-
tion of cirrhosis into scoring systems may help achieve 
this goal [29]. In summary, these review articles have 
discussed the clinical application benefits and limita-
tions of commonly used clinical tools for prognostic 
assessment of cirrhosis, and they have pointed out that 
a new perspective for improving these scoring systems 
is the application of novel biomarkers related to cirrho-
sis. Our work not only discusses the historical develop-
ment, clinical application, and limitations of commonly 
used clinical assessment systems (Child–Pugh score 
and MELD score) for cirrhosis prognosis assessment, 
but also from the perspective of the application of 
advanced technology, elucidates the clinical efficacy of 
newly discovered immunobiochemical markers, micro-
biological markers, microRNA (miRNA) markers and 
ultrasound (US) imaging markers closely related to cir-
rhosis prognosis in recent years. Most importantly, this 

Table 1 The 2019 Global Burden of Disease (GBD) study shows 
mortality from liver cirrhosis

Prevalent cases Deaths mortality rate

Hepatitis B 316689100 331300 0.001046

Hepatitis C 112371500 395000 0.003515

NAFLD 1235652900 134200 0.000109

Alcohol use 14837900 372000 0.025071

Other causes 11409800 239500 0.020991
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review consolidates the literature on the application of 
artificial intelligence (AI) technology in cirrhosis prog-
nosis assessment, indicating another broad area for 
future development in cirrhosis prognosis assessment. 
Refer to Fig.  2 for additional details. The fusion of AI 
and medicine is an inevitable trend in the future. In 
cirrhosis prognosis assessment, future research should 
focus on dynamic data processing and multimodal 

model construction to achieve real-time early warn-
ing assessment of cirrhosis prognosis, promote further 
development of precision medicine, and contribute to 
changing the high mortality rate of cirrhosis.

Fig. 2 Assessment tools, markers, and techniques for cirrhosis prognosis. The figure summarizes a comprehensive overview of the progress 
in research on prognostic assessment tools for cirrhosis. With the rapid evolution of science and technology, the integration of advanced 
high-throughput sequencing, imaging techniques, and (AI) has proven instrumental in identifying in validating new microbial biomarkers 
and miRNA markers, as well as immunobiochemical and imaging markers, which are essential for the prognostic evaluation of cirrhosis. Along 
with these advancements, the prognostic assessment tools for cirrhosis have been continuously refined and updated. The current tools are 
primarily divided into two main categories and three systems based on their applicability to either the stable phase or the decompensated phase 
of cirrhosis. For stable cirrhosis, the Child–Pugh score and MELD score serve as the foundational assessment systems; for decompensated cirrhosis, 
the assessment is mainly based on the CLIF-C Acute-on-Chronic Liver Failure score
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Traditional methods of prognostic assessment 
in cirrhosis
Traditional tools for prognostic assessment in cirrhosis 
can be divided into two categories: those targeting the 
early or stable stage, and those targeting the decompen-
sated stage. For early or stable cirrhosis, commonly used 
traditional scoring systems include the Child–Pugh scor-
ing system and the MELD and its enhanced versions. In 
the decompensated stage, prognostic assessment sys-
tems for cirrhosis are based on the machine-learning-
enhanced version of the Clif-C-ACLF scoring system.

Traditional scoring systems for early or stable cirrhosis
The child–pugh scoring system: an empirical clinical 
assessment
History of  the  child–pugh scoring system In 1964, sur-
geons Child and Turcotte introduced the Child-Turcotte 
system, an index designed to evaluate liver function 
among cirrhosis patients [30]. Subsequently, Pugh and 
collaborators revamped the Child-Turcotte classification 
in 1973, refining it based on clinical insights. The revised 
system encompassed five pivotal indicators: albumin lev-
els, coagulation status, bilirubin levels, presence of ascites, 
and HE. Each indicator is assigned a score corresponding 
to its severity, with liver function categorized into three 
grades based on the total score: A (5–6), B (7–9), and C 
(10–15), denoting good, moderate, and severely impaired 
liver function, respectively. This classification hinges on 
the cumulative point allocation for each indicator, reflect-
ing the comprehensive evaluation of liver function in cir-
rhosis patients [31].

Limitations of  the  child–pugh scoring system The 
Child–Pugh scoring system has traditionally served as a 
pivotal tool in evaluating disease severity among cirrho-
sis patients, playing a significant role in survival assess-
ment and selection of therapeutic approaches [31–35]. 
However, the subjective nature of ascites and HE grading 
within the Child–Pugh scoring system, along with the uti-
lization of cutoff points for the albumin level, International 
Normalized Ratio (INR), and bilirubin level calculations, 
raised concerns regarding its grading accuracy and dis-
criminatory capacity in certain studies [32]. Additionally, 
the Child–Pugh scoring system’s prognostic precision is 
challenged by its inherent limitations, such as the failure 
to incorporate renal function, the inability to distinguish 
between cirrhosis etiologies, considerable individual vari-
ability across patients within the ABC grading levels, and 
the lack of a comprehensive evaluation of hepatic meta-
bolic function [36]. Consequently, numerous research 
teams sought to further refine prognostic assessments for 
cirrhosis patients following the Child–Pugh classification, 

aiming to enhance the precision and efficacy of prognostic 
evaluations in cirrhosis management [37–40].

Developments of the child–pugh scoring system With the 
advancements of statistical methodologies, researchers 
endeavored to enhance the Child–Pugh scoring system 
by conducting in-depth statistical analyses on extensive 
clinical datasets with the goal to bolster the accuracy of 
prognostic evaluations for patients grappling with cir-
rhosis [41–44]. In 2015, Johnson and colleagues lever-
aged data from 1,313 individuals with HCC to create an 
ALBI scoring model [45]. This model exhibited superior 
predictive capabilities in gauging the prognosis of HCC 
patients compared to the Child–Pugh scoring system, a 
finding corroborated by subsequent investigations [46, 
47]. The Japanese Society of Liver Diseases integrated 
ALBI scoring into their HCC therapeutic protocols [48]. 
Despite these advancements, a follow-up research team 
revealed suboptimal predictive performance in long-term 
prognosis with ALBI, indicating the necessity for contin-
ued refinement in accuracy. In a study conducted by Hira-
oka and colleagues, the modified Child–Pugh prognostic 
accuracy outperformed that of ALBI, emphasizing the 
ongoing quest for enhanced prognostic tools in cirrhosis 
management [49].

The MELD and its improved scoring system: quantitative 
evaluation system
History of  the  MELD scoring system In 2000, Kamath 
and colleagues introduced the MELD scoring system to 
prognosticate the near-term mortality risk in patients 
undergoing transjugular intrahepatic portosystemic 
shunt (TIPS) surgery, predicating on a quantitative evalu-
ation of laboratory parameters [50]. The current version 
of the MELD scoring system comprises three primary 
metrics: creatinine level, total bilirubin level, and the 
INR. A higher score is indicative of increased severity of 
hepatic disease, although the precise methodology of cal-
culations may exhibit variations contingent on regional 
and institutional guidelines within the healthcare sector 
[51]. In subsequent studies conducted by Papatheodor-
idis and Botta et al. the MELD score consistently demon-
strated enhanced accuracy compared to the Child–Pugh 
scoring system in predicting short-term survival rates for 
individuals with cirrhosis [52, 53].

Limitations of  the  MELD scoring system Nevertheless, 
the MELD score is not devoid of limitations. Observa-
tions indicate that cirrhotic patients are afflicted with 
spontaneous bacterial peritonitis (SBP) or bacterial infec-
tions (BA) exhibit a mortality rate higher than that antici-
pated by the MELD score predictions [54]. Additionally, 
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discrepancies arise when associating the low MELD 
scores with a concurrent high mortality rate among cir-
rhotic patients with severe ascites [19]. Some research 
findings even suggested that the predictive accuracy of the 
MELD scoring system falls short when compared to the 
Child–Pugh scoring system in forecasting 3- and 6-month 
mortality rates post-TIPS procedures. Specifically, the 3- 
and 6-month area under the curve (AUC) values were 
reported as 0.706/0.779 and 0.692/0.753, respectively, 
indicating a lesser degree of precision in prognostication 
when employing the MELD scoring system [50].

Developments of  the MELD scoring system In response 
to the predictive limitations of the MELD score in spe-
cific application scenarios, researchers proposed several 
improved versions, such as MELD with Serum Sodium 
(MELD-Na), MELD-XI, integrated MELD (iMELD), and 
MELD3.0 [55–58].

In 2006, Scott W. Bigginsa et al. proposed the MELD-
Na model, which incorporates serum sodium (Na) into 
the MELD score, through a prospective multicenter 
study that demonstrated that the MELD-Na model pro-
vided a more accurate prediction of survival than MELD 
alone [56]. Based on its improved accuracy, the Organ 
Procurement and Transplantation Network (OPTN) 
included it as a prioritization criterion for allocation to 
liver transplantation in 2016 [59]. The European 2020 
study further confirmed the superiority of MELD-Na in 
predicting 90-day mortality with a c-index of 0.847, sig-
nificantly better than conventional MELD [60]. MELD 
is a good predictor of short-term mortality in cirrhosis, 
but when anticoagulation therapy artificially elevates the 
International Normalized Ratio (INR), MELD may over-
estimate risk. To address this issue, in 2006, Douglas M 
constructed the MELD-XI, which includes only two bio-
chemical markers, creatinine and total bilirubin, but sub-
stituting the MELD with the MELD-XI when evaluating 
patients on oral anticoagulant therapy allows for a more 
accurate assessment of risk and a more rational assign-
ment of "highest priority for LT" [57]. In 2018, Wernly 
et al. showed that MELD-XI is equally clinically valuable 
in predicting mortality in patients with severe cirrhosis 
[61]. iMELD, which combines serum sodium and age, 
significantly outperformed the original MELD in predict-
ing 12-month mortality in patients with cirrhosis: the 
AUROC increased by 13.4%. The likelihood ratio statistic 
increased from 23.5 to 48.2, highlighting the accuracy of 
iMELD in predicting mortality [58]. In 2015, in a study 
of cirrhotic patients with acute-on-chronic liver failure 
(ACLF), the iMELD score predicted 28-day mortality in 
ACLF patients better than several other prognostic mod-
els with the highest area under the operating character-
istic curve (AUROC = 0.787) [62]. To further optimize 

the fitting of the MELD score, W. Ray Kim’s team intro-
duced MELD 3.0 in 2021, which added two parameters, 
sex and serum albumin, and revised the weights of each 
parameter to account for the interactions between albu-
min and creatinine and bilirubin and sodium. The results 
of the study showed that MELD 3.0 provided a more 
accurate prediction of mortality than MELDNa, with an 
agreement statistic (AUC) value of 0.869, while incor-
porating and addressing the determinants of waiting list 
outcomes, including gender differences [55].

The availability of these improved versions reflects the 
ongoing drive to improve the predictive accuracy and 
clinical utility of the MELD scoring system. With the 
continued discovery of biomarkers, clinical features and 
genomic information, we expect the MELD Scoring Sys-
tem to be further optimized to provide cirrhotic patients 
with more personalized and precise treatment strategies 
to prolong survival and improve quality of life.

Conventional scoring systems for the decompensated 
stage of cirrhosis
The loss of compensation serves as a primary indicator 
of disease progression in cirrhosis patients. Timely iden-
tification of the transition from compensated cirrhosis 
to decompensated status holds the potential to facilitate 
targeted therapeutic interventions, thereby potentially 
extending life expectancy. Liver failure, a severe com-
plication of decompensated cirrhosis, often represents 
a chronic and progressive process that can precipitate a 
rapid decline in liver function in response to specific trig-
gers. It does not merely delineate acute or chronic liver 
failure but rather embodies an interplay between the two 
conditions. Given the swift and dynamic nature of liver 
failure, prompt and agile assessment and management 
protocols are imperative. Traditional cirrhosis scor-
ing systems, such as the Child–Pugh and MELD scores, 
predominantly focus on evaluating disease severity and 
patient prognosis in chronic cirrhosis cases, thereby 
falling short in fulfilling the exigencies of acute assess-
ments and interventions [63–66]. Hence, the concept of 
ACLF has emerged, accompanied by refined scoring cri-
teria that are specifically designed for assessing cirrhotic 
decompensation [67–70].

For patients experiencing rapid decompensation of cir-
rhosis, Jalan’s team developed and validated the CLIF-C 
AD score based on the CANONIC study database. Age, 
serum sodium levels, leukocyte count, creatinine lev-
els, and INR emerged as the most reliable predictors of 
mortality. In comparison to the Child–Pugh, MELD, and 
MELD-Na scoring systems, the CLIF-C AD score exhib-
ited enhanced accuracy in predicting mortality, as evi-
denced by a superior C-index. The predictive capacity of 
the CLIF-C AD score for 3-month mortality displayed 
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incremental improvements when utilizing data from days 
2, 3–7, and 8–15, resulting in C-index values of 0.72, 0.75, 
and 0.77, respectively [71]. While the CLIF-C AD score 
plays a pivotal role in mortality prediction and progno-
sis enhancement, a considerable proportion of prediction 
errors were observed within the cohort in which it was 
developed (26% for 90-day mortality). These observations 
underscore the ongoing necessity for additional studies 
and tools to refine prognostic prediction in cases of acute 
decompensation in cirrhosis.

For patients facing more severe liver failure, distinct 
scoring systems were introduced by the European, Asian, 
and North American medical communities, known as 
the Clif-C-ACLF, AARC score, and NASCELD-ACLF, 
respectively. The Clif-C-ACLF score represents an ACLF-
specific prognostic tool rooted in the simplified organ 
function assessment system, the Chronic Liver Fail-
ure Consortium Organ Failure (CLIF-C OF) score. This 
score amalgamates age and white blood cell counts to 
formulate a comprehensive prognostic metric. While the 
inclusion of multiple clinical variables and biochemical 
indicators renders the robustness and comprehensiveness 
of Clif-C-ACLF score, the complexity of its calculation 
hampers its widespread clinical utility [72]. Subsequently, 
the relatively efficient AARC score was developed, incor-
porating predictors such as total bilirubin, HE, INR, 
serum creatinine, and serum lactate [73]. Furthermore, 
the NACSELD introduced the NACSELD-ACLF score, 
a practical bedside tool for predicting short-term sur-
vival in individuals with decompensated cirrhosis, draw-
ing insights from a multicenter dataset [74]. While each 
of these scoring systems has made distinct contributions 
to the prognostic assessment of ACLF patients, they are 
limited in specific contexts of application. Many studies 
are constrained to limited sample sizes, highlighting the 
imperative for large-scale, multicenter trials to further 
elucidate the efficacy and applicability of these scoring 
systems [75–77].

The management of the decompensated stage of liver 
cirrhosis poses significant challenges in both treatment 
and assessment. Early detection of decompensated cir-
rhosis in patients holds promise in guiding physicians 
to implement timely interventions aimed at slowing dis-
ease progression, reducing complications, extending 
the length of survival, and enhancing patients quality of 
life [7, 78, 79]. Thus, there is an urgent demand for the 
development of predictive assessment models for decom-
pensated cirrhosis. In 2022, Annika R. P. Schneider and 
colleagues identified key predictors designed an innova-
tive early prognostic scoring system of clinical decom-
pensation, called the EPOD score. The scoring metrics, 
incorporating platelet count, albumin levels, and biliru-
bin concentration, were developed with Cox regression 

analysis. The EPOD score demonstrated superior predic-
tive performance compared to the established MELD and 
Child–Pugh scores in forecasting decompensation. Nota-
bly, the EPOD score exhibited the capability to predict 
the 3-year probability of decompensation, illustrating its 
potential as a valuable tool for early prognostication in 
cirrhosis management [80].

Limitations of prognostic assessment tools for liver 
cirrhosis and research perspectives
The Child–Pugh and MELD scoring systems are widely 
employed for prognostic evaluation in liver cirrhosis, 
encompassing four key biochemical markers, albumin 
level, INR, serum bilirubin level, and creatinine level, 
and two clinical diagnostics, ascites, and HE [31, 51]. 
Specific applications are shown in Table  2. According 
to extensive practical experience at home and abroad, 
the Child–Pugh and MELD scoring systems have limi-
tations in terms of accuracy and application scenarios 
when determining the prognosis of liver cirrhosis [19, 
44, 45, 50, 54, 81]. In instances of decompensated cir-
rhosis characterized by significant liver function impair-
ment and numerous complications, the prognostication 
process becomes markedly more intricate compared to 
chronic cirrhosis. Consequently, a more comprehensive 
consideration of severe biochemical metrics and clini-
cal indices becomes imperative for accurate prognos-
tic assessments in decompensated cirrhosis. Both the 
EPOD score, the CLIF-C AD score, and a number of 
scores related to patients with ACLF have limitations in 
practical clinical application. First, the calculation pro-
cess of these scoring systems is relatively complex and 
involves multiple parameters. For example, the MELD 
score includes indicators such as serum bilirubin, INR, 
and serum creatinine. This complexity can make it dif-
ficult to quickly obtain a score without calculation tools 
or software [82, 83]. Second, these scoring systems have 
limited applicability. For example, the MELD score was 
originally developed to predict short-term survival in 
liver transplant candidates and may not be appropriate 
for assessing long-term prognosis in patients with non-
transplantable cirrhosis [84]. Another example is the 
APASL AARC score, which may not be fully validated for 
use in non-Asian populations [85]. Patients’ conditions 
are dynamic, and some scoring systems are more time-
dependent, such as the I-ACLF scoring system proposed 
by NACSELD, which emphasizes the appearance of acute 
liver injury within a short period of time (e.g., within 
4 weeks) [86]. This means that patients may require fre-
quent assessments to capture changes in their condition, 
which may be impractical in resource-limited settings. 
Although these scoring systems are designed to improve 
the accuracy of prognostic assessment, they may not fully 
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capture individual differences and complex clinical situ-
ations, limiting the improvement in predictive accuracy 
and expansion of their use [87]. Future research initiatives 
should prioritize further model validation and optimiza-
tion to enhance generalizability and accuracy in multi-
center and large-sample clinical validations. Moreover, 
efforts to amalgamate the strengths of diverse scoring 
systems to formulate a more comprehensive and precise 
prognostic metric are essential. Leveraging advanced 
technologies like machine learning offers opportunities 
to explore additional biomarkers and predictors, which 
could potentially enhance the predictive efficacy and sta-
bility of scoring systems. In response to these challenges, 
the research team is dedicated to identifying biomarkers 
associated with cirrhosis prognosis, advancing the devel-
opment and validation of more refined cirrhosis prognos-
tic models. Emerging evidence suggests the association 
of immunobiochemical markers, microorganisms, genes, 
miRNAs, and US imaging data with cirrhosis prognosis 
[88–92].

Application of new biochemical markers 
in the prognosis assessment of liver cirrhosis
In recent years, in addition to the markers used in the 
Child–Pugh and MELD scoring systems, an increasing 
number of new biomarkers closely related to the progno-
sis of liver cirrhosis have been discovered [93–95].

Biochemical marker
Markers such as blood ammonia, antithrombin III, serum 
CysC and uNAG have been shown in various studies to 
be independent predictors of death in cirrhosis [96–98]. 
In the MELD-Na scoring system, blood sodium is a key 
indicator, but Sumarsono’s research suggests that blood 
chloride may be a more accurate prognostic indica-
tor [99]. In the event of acute exacerbation of cirrhosis, 
studies have found that serum total cortisol (t-Cort) and 
effective albumin concentration (eAlb) are independent 
predictors of decompensation progression and death in 
patients with ACLF [100, 101]. The above markers can be 
measured in a general clinical laboratory, which has the 
advantages of timely detection and low cost, and is con-
ducive to large-scale verification.

The application of molecular biology techniques has 
brought more new biomarkers for the study of the prog-
nosis of liver cirrhosis. Gambino’s research revealed the 
utility of urinary neutrophil gelatinase-associated lipoca-
lin (uNGAL) as a reliable biomarker of acute kidney 
injury (AKI) in cirrhosis, indicating significant prognos-
tic value when quantified through enzyme-linked immu-
nosorbent assessment [102]. Additionally, investigations 
demonstrated the prognostic significance of Liver-type 
Fatty Acid Binding Protein (L-FABP) in urine for patients 

with decompensated cirrhosis, reflecting its prognos-
tic utility [103]. The Zanetto’s team discovered the link 
between Presepsin (PSP) levels and the development of 
acute decompensated cirrhosis, providing insights into 
disease progression [104]. Zhang et al. demonstrated key 
associations between numerous plasma metabolites and 
90-day mortality in ACLF cases, as well as pre-ACLF sce-
narios in non-ACLF individuals [105]. The combination 
of high-throughput proteomics and machine learning 
accelerates the efficiency of protein extraction and analy-
sis [106]. Based on this, the Richards team identified 12 
protein markers associated with the hepatic venous pres-
sure gradient (HVPG) response in a single step [107]. 
These findings not only advance our understanding of the 
mechanism of cirrhosis, but also lay the research foun-
dation for improving the accuracy of prognostic assess-
ment. The above studies are summarized in Table 3.

Prognostic modeling based on novel markers
In the field of cirrhosis treatment, predicting a patient’s 
survival and mortality rate is the key to achieving pre-
cision medicine. In recent years, with the discovery of 
biomarkers and advances in computer technology, a 
variety of prognostic scoring models have been pro-
posed to improve the accuracy of cirrhosis prognosis 
assessment.Two prognostic models were developed 
using metabolites 4-hydroxy-3-methoxyphenyl diol 
sulfate, hexanoyl carnitine, and D-galacturonic acid, 
which demonstrated robust accuracy in forecasting 
mortality across different time intervals following the 
admission of patients with decompensated cirrho-
sis. Importantly, these models surpassed the predic-
tive capabilities of the MELD-Na scoring system in 
cases of acutely exacerbated chronic liver failure [108]. 
The research conducted by Cagnin et  al. verified the 
high predicative accuracy of their model for mortal-
ity at specified intervals following hospital admission 
in patients with cirrhotic HCC [109]. Meanwhile, Gao 
et  al. improved prognostic models for patients with 
cirrhosis of elevated lactate levels [110]. Leveraging 
high-throughput proteomics and machine learning 
techniques, Niu’s team succeeded in identifying 5,515 
proteins and evaluating 22 machine learning models. 
This rigorous evaluation process led to the selection 
of an optimal model exhibiting exceptional predictive 
capabilities, as evidenced by AUC scores of 0.92 for 
liver fibrosis in cases of alcohol-related liver disease, 
0.87 for mild inflammation, and 0.7982 for mortality 
[111]. These statistical models designed for specific 
cirrhosis scenarios, particularly in decompensated 
stages and conditions marked by hyperlactatemia, 
highlights the promising future for establishing per-
sonalized prognostic models for patients at various 
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stages of disease progression. Advancements in molec-
ular biology and the application of sophisticated sta-
tistical methodologies are instrumental in refining 
prognostic assessments for cirrhosis patients, ulti-
mately customizing treatment plans and improving 
outcomes on an individual level.

Application of microbial markers in the prognosis 
assessment of liver cirrhosis
In recent years, there has been a growing focus on exam-
ining the relationship between microorganisms and cir-
rhosis, particularly exploring the impacts of BAs and the 
gut-hepatic axis. [91–93]

Microbial markers
Studies have exhibited the notable increase in Enterobac-
teriaceae (potentially pathogenic bacteria) abundance in 
cirrhosis patients compared to the general population 
[112, 113]. Moreover, gut microbial dysbiosis in cirrhotic 
patients, primarily characterized by bacterial transloca-
tion due to small intestinal bacterial overgrowth (SIBO), 
emerges as a critical factor in cirrhosis complications 
and serves as an independent predictor of mortality in 
cirrhosis [114, 115]. Apart from intestinal bacteria, the 
involvement of other microbiomes has also demon-
strated relevance in cirrhosis prognosis. For instance, 
Kim et  al. established a correlation between multi-drug 
resistant (MDR) colonization or infection and decreased 
graft-free survival in cirrhotic patients. This association 
is particularly pronounced among critically ill cirrhotic 

Table 3 New biochemical markers in the prognosis assessment of liver cirrhosis

ROC receiver operating characteristic, AT antithrombin, PVT portal vein thrombosis, CysC serum cystatin C, uNAG urinary N-acetyl-β-D-glucosaminidase, AKI acute 
kidney injury, t-Cort total cortisol, CLD chronic liver disease, eAlb effective albumin concentration, ELISA enzyme-linked immunosorbent assay, uNGAL urinary 
neutrophil gelatinase-associated lipocalin, L-FABP liver-type fatty acid binding protein, PSP presepsin, ACLF acute-on-chronic liver failure, HVPG hepatic venous 
pressure gradient, HCV hepatitis C virus

Biomarker First author, 
references

Study type Sample source Detection method Statistical 
methods

Target population

Plasma AT-III Suda et al. [96] A retrospective 
study

Blood Blood test ROC analysis Cirrhosis with PVT

Serum CysC 
and uNAG

Kim et al. [97] Prospective obser-
vational studies

Blood and urine Blood and urine 
tests

Multivariate analysis Patients with AKI 
in decompensated 
cirrhosis

Blood ammonia Tranah et al. [98] A retrospective 
study

Blood Blood test Random forest 
model

Complications of cir-
rhosis

Blood chloride Sumarsono et al. 
[99]

Retrospective 
cohort study

Blood Blood test Kaplan–Meier analy-
sis and multivariate 
Cox proportional 
risk modeling

Decompensated 
cirrhosis

t-Cort Hartl et al. [101] Prospective obser-
vational studies

Blood Blood test Multivariate Cox 
proportional risk 
model

Advanced CLD

eAlb Baldassarre et al. 
[100]

Observational 
studies

Blood Blood test Kaplan–Meier analy-
sis and multivariate 
Cox proportional 
risk models

Decompensated 
cirrhosis

uNGAL Gambino et al. [102] Prospective obser-
vational studies

Urine ELISA Competitive risk 
proportional risk 
Model

Patients with acute 
AKI in decompen-
sated cirrhosis

L-FABP (Urine) Juanola et al [103] Prospective cohort 
study

Blood and Urine ELISA Multivariate analysis Decompensated 
cirrhosis

PSP Zanetto et al. [104] Prospective study 
cohort study

Blood ELISA Multivariate Cox 
model

Acute decompen-
sated cirrhosis

Metabolite Zhang et al. [105] Prospective study 
cohort study

Blood Liquid chromatog-
raphy-ass spectrom-
etry testing

Traditional statistics
machine learning

ACLF

12 proteins Richards et al. [107] Cohort study Blood High-throughput 
proteomics

Machine learning Predicting response 
to HVPGs in cirrhotic 
patients with HCV
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patients, where MDR colonization or infection correlates 
with a worsened prognosis [116]. Collectively, these stud-
ies evinced the potential of microbial biomarkers as prog-
nostic tools in cirrhosis, paving the way for developing 
therapeutic strategies that target specific microbiota.

Application of gene sequencing technology
As gene sequencing technologies become more acces-
sible, Solé’s team conducted an analysis of the microbial 
population in fecal samples from cirrhotic patients uti-
lizing macro-genomic second-generation sequencing 
(mNGS). Their findings revealed correlations among 
alterations in the gut microbiome, MELD and Child–
Pugh scores, and complications such as HE and infec-
tions, facilitating the prediction of 3-month survival 
in patients with liver cirrhosis [91]. Concurrently, Li 
et  al. employed mNGS to detect non-hepatitis virus in 
the plasma of patients during the acute decompensated 
phase of cirrhosis [117]. In 2023, Jinato et al. used the MO 
BIO PowerFecal DNA Isolation Kit (Qiagen) to extract 
genomic DNA from fecal samples of patients with cirrho-
sis and performed metagenomic sequencing. The results 
showed that the relative abundance of bacteriophages 
associated with Streptococcus, Bacteroides and Lactoba-
cillus was higher, which was associated with the develop-
ment of cognitive dysfunction in patients. These findings 
may help explore bacteriophages as a treatment option 
that affects MHE in liver cirrhosis [118]. By accurately 
capturing the subtle changes in the interaction between 
the microbial community and the host, the application of 
genetic sequencing technology in microbial analysis and 
research has provided new biomarkers and assessment 
methods for the prognosis of liver cirrhosis, significantly 
improving the accuracy of prognostic judgments and the 
practicality of clinical practice.

MiRNA markers in the prognosis of liver cirrhosis
Exosomal miRNAs as emerging biomarkers have shown 
significant potential for use in cancers such as breast 
cancer, rectal cancer and lung cancer. As research on 
exosomes deepens, more evidence is emerging to support 
their use in the prognostic assessment of liver cirrhosis 
[119–122]. Exosomes are nanoscale vesicles secreted by 
cells that can carry multiple biologically active molecules, 
including proteins, miRNAs and lipids [123–126]. These 
components play an important role in fibrosis, inflamma-
tory response or apoptosis of liver cells [127–133].

MiRNA markers
Rodrigues et  al. found that specific miRNAs, such as 
hsa-miR-21-5p, are key inducers of progression from 
simple steatosis to non-alcoholic steatohepatitis (NASH) 
and NASH-related hepatocellular carcinoma in the liver 

[134]. In addition, miR-218-5p and miR-301a-3p play 
important roles in the process of liver fibrosis [135, 136], 
while exosomal miR-21 and miR-1247-3p also play key 
roles in the progression of cirrhosis-associated hepa-
tocellular carcinoma (HCC) [137, 138]. Animal models 
can recapitulate various aspects of human pathogenesis, 
thereby advancing our understanding of the pathogenesis 
and progression of cirrhosis. However, no single model 
can encompass all clinical aspects of human cirrhosis, 
and each model has its own specific characteristics in 
terms of the nature of pathological appearance [134, 139], 
the geographic distribution of fibrosis, and its evolution 
[135, 136]. Such limitations make the complementary use 
of patient-derived miRNA research an inevitable trend 
for future research [137, 138].

In experiments on tissue samples, Amaral et al. found 
that the levels of miR-34a, miR-122 and miR-885-5p 
were significantly higher in patients with cirrhosis, 
while miR-21 was associated with patient survival [139]. 
Other studies have shown that miR-181b-5p can pre-
dict the occurrence of ascites [140], that the expres-
sion of miR-1290 and miR-1825 is positively correlated 
with the tumor size and number of HCC [88], and that 
even exosomal miR-122 can play a suppressive role in 
the proliferation of HCC. These miRNA changes reflect 
the pathological state of the liver, especially in patients 
with cirrhosis, and are closely related to the severity of 
the disease [141]. Exosomal miRNAs can be used not 
only as biomarkers to monitor disease progression, but 
also as indicators to evaluate the efficacy of treatment. 
In addition, the non-invasive collection characteristics 
of exosomes make them ideal biomarkers that can pro-
vide information on the health status of the liver without 
performing liver biopsy [142, 143], demonstrating their 
important clinical application value in the prognostic 
assessment of cirrhosis. Future research should further 
explore the specific mechanism and clinical translation 
potential to provide more effective prognostic assess-
ment strategies for patients with cirrhosis (Refer to 
Table 4 for additional details on microbiological markers 
and miRNA markers).

Application of high‑throughput qPCR technology
The application of high-throughput quantitative poly-
merase chain reaction (qPCR) technology has signifi-
cantly expanded the scope and efficiency of analysis, 
which could be used as a valuable tool in the study 
of liver cirrhosis prognosis. Utilizing this technology, 
researchers have identified various miRNAs, includ-
ing miR-21, miR-26, miR-376a, miR-146a, and miR-191, 
as indicators of the severity of liver disease and patient 
prognoses [144, 145]. These findings are demonstrated in 
two distinct studies examining patients at different stages 
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of cirrhosis. Cisilotto et  al. investigated the assessment 
of circulating miRNAs in ACLF in patients with decom-
pensated cirrhosis with or without ACLF and found sig-
nificant dysregulation of miR-25-3p and miR-223-3p 
[145]; however, these results were not confirmed in the 
study by Blaya et al [144]. Blaya’s study was dedicated to 
the identification of circulating miRNAs associated with 
the progression of cirrhosis and chronic-on-acute liver 
failure (ACLF). The results of unsupervised clustering 
and principal component analysis showed that the main 
difference in miRNA expression occurred in the decom-
pensated stage, with miR-21, miR-26a and miR-376a 
being the most dysregulated and associated with multi-
ple organ failure, which can be used to predict whether 
patients have ACLF [144]. The discrepancy between the 
results of these two studies may be due to a combination 
of factors such as study design, sample differences, com-
plexity of biological and clinical factors, limitations in 

data analysis and interpretation, and experimental error 
and variability. Further large-scale, multicenter, standard-
ized studies are needed to more accurately evaluate the 
role of these miRNAs in liver disease. Additionally, the 
Huang’s team analyzed hepatic RNA transcript high-
throughput sequencing data of liver Research and Devel-
opment (RND) transcripts. Employing deep residual 
neural network technology, they successfully identified 
nine crucial immune signals associated with the HBV, 
offering unprecedent insights into the mechanisms of 
HBV-related disease [146].

The modulation of the expression of these miRNAs, 
which serves as biomarkers for disease progression, rep-
resents a promising therapeutic strategy to mitigate or 
potentially reverse the pathological progression of cir-
rhosis. This approach assists clinicians to monitor disease 
progression and treatment effectiveness, ultimately con-
tributing to an improved prognosis for patients.

Table 4 Comprehensive Analysis of Microbiological and miRNA Markers in Liver Cirrhosis Prognostic Assessment

SIBO small intestinal bacterial overgrowth, mNGS macro-genomic second-generation sequencing, MDR Multidrug-resistant, NHV Non-hepatotropic virus, NAFLD 
non-alcoholic fatty liver disease, HBV-ACLF hepatitis B virus-associated acute-on-chronic liver failure, HCC hepatocellular carcinoma, CLD chronic liver disease, qPCR 
quantitative polymerase chain reaction

First author, 
references

Study type Research object Brochure Detection method Microbial marker

Efremova et al. [114] Prospective cohort 
study

Cirrhosis patients Gut microbiota Quantitative culture SIBO

Kim et al. [116] Observational cohort 
study

Multidrug-resistant 
microorganisms

MDR microorganisms Sample screening MDR

Solé et al. [98] Prospective cohort 
study

Gut Microbiome Gut microbiome genes mNGS Intestinal flora

Li et al. [117] Observational cohort 
study

NHV Genome fragments 
of circulating microor-
ganisms

mNGS Non-Hepatomegaly

Jinato et al. [118] Prospective cohort 
study

Gut Virome Stool metagenomics 
with virome and bac-
teriome

mNGS Phage

Rodrigues et al. [134] Animal studies 
and clinical trials

Mouse (NAFLD) Blood and liver tissue qPCR Hsa-miR-21-5p

Zhang et al. [135] Animal and cell experi-
ments

Mouse (HBV-ACLF) Liver tissue qPCR miR-218-5p

Chen et al. [136] Animal and cell experi-
ments

Liver fibrosis mouse Liver tissue qPCR miR-301a-3p

Cao et al. [137] Cell experiments HCC mice Liver tissue qPCR miR-21

Fang et al. [215] Animal experiments HCC mice Liver tissue qPCR miR-1247-3p

Amaral et al. [139] Cross-sectional study Stable cirrhosis patients Blood RT-qPCR miR-34a
miR-122
miR-885-5p
miR-21

Garcia de Paredes et al. 
[140]

Prospective Cohort 
Study

Compensated cirrhosis 
patients

Blood RT-qPCR miR-181b-5p

Hassan et al. [88] Cross-sectional study Patients with viral 
hepatitis-related CLD

Blood RT-qPCR
Flow cytometry analysis

CD133/EpCAM
miR-1290
miR-1825

Basu et al. [141] Cell experiments Human hepatoma cells HCC cell lines HepG2 
and Huh7

RT-qPCR miR-122 inhibits 
proliferation of HCC 
cells
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Application of US imaging markers 
in the prognostic assessment of cirrhotic patients
Ultrasonography, which mainly encompassing abdominal 
US, Computed Tomography (CT) and Magnetic Reso-
nance Imaging (MRI) techniques, has gradually become 
an intrinsic component in the prognostic assessment of 
cirrhosis [147–149].

US/CT testing evaluation
In the initial diagnosis of decompensated cirrhosis, both 
US and CT exhibited high accuracy, achieving diagnos-
tic sensitivities of 0.71 and 0.74, and specificities of 0.94 
and 0.93 [150], respectively. Extensive investigation has 
explored the use of US or CT imaging to assess liver stiff-
ness, steatosis, and muscle loss in patients with cirrhosis, 
providing valuable references for monitoring cirrhosis 
progression and prognosis [151–156]. However, the diag-
nostic efficacy of US and CT for compensated cirrhosis, 
particularly in patients classified under Child–Pugh Class 
A, remains suboptimal. The sensitivities recorded for US 
and CT in such cases dropped to 0.62 and 0.60, respec-
tively [150]. This diagnostic limitation can impede timely 
interventions in the early stages of compensated cirrho-
sis, adversely affecting disease progression and prognosis. 
Considering that cirrhosis typically progresses gradu-
ally from a compensated to a decompensated stage, with 
patients in the latter often requiring repeated hospitaliza-
tions and facing increased mortality risks, early diagnosis 
during the compensated stage is critical [5, 17, 157].

MRI testing evaluation
In the past years, advancements in MRI techniques have 
shown substantial benefits for early diagnosis and prog-
nostic assessment of liver disease [90, 158]. A multicenter 
study conducted in the United States demonstrated that 
Magnetic Resonance Elastography (MRE)-based liver 
stiffness measurement (LSM) could effectively predict 
the future progression of both compensated and decom-
pensated phases of CLD [159]. Similarly, research by 
Park, Loomba, Noureddin, and Gidener, among others, 
corroborated the effectiveness of MRI in the early assess-
ment of patients with NAFLD [160–163]. In the context 
of decompensated cirrhosis, retrospective studies have 
illustrated MRI’s superiority in detecting HCC at earlier 
stages compared to US. This capacity could potentially 
facilitate more timely therapeutic interventions, leading 
to improved survival outcomes and reduced disease pro-
gression [90].

Applications of AI
The application of artificial intelligence (AI) has brought 
about a profound change in the prognostic assessment 
of liver cirrhosis. The introduction of AI technology, 

especially deep learning in image recognition and big 
data analysis, has shown great potential in improving the 
diagnostic accuracy and efficiency of prognostic assess-
ment [164]. By automating the analysis of imaging data, 
AI has accelerated the diagnostic process, improved the 
consistency of results, and provided clinicians with a 
more reliable tool for prognostic assessment.

Deep convolutional neural networks (DCNNs), one 
of the most commonly used deep learning methods for 
cirrhosis prognosis, consist of multiple layers, includ-
ing convolutional layers, activation functions (such 
as ReLU), pooling layers, and fully connected layers. 
They can process image data by simulating the opera-
tion of the human visual system, automatically extract 
image features, and provide technical support for cir-
rhosis prognosis assessment from an imaging per-
spective. For example, the assessment of muscle mass 
plays a central role in predicting the clinical outcome 
of cirrhosis patients, and the application of DCNN 
makes it possible to automatically extract muscle size 
from CT scans. Using the manually delineated psoas 
major muscle as the "truth" based on a University of 
Michigan reference analysis morphological cohort of 
5,268 patients [165], Wang combined deep convolu-
tional neural networks with CT scanning technology to 
achieve automated measurement of psoas major muscle 
mass. This method not only has excellent spatial over-
lap with manual measurements, but also significantly 
improves efficiency and consistency, providing a new 
prognostic assessment tool for clinical use. The auto-
matically measured psoas muscle size has been shown 
to predict mortality in patients with cirrhosis. In 2017, 
Koichiro Yasaka et  al. used a deep convolutional neu-
ral network (DCNN) model to analyze gadoxetic acid-
enhanced hepatobiliary phase MR images, accurately 
identifying liver fibrosis stages and providing a new 
perspective for non-invasive assessment of liver cirrho-
sis [166]. In 2020, Yanna Liu and her team developed 
an intelligent model using a deep convolutional neural 
network to automatically detect clinically significant 
portal hypertension (CSPH) in patients with cirrhosis 
by analyzing 10,014 liver images and 899 spleen images 
from 679 participants who underwent CT analysis and 
45,554 images from 271 participants who underwent 
MR analysis. The model demonstrated a high AUC of 
0.940 in an MR image-based test, a result that not only 
demonstrates the potential of DCNNs for non-invasive 
detection of CSPH, but also highlights its importance 
in improving the speed and accuracy of diagnosis. 
However, the general applicability of this study is lim-
ited due to the invasive nature and cost of HVPG meas-
urements, as well as the difficulty of performing them 
in early stage patients. Future studies need to validate 
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these models in a wider range of patient populations to 
ensure their effectiveness in different clinical settings 
[167]. Qian Yu et  al. developed an automatic hepatic 
venous pressure gradient (HVPG) quantitative esti-
mation model based on patients’ CT images, which 
achieved non-invasive grading of hepatic venous pres-
sure gradient in patients with cirrhosis and portal pres-
sure gradient in patients with liver cirrhosis and portal 
hypertension. Its AUC exceeds 0.80, which is better 
than other non-invasive tools, providing an effective 
non-invasive HVPG primary prevention method for 
patients who cannot undergo transjugular HVPG 
measurements. However, the study had a certain degree 
of patient selection bias, and follow-up data were not 
collected for the patients in the study. In the future, 
non-portal hypertensive cirrhosis patients need to be 
included to update the model [168]. The application 
of deep learning in cirrhosis prognosis assessment has 
demonstrated its powerful capabilities in image pro-
cessing and feature extraction, providing clinicians with 
more accurate and efficient diagnostic tools.

With the continuous advancement of technology and 
the accumulation of clinical data, artificial intelligence 
is expected to play a more important role in the prog-
nostic assessment of cirrhosis. Future research requires 
larger sample sizes and well-defined model develop-
ment, as well as continuous optimization and validation 

of existing technologies, to ensure the clinical application 
of artificial intelligence technology and further promote 
the application of artificial intelligence in the field of liver 
disease treatment to provide patients with more accurate 
diagnosis and treatment. Details of these studies are pre-
sented in Table 5 Furthermore, a number of open-source 
datasets and models relevant to liver disease research are 
currently available online, as detailed in Table 6 providing 
essential support for ongoing studies.

Future research directions in the prognostic 
assessment of liver cirrhosis
Cirrhosis refers to the terminal phase of chronic liver 
damage, with its pathological progression influenced by 
a multitude of factors including primary diseases, patient 
lifestyle, and genetic predispositions. These factors 
strongly complicate the accurate assessment of progno-
sis in patients with cirrhosis. Although generalized indi-
cators such as the Child–Pugh score and MELD score 
are commonly used to evaluate the prognosis of these 
patients, they mainly reflect risks common to the broader 
patient population rather than specific risks pertaining 
to individual patients [36, 169–171]. Moreover, current 
biomarkers fall short in precisely forecasting complica-
tions or acute deteriorations. As cirrhosis progresses, the 
liver progressively loses functionality, leading to serious 
complications in the decompensated stage, such as portal 

Table 5 US imaging techniques in patients with liver disease

UC ulcerative colitis, CT computed tomography, ROC receiver operating characteristic, HE hepatic encephalopathy, NAFLD, non-alcoholic fatty liver disease, MRE 
magnetic resonance elastography, CLD chronic liver disease, MRI magnetic resonance imaging, HCC hepatocellular carcinoma, CNN convolutional neural network, 3D 
FCN 3-dimensional fully convolutional network, HVPG hepatic venous pressure gradient, DCNN deep convolutional neural network

First author, references Image source Statistical methods Application scenario

Hetland et al. [150] UC/ CT ROC analysis Diagnosis of decompensated cirrhosis

Bhanji et al. [152] CT Cox regression model Prediction of HE

Kang et al. [153] CT Cox regression model Prediction of death in patients with compensated and early 
decompensated cirrhosis

Engelmann et al. [154] CT Cox regression Prediction of the occurrence of cirrhosis-related complications 
and mortality

Kim et al. [156] CT Logistic regression NAFLD fibrosis risk assessment

Gidener et al. [159] MRE Cox regression analysis Prediction of progression of CLD to cirrhosis

Gidener et al. [160] MRE Cox regression analysis Prediction of progression to compensated and decompensated 
cirrhosis in NAFLD

Park et al. [161] MRE ROC analysis NAFLD liver fibrosis recognition

Loomba et al. [162] MRE ROC analysis NAFLD liver fibrosis recognition

Noureddin et al. [163] MRI Logistic regression NAFLD liver fibrosis recognition

Yu et al. [90] MRI Inverse probability weighting 
and propensity score matching 
analysis

Diagnosis of cirrhosis and HCC

Wang et al. [165] CT Deep CNN model Muscle division

Liu et al. [167] CT MRI Deep CNN model Recognition of portal hypertension

Yu et al. [168] CT 3D FCN Model HVPG classification

Yasaka et al. [166] MRI DCNN model Liver fibrosis staging
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Table 6 List of open-source datasets and open-source models

Dataset name Type Brief introduction Dataset address

Liver Tumor Segmentation (LiTS) chal-
lenge

Open-source dataset This report presents the LiTS Bench-
mark. In collaboration with seven 
hospitals and research institutions, 75 
liver and LiTS algorithms were trained 
on 131 CT volumes, and then tested 
on 70 unknown test images. The 
results showed that no single algo-
rithm was the best for all tasks. LiTS 
remains an active research benchmark 
and resource, providing data and online 
evaluations

https:// compe titio ns. codal ab. org/
competitions/17094

Indian Liver Patient Dataset (ILPD) Open-source dataset A hybrid extreme gradient boost-
ing model was used to predict liver 
disease for early detection and risk 
reduction. The dataset included 583 
Indian patients, and the results showed 
that the new model is more accurate 
than traditional methods. This study 
demonstrates the potential of machine 
learning in healthcare, especially in dis-
ease predict

https:// www. kaggle. com/ datas ets/ uciml/
indian-liver-patient-records

TCGA Liver Hepatocellular Carcinoma 
(LIHC) study

Open-source dataset Hepatocellular carcinoma biological 
datasets, including genomics, transcrip-
tomics, proteomics, and clinical data, 
with experimental strategies includ-
ing methylation arrays, genotyping 
arrays, and tissue microarrays

https:// portal. gdc. cancer. gov/ proje cts/
TCGA-LIHC

Gene Expression Omnibus (GEO) Open-source dataset GEO is a public gene expression 
database storing a large amount 
of high-throughput gene expression 
data and other forms of microarray data 
designed to provide scientists worldwide 
with easily searchable and downloada-
ble experiments and datasets to support 
biomedical research

https:// www. ncbi. nlm. nih. gov/ geo/

The Cancer Genome Atlas (TCGA) Open-source dataset TCGA is a large cancer genomics 
research program designed to advance 
the understanding of cancer biology 
by providing genome sequencing, 
transcriptome sequencing, epigenetic 
data, and proteomics data for a variety 
of cancer samples

https:// portal. gdc. cancer. gov/

Radiomics for Liver Disease Analysis Open-source model This is an open-source Python pack-
age for extracting radiomic features 
from medical imaging. Through this 
package, we aim to establish a reference 
standard for radiomic analysis and pro-
vide a tested and maintained open-
source platform for simple and repro-
ducible extraction of radiomic features. 
It is applicable to the image analysis 
of liver cirrhosis

https:// github. com/ AIM- Harva rd/ pyrad 
iomics

Liver Disease Prediction Machine Learn-
ing

Open-source model This is a Liver Disease Machine Learning 
Classification Capstone Project in fulfill-
ment of the Udacity Azure ML Nano-
degree. In this project, you will learn 
to deploy a machine learning model 
from scratch

https:// github. com/ choll ette/ Liver- Disea 
se- Class ifica tion- Azure- ML- Capst one- Proje 
ct

Liver Disease Prediction Open-source model A liver disease prediction using SVM clas-
sifier, Logistic regression and Random 
Forest. The aim was to compare which 
of the classifiers give a better result 
in terms of the accuracy, recall, f1-score 
and precision

https:// github. com/ DPsal mist/ Liver- Diese 
ase- Predi ction

https://competitions.codalab.org/
https://www.kaggle.com/datasets/uciml/
https://portal.gdc.cancer.gov/projects/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://github.com/AIM-Harvard/pyradiomics
https://github.com/AIM-Harvard/pyradiomics
https://github.com/chollette/Liver-Disease-Classification-Azure-ML-Capstone-Project
https://github.com/chollette/Liver-Disease-Classification-Azure-ML-Capstone-Project
https://github.com/chollette/Liver-Disease-Classification-Azure-ML-Capstone-Project
https://github.com/DPsalmist/Liver-Diesease-Prediction
https://github.com/DPsalmist/Liver-Diesease-Prediction
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hypertension, variceal bleeding, and HCC, all severely 
afflicting multiple organ systems. These conditions add 
to patient distress and economic burden and may lead to 
irreversible acute or chronic liver failure, driving the high 
mortality rate associated with liver cirrhosis [172–174].

For some individuals who survive decompensated cir-
rhosis, the complexity and severity of the disease require 
continuous medical interventions, which profoundly 
impact their quality of life and mental health. However, 
liver fibrosis and early stages of cirrhosis are revers-
ible conditions. Timely and accurate assessment of the 
prognosis for patients with cirrhosis and appropriate 

adjustments of therapeutic strategies are vital to improv-
ing patient outcomes and reducing mortality rates [175, 
176]. Consequently, the exploration of new methodolo-
gies and the development of innovative tools for prog-
nostic assessment in cirrhosis are critical areas of focus 
for future liver disease research.

With the evolution of medical technologies, the 
research into the prognostic assessment of liver cirrho-
sis is advancing progressively, transitioning from tradi-
tional clinical scoring systems to innovative biomarkers 
derived from high-throughput technologies in immu-
nology, microbiology, and miRNAs. Consult Fig.  3 for 

Fig. 3 Trends in liver cirrhosis prognostic assessment research: a graphical representation. a presents statistical analysis of annual publication 
volume related to AI application in liver cirrhosis prognostic assessment. It illustrates yearly literature output for all AI algorithms, including shallow 
and deep neural networks. The evolution of AI literature, particularly neural network algorithms, in liver cirrhosis prognostic assessment is described. 
b provides statistics and descriptions of significant milestone articles. It includes a historical overview of prognostic tools, advanced technology 
applications in immunobiochemistry and microbiology, miRNA, and the discovery history of new markers, highlighting evolutionary changes 
in cirrhosis prognostic assessment tools
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additional details. Additionally, the integration of sophis-
ticated imaging techniques and AI for analysis is improv-
ing the precision of these prognostic assessments. These 
cutting-edge technologies and methods not only increase 
the accuracy of cirrhosis prognosis but also enhance cli-
nicians’ understanding of disease progression, with the 
ultimate goal of improving patient outcomes. While the 
deployment of these innovative assessment tools prom-
ises to revolutionize traditional evaluation methods, 
it also presents a series of challenges, especially in the 
context of applying AI to the prognostic evaluation of 
cirrhosis.

From routine clinical and laboratory data research 
to multi‑omics studies
Cirrhosis, as a chronic and progressive liver disease, 
is characterized by the insidious nature of early-stage 
symptoms and the complexity of the involvement of mul-
tiple comorbidities in later stages. Prognosis primarily 
depends on clinical observations, imaging tests, labora-
tory evaluations, and specific assessment tools, which 
encompass a diverse range of data sources and types. 
Clinicians are tasked with synthesizing a vast amount of 
data to make informed diagnostic and therapeutic deci-
sions, facing the challenges of data heterogeneity and 
its dynamic nature [177–179]. Electronic health records 
(EHRs) provide crucial support for the effective integra-
tion and management of such data. However, traditional 
statistical analyses are inadequate in elucidating the intri-
cate interrelations and interactions among numerous 
variables and lack the capacity to handle high-dimen-
sional data, rendering them incapable for the analysis 
of cirrhosis patient data. Furthermore, laboratory and 
clinical data, confined to a single biological level or clini-
cal manifestation, fall short of providing comprehensive 
insights into the molecular mechanisms of cirrhosis, 
restricting the accuracy and comprehensiveness of prog-
nostic assessments. This presents a clear imperative for 
multidimensional biological research in cirrhosis.

The advancements of molecular biology research and 
the application of high-throughput technologies, such 
as mass spectrometry, next-generation sequencing, 
and gene chip technology, have provided access to data 
obtained across various biological dimensions, includ-
ing genomics, transcriptomics, proteomics, and metabo-
lomics. These tools offer new insights into understanding 
the complex interactions and regulatory interrelations 
among different biomolecules within organisms, unveil-
ing the pathophysiological mechanisms of cirrhosis and 
providing a solid research foundation for comprehen-
sively assessing the prognosis of liver cirrhosis [180–182].

Nevertheless, multi-omics data also face signifi-
cant, inherent challenges due to their diversity, high 

dimensionality, large scale, and complexity. The com-
plexity of processing multi-omics data far exceeds that 
of standard laboratory and clinical data, presenting strin-
gent demands and challenges for data processing and 
analytical capacities [183, 184].

AI algorithms, especially machine learning algorithms, 
excel at handling nonlinear relationships and complex 
patterns, enabling them to adeptly capture intricate pat-
terns and correlations whin data effectively. These algo-
rithms are characterized by adaptability and flexibility, 
which allow them to automatically adjust and optimize 
based on the specific features of the data and the com-
plexity of the problem [185, 186]. Consequently, they are 
highly efficient in processing large-scale and high-dimen-
sional data. Thus, in the era of big data and advanced 
analytics, the integration of AI into the medical field, par-
ticularly for the prognostic assessment of liver cirrhosis, 
represents an inevitable development trend.

Mining of potential biomarkers for cirrhosis
Meanwhile, the application of advanced technologies and 
the development of multi-omics research provide power-
ful tools and platforms for mining potential biomarkers 
of liver cirrhosis. The analysis of cirrhosis-related data 
using AI technology helps to deepen the exploration of 
its pathophysiological mechanisms and lays the research 
foundation for the prognostic assessment of cirrhosis. 
For example, various machine learning and deep learn-
ing algorithms provide assistance in identifying microbial 
markers and US imaging picture features associated with 
cirrhosis. Furthermore, genes are essential in determin-
ing an individual’s hereditary characteristics, including 
susceptibility to disease, physical characteristics, and 
even certain behavioral tendencies. Thus, genetic vari-
ants may affect key processes in the liver such as metab-
olism, immunity, and fibrosis. By analyzing the genome 
sequences of patients with cirrhosis, it is possible to 
identify genetic variants associated with the progression 
of cirrhosis [187, 188]. Transcriptomics and proteomics 
studies can analyze alternations of gene expression and 
protein modification status in tissues or blood of cir-
rhotic patients, respectively, which may further reflect 
the pathological changes in liver function [189]. How-
ever, according to our research, there are still relatively 
few relevant applications of AI in the exploration of cir-
rhosis-related biomarkers, and most studies have ignored 
the multi-omics data of cirrhosis. The application of AI 
has the potential to provide more accurate and reliable 
biomarkers for the diagnosis, treatment, and prognostic 
assessment of liver cirrhosis. In the future, researchers 
should further explore and validate the sensitivity and 
specificity of these biomarkers for prognostic assessment 
of cirrhosis. The accuracy of prognostic assessment of 
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cirrhosis is expected to be further improved by combin-
ing new biomarkers and predictive models.

Prediction of mortality in cirrhosis
The prognosis and mortality prediction in patients with 
cirrhosis are crucial for determining optimal timing of 
liver transplantation and other interventions. Traditional 
scoring systems like the Child–Pugh and MELD have 
their predictive limitation due to the inclusion of subjec-
tive metrics, which may not accurately reflect the prog-
nosis of individual patients, posing constraints in clinical 
applications. AI, however, has demonstrated great poten-
tial for enhancing mortality prediction in cirrhotic 
patients [190–193].

For instance, in 2003, Banerjee et  al. utilized an arti-
ficial neural network model to predict the one-year 
mortality rate of patients with cirrhosis, achieving an 
internal validation accuracy of 91%, with sensitivity and 
specificity rates of 90% and 92%, respectively. This model 
significantly outperformed the predictive capabilities 
of traditional logistic regression models and the Child–
Pugh score [194]. Similarly, Cucchetti’s team constructed 
an artificial neural network model based on data from 
251 consecutive cirrhosis patients, which surpassed the 
performance of the MELD score in accurately predict-
ing patients’ risk of death within the next three months. 
This model provided essential guidance for better deci-
sion-making of the prioritization of liver transplanta-
tion candidates, effectively reducing the mortality rate 
of patients in the waiting list [195]. In another innovative 
application, Suzanne et al. employed the Random Forest 
machine learning algorithm to identify 13 macrogenomic 
features in NAFLD that serve as stronger predictors of 
death compared to the MELD model. The application of 
AI provided robust technical support for the analysis of 
complex macrogenomic data, extracting significant mac-
rogenome-derived features by analyzing their complex 
relationships with hepatic decompensation. This method 
offers a new approach for predicting mortality risk in 
NAFLD-associated cirrhosis [196].

These groundbreaking results demonstrate the pow-
erful ability of AI to mine the depth of clinical data and 
improve prediction accuracy. However, it is worth not-
ing that most current AI-driven mortality prediction 
models still rely mainly on routine clinical data, such as 
laboratory test results and clinical manifestations, while 
ignoring multi-omics data [197, 198]. Omics data, includ-
ing genomics, transcriptomics, proteomics, and metabo-
lomics, can provide more comprehensive and in-depth 
biological information and reveal the molecular mecha-
nisms of disease onset and development. For example, 
Suzanne R et al. used a random forest algorithm to screen 
13 key features from metagenomic data of patients with 

non-alcoholic fatty liver disease (NAFLD) [196]. These 
features outperformed the MELD model as predictors of 
death, demonstrating the enormous potential of omics 
data in the prognostic assessment of cirrhosis. Explor-
ing the establishment of a prognostic model for cirrho-
sis mortality based on omics data will be a crucial step 
toward improving prediction accuracy and achieving 
personalized medicine. It is expected to reveal the com-
plex pathophysiological process of liver cirrhosis from 
a broader perspective, and to establish a more compre-
hensive and refined prognostic evaluation system by inte-
grating multi-omics data [165, 197–199]. Although the 
application of omics data has shown great potential, it 
also faces several limitations and challenges. For example, 
technical and procedural differences between different 
laboratories make it difficult to directly integrate data, 
which affects the consistency and reliability of the analy-
sis. The high dimension and complexity of omics data 
analysis makes the process extremely time-consuming, 
requiring the development of more efficient data pre-
processing, dimensionality reduction and pattern recog-
nition techniques. At the same time, privacy and ethical 
considerations are difficult issues that cannot be ignored. 
How to protect patient privacy while using this data in a 
legal and compliant manner has become a pressing issue 
that needs to be addressed. At the same time, most of the 
current mortality prediction models are based on small 
sample size, single-center studies, and the generalizabil-
ity of the models has yet to be verified by further multi-
center, large-scale studies [165, 199].

Prediction of complications related to cirrhosis
The management of cirrhosis, particularly at its terminal 
stages, is complicated with a variety of aggressive com-
plications that can potentially lead to sudden mortality in 
patients.

Predicting mortality is indeed a crucial aspect of under-
standing patient survival and prognosis in the context of 
cirrhosis. The ability to predict the risk of complications 
provides insights into the specific health risks and the 
likely trajectory of disease progression, which is vital for 
early detection and intervention. This proactive approach 
aims to reduce the incidence and severity of complica-
tions, thereby improving the quality of life for patients 
and potentially decreasing mortality rates. However, cir-
rhosis and its associated complications present unique 
challenges for prediction. Each complication has distinct 
characteristics, and accurately assessing the risk associ-
ated with each is essential for effective diagnosis, treat-
ment, and management of cirrhosis patients. Machine 
learning analytics, including support vector machines, 
decision trees, and random forests, are particularly valu-
able in identifying and learning patterns of correlation 
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between patient characteristics and the occurrence of 
complications from large and complex datasets. By doing 
so, they enable the prediction of potential complications 
that a patient with cirrhosis might experience, offering a 
significant advantage in the management of the disease. 
For instance, Singal developed a prediction model for 
HCC development in cirrhotic patients using regression 
analysis and machine learning algorithms. This model 
demonstrated that machine learning algorithms sur-
passed traditional regression models in predicting HCC 
development, enhancing the accuracy of risk stratifica-
tion in cirrhotic patients and enabling the identification 
of those at high risk for HCC [200]. Similarly, the Audu-
reau’s team constructed an HCC predictive model based 
on clinical information from 836 patients with HCV-
associated cirrhosis, using Fine-Gray regression as a 
baseline and integrating randomized survival forests with 
a single decision tree (DT) and competing risk of sur-
vival (RSF). This approach accurately predicted the risk 
of HCC based on patients’ virologic status, enhancing the 
assessment of HCC risk in cirrhotic patients by reveal-
ing complex interactions between cancer predictors and 
providing guidance for developing more cost-effective 
customized surveillance programs [184]. Moreover, deep 
learning algorithms, which are based on artificial neural 
networks, have demonstrated significant capabilities in 
processing complex data and extracting advanced fea-
tures. Deep neural network models have also contributed 
significantly to the predictive assessment of cirrhosis 
complications [201]. Fukuda et  al. utilized a three-layer 
feed-forward neural network with a back-propagation 
algorithm to develop a neural network analysis system for 
the objective assessment of liver parenchymal echo pat-
terns in patients with cirrhosis, calculating a coarse score 
(CS), which proved to be a useful predictor of the pro-
gression of HCC [202]. Additionally, the Lee’s team con-
structed a deep learning model based on CT images and 
clinical information of 419 patients with B-virus compen-
sated cirrhosis. The results demonstrated that the spleen 
volume, obtained using deep learning-based CT analysis 
combined with the platelet ratio, is useful for detecting 
high-risk varices and assessing the risk of variceal bleed-
ing in patients with cirrhosis. These studies underscore 
the effectiveness of deep learning techniques in evaluat-
ing the risk of developing cirrhosis complications and in 
the intelligent stratification of patients [203]. A signifi-
cant concentration of AI research in cirrhosis complica-
tions has been on the emergence of HCC and esophageal 
varices, with a specific focus on the associated bleeding 
risks [204–209]. Yet, there is a notable scarcity of studies 
addressing other complications such as ascites, HE, por-
tal hypertension, liver failure, and portal vein thrombosis. 
Considering that each complication can cause varying 

degrees of irreversible damage to the patient, it is crucial 
for future research to address the risk of a broader spec-
trum of cirrhosis-related complications [168, 210–214].

Additionally, while complex machine learning mod-
els and deep learning neural networks have shown for-
midable capability in processing and analyzing complex 
data, their "black box" nature can obscure the interpret-
ability, impacting the fairness and safety of the model 
output. Efforts to develop machine learning models that 
are interpretable, along with techniques and tools for 
explaining and interpreting model decisions, are pivotal 
in AI research. This focus on transparency is crucial for 
building trust in the use of AI for prognostic assessments 
in cirrhosis, ensuring that the advancements in AI con-
tribute effectively and ethically to patient care.

Dynamic, multimodal prognostic model construction 
based on deep learning techniques
In conclusion, the comprehensive application of AI in the 
prognostic assessment of liver cirrhosis currently faces 
limitations due to the reliance on unimodal data. While 
unimodal data can provide insights into specific aspects, 
it does not fully capture the patient’s overall condition 
and may restrict the accuracy and reliability of predictive 
models. In contrast, multimodal data offer a more com-
prehensive and precise representation, enhancing the 
assessment and prediction of the conditions in cirrhotic 
patients. Clinical data, laboratory results, and histologic 
data from cirrhosis patients provide a robust foundation 
for constructing multimodal models. Additionally, the 
complexity of the disease necessitates a robust under-
standing of the pathophysiological mechanisms and 
pathogenesis of cirrhosis, further advocating for the 
development of multimodal data processing models as an 
inevitable trend in AI applications for cirrhosis prognosis 
[216, 217]. The specific construction and data integration 
for these models are central to future research efforts. 
Deep learning, an advanced form of machine learning, 
leverages deeper neural network structures and more 
complex algorithms to perform intricate learning tasks 
and has become increasingly significant in the prognos-
tic assessment of liver cirrhosis. However, studies utiliz-
ing deep learning techniques are relatively sparse, mostly 
based on shallow neural networks, indicating that the 
application of deep neural networks requires more pro-
found development and implementation. Moreover, the 
heterogeneity and dynamic nature of diseases require 
the capacities of real-time condition monitoring. Tech-
nologies such as sensors and wearable devices provide 
continuous streams of data, enabling continuous moni-
toring of physiological parameters and patient activities. 
This data flow offers a research foundation for real-time 
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tracking of condition changes, producing extensive time-
series data. Current literature reveals that most AI-based 
prediction models in the prognostic assessment of liver 
cirrhosis predominantly handle static data. Thus, utiliz-
ing dynamic data to construct real-time early warning 
assessment models represents another vital direction for 
future research, promising to transform the landscape of 
cirrhosis management and patient care [218, 219].

We anticipate that through joint efforts in multidis-
ciplinary collaborative research and the integration 
and analysis of data from various domains, significant 
progress will be made in understanding the pathophys-
iological mechanisms of cirrhosis. Meanwhile, the devel-
opment and implementation of multimodal models have 
the potential to make contributions. Such advancements 
are expected to culminate in the creation of a more accu-
rate real-time early warning system for cirrhosis prog-
nosis assessment. The overarching aim of these efforts 
is to effectively tackle the intractable live disease and 
enhance the precision of diagnostic and prognostic tools, 
ultimately improving patient outcomes and saving more 
lives.
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MRI  Magnetic resonance imaging
MRE  Magnetic resonance elastography
LSM  Liver stiffness measurement
DCNN  Deep convolutional neural network
CNN  Convolutional neural network
3D FCN  3D full convolution network
EHR  Electronic health record
CS  Coarse score
AT  Antithrombin
ELISA  Enzyme-linked immunosorbent assay
NHV  Non-hepatotropic virus
LiTS  Liver tumor segmentation
ILPD  Indian liver patient dataset
LIHC  Liver hepatocellular carcinoma
GEO  Gene expression omnibus
TCGA   The cancer genome atlas
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