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Abstract 

Spread through air spaces (STAS) is a recognized aggressive pattern in lung cancer, serving as a crucial risk factor 
for postoperative recurrence. However, its phenotype and related spatial structure have remained elusive. To address 
these limitations, we conducted a comprehensive study based on spatial data, analyzing over 30,000 spots from 14 
non-STAS samples and one STAS sample. We observed increased proliferation activities and angiogenesis in STAS, 
identifying S100P as a potential biomarker for STAS. Furthermore, our investigation into the heterogeneity of STAS 
tumor cells revealed a subset identified as S100P + TFF1 +, exhibiting a negative impact on patients’ survival in public 
datasets. This subtype exhibited the highest activities in the TGFb and hypoxia, suggesting its potential pro-tumor role 
within the tumor microenvironment. To assess the role of S100P + TFF1 + tumor cells in therapy response, we included 
data from two clinical trial cohorts (BPI-7711 for EGFR-TKI therapy and ORIENT-3 for immunotherapy). The presence 
of S100P + TFF1 + tumor cells correlated with worse responses to both EGFR-TKI therapy and immunotherapy. Nota-
bly, TFF1 emerged as a serum marker for predicting EGFR-TKI response. Cell–cell communication analysis revealed 
that the TGFb signaling pathway was the most activated in S100P + TFF1 + tumor cells, with TGFB2-TGFBR2 identified 
as the main ligand-receptor pair. This was further validated by multiplex immunofluorescence performed on twenty 
NSCLC samples. In summary, our study identified S100P as the biomarker for STAS and highlighted the adverse role 
of S100P + TFF1 + tumor cells in survival outcomes.
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Introduction
Lung cancer stands as one of the most prevalent malig-
nancies, with non-small cell lung cancer (NSCLC) being 
the predominant form [1]. For early-stage lung cancer, 
surgical resection is typically recommended. However, 
a considerable percentage, approximately 20–40% of 
NSCLC patients, experience a relapse following surgery. 
Prognosis in such cases is influenced by various patho-
logical factors including lymphatic invasion, pleural inva-
sion and vascular invasion. Recent research has notably 
highlighted the role of spread through air spaces (STAS) 
in the postoperative recurrence of early-stage NSCLC [2, 
3].

Defined by the WHO in 2015, STAS represents an 
aggressive pattern in lung cancer where micropapillary 
clusters, solid nests, or single cells extend beyond the 
tumor’s edge, occupying the air spaces of the surrounding 
lung tissue [4]. The 2021 WHO classification explicitly 
denotes STAS as a histological feature bearing prognos-
tic significance. Studies propose that patients with STAS-
positive early stage NSCLC who undergo lobectomy 
exhibit a more favorable prognosis than those treated 
with sublobectomy [5, 6]. Consequently, many surgeons 
advocate for lobectomy in such cases. Yet, the challenge 
lies in the microscopic examination of the entire surgi-
cal specimen to assess STAS, limiting its practicality as 
a prognostic tool in clinical decision-making, despite its 
evident clinical relevance [7, 8]. Furthermore, uncovering 
the molecular determinants of STAS in lung adenocar-
cinoma (LUAD) could lead to the identification of novel 
therapeutic targets and better patient outcomes.

Traditional bulk-level transcriptomics data fail to dis-
cern STAS from other cancer cells, while single-cell RNA 
sequencing lacks spatial context, impeding the explora-
tion of correlations between the local environment and 
specific cell–cell interactions. Recent advancements in 
spatial transcriptomics (ST) technologies have intro-
duced potent tools to delineate the precise spatial dis-
tribution of genes, facilitating an understanding of how 
tumor intrinsic features interact with crucial cell types in 
the context of tumor development and response to ther-
apy [9, 10]. By preserving tissue architecture, ST allows 
an examination of STAS’s molecular and cellular compo-
sition, as well as their subtypes.

In this study, we harnessed ST to characterize the phe-
notype of STAS and its heterogeneity in NSCLC. We 
identified S100P as the potential biomarker for STAS. 
The S100P + TFF1 + subtype of STAS tumor cells exhib-
ited an adverse role in patients’ survival and was asso-
ciated with worse outcomes in EGFR-TKI therapy and 
immunotherapy. Studies based on spatial transcriptomics 
data revealed that the TGFb signaling pathway was most 
activated in S100P + TFF1 + tumor cells, pointing toward 

an immune-resistant microenvironment. In conclusion, 
our study sheds light on the roles of S100P as the marker 
of STAS and provides insights into the unique spatial 
structures of STAS that foster immune resistance.

Results
The identification of tumor cells in ST data
The methodology employed in this study is depicted in 
Fig. 1A. STAS is a recently identified histologic feature of 
cancer invasion that presents challenges for diagnosis on 
frozen samples. Currently, STAS can only be identified on 
final pathology, and its presence is associated with poorer 
overall and disease-free survival [11]. In this investiga-
tion, we obtained 15 formalin-fixed paraffin-embedded 
(FFPE) samples from NSCLC patients, with one of these 
samples exhibiting the STAS phenotype. Through the 
hematoxylin and eosin (HE) image of STAS sample, we 
could discrete multiple clusters of cancer cells in the air 
spaces. Through this specimen, we conducted a compre-
hensive exploration of potential biomarkers and the TME 
characteristics associated with STAS.

First, we decided to identify the STAS clusters from 
normal lung tissues. The scatter feature of STAS made 
manually annotation inaccurate and laborious. Moreover, 
the task of differentiating between malignant and normal 
epithelial cells based on the gene expression profile in 
ST data is a significant challenge. In order to tackle this 
intricate issue, the inferCNV study was conducted to pre-
cisely distinguish cancerous cells from other types of cells 
by examining their copy number variation patterns. This 
procedure consisted of two clustering stages.

The first phase aimed to find reference cells for the 
inferCNV pipeline, based on which inferCNV analysis 
inferred CNV patterns of malignant cells. Initially, all 
spots in this STAS sample were segmented into 12 clus-
ters based on gene expression patterns (Fig.  1B). The 
"immune score" was determined for each spot by evaluat-
ing a collection of immune-related signatures, which rep-
resents the average value of immune features within each 
spot. The signatures comprised of pan-immune mark-
ers (PTPRC), pan-T cell markers (CD2, CD3D, CD3E, 
CD3G), B cell markers (CD79A, MS4A1, CD79B), and 
myeloid cell markers (CD68, CD14). The cluster 9, which 
had the greatest immunological score, was used as the 
reference for the inferCNV analysis (Fig. 1C).

The primary objective of the second clustering phase 
was to differentiate malignant cells from other cell types 
by analyzing copy number variation (CNV) patterns. 
The hierarchical clustering algorithm, which utilizes 
tree partitioning, allocated every spot with the excep-
tion of the reference cluster, into eight distinct clusters 
(Fig. 1D). Clusters T1 to T5, which had very high CNV 
scores, were classified as malignant clusters, whereas 
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Fig. 1 The identification of malignant cells in ST data. A The methodology employed in this study. B Clustering of 4965 spots in spread through air 
spaces (STAS) sample into 12 distinct clusters. C Distribution of immune score in the 12 clusters. D Hierarchical clustering assigning all spots, 
except the reference cluster, into eight clusters. E Bar charts showing the distribution of copy number variation (CNV) score in the nine clusters. F 
The plot depicted the identified tumor area in STAS sample. G The distribution of the signature of each cluster in tumor and non-tumor samples 
in the bulk transcriptomics data
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the other clusters had much lower CNV scores and were 
labeled as non-tumor regions (Fig.  1E). The accuracy 
of these annotations was confirmed by consulting two 
separate pathologists who examined the HE histologi-
cal data. T1 to T5 represented dispersed tumor regions, 
while the remaining clusters were mainly composed of 
normal epithelial cells, fibroblasts, and a combination of 
immune cells (Fig. 1F). In addition, we acquired the top 
50 marker genes for each cluster and evaluated these 
signatures in the bulk transcriptomics data. Signatures 
obtained from tumor clusters exhibited a higher presence 
in tumor tissues, hence verifying the precise detection 
of tumor regions (Fig.  1G). The tumor regions of addi-
tional NSCLC samples were detected using the identical 
methodology.

S100P was identified as the biomarker of STAS
In order to identify potential STAS markers, we com-
pared the gene expression patterns of tumor cells in the 
STAS sample with those in other 14 non-STAS samples. 
As a result, we created a list of genes that showed differ-
ential expression (DEGs) (Fig.  2A). One of the DEGs in 
STAS is S100P, which belongs to the S100 protein fam-
ily and has increased expression. GABRP was highly 
expressed in STAS, sustaining the stemness of cancer 
cells through EGFR signaling in triple-negative breast 
[12]. LGALS4 also showed higher expression in STAS, 
modulating disease progression in colorectal, gastric, 
pancreatic, hepatocellular, tongue, and breast cancer 
[13]. Additionally, MUC6 and MUC5AC, members of 
glycoproteins synthesized by epithelial cells, exhibited 
upregulation in STAS.

Pathway analysis unveiled increased proliferation 
activities in STAS compared to non-STAS tumor regions, 
characterized by upregulation of E2F targets, spliceo-
some and G2M checkpoint (Fig. 2B). Active angiogenesis 
and ECM-receptor interaction were observed in STAS. 
Concurrently, there were indications of involvement in 
metabolism changes, including glycosylation, arachi-
donic acid metabolism, and retinol metabolic process. 
Conversely, immune-related pathways (complement, 
inflammatory response, and type I interferon) were sup-
pressed in STAS.

In addition, we examined the function of transcription 
factors (TFs) in increasing the aggressive characteristics 
of STAS. We employed Dorothea to investigate potential 
differences in regulon activity between STAS and other 
tumor samples (Fig. 2C). Figure 1F depicts the expression 
patterns of the 20 TFs that exhibit the most diverse activ-
ity in cellular populations. The notable findings revealed 
increased regulon activities of FOXJ2, which triggered 
epithelial-mesenchymal transition in NSCLC [14]. Fur-
thermore, TFAP4 exhibited heightened activities and is 

linked to the process of trans-differentiation, when an 
adenocarcinoma transforms into a small cell neuroen-
docrine state in lung cancer [15]. KLF3, regulating cell 
proliferation, migration, and therapy resistance, exhibited 
heightened regulon activities in STAS [16].

We hypothesized that ideal STAS biomarkers should 
be specifically expressed in tumor cells. Hence, by utiliz-
ing extensive single-cell datasets (including GSE148071, 
GSE127465, GSE143423, and EMTAB6149), we identi-
fied specific marker genes that were unique to tumor 
cells in comparison to immune cells and normal epithe-
lial cells. This was done by applying criteria of an average 
log2 fold change greater than 0.25 and a p-value less than 
0.05, respectively. By intersecting these three gene lists, 
we have discovered possible STAS biomarkers. Among 
them, S100P exhibits the highest expression in the STAS 
cluster, as shown in Fig. 2D. Figure 2E shows that S100P 
had higher expression levels in tumor cells compared to 
immune cells and normal epithelial cells.

We subsequently examined the spatial expression pat-
terns of S100P. In the STAS sample, S100P showed the 
highest expression within STAS clusters (Fig. 2F and G). 
Conversely, in the remaining fourteen samples without 
STAS, S100P displayed lower expression levels (Fig.  2F 
and G). To validate S100P in protein level, we per-
formed multiple immunofluorescence (MIF) staining 
in 20 NSCLC patients from our cohort. In addition, we 
employed panCK to classify tumor cells, enabling us to 
differentiate them from the adjacent microenvironment. 
Consistent with transcriptomics analysis, we observed 
the main expression of S100P in tumor cells (Fig. 2H).

The presence of S100P + TFF1 + tumor cells 
is correlated with worse prognosis in NSCLC
Subsequently, we decided to investigate the heterogene-
ity of STAS clusters. Figure  3A displays the expression 
patterns of classical cell type marker genes for each CNV 
cluster. Tumor clusters (T1 to T5) featured marker genes 
like EPCAM, KRT8 and KRT19, which are tumor-specific 
epithelial markers. Normal areas (N1 to N4) expressed 
many immune cells related markers, including B cells, T 
cells, myeloid cells and fibroblasts. These results consist-
ent with the identification of tumor areas.

Figure  3B provides a visual representation of the 
expression profiles of the top 5 marker genes for each 
cluster. T1 exhibited metalloproteinases such as MMP9 
and MMP12, involved in extracellular matrix remodeling 
and COMP a marker of cancer-associated fibroblast. 
T2 and T3 showed similar expression patterns, express-
ing MMP11 and epithelial markers KRT17 and MUC6. 
T4 and T5 exhibited marker genes such as TFF1, TFF2, 
and TFF3, which are part of the trefoil factor family pep-
tides. These genes play a vital role in processes like as 
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Fig. 2 S100P was identified as the biomarker of spread through air spaces (STAS). A The differentially expressed genes (DEGs) of tumor cells in STAS 
sample compared to non-STAS samples. B Pathway analysis unveiled distinct biological activities in STAS and non-STAS samples. C The distinct 
transcription factors in STAS and non-STAS samples. D S100P was identified as the biomarker of STAS. E S100P exhibited elevated expression 
in tumor cells compared to normal epithelial cells (left) and immune cells and stromal cells (right). F The spatial expression patterns of S100P in STAS 
and non-STAS samples. G The expression patterns of S100P in STAS and non-STAS samples. H The multiplex immunofluorescence (MIF) performed 
in 20 non-small cell lung cancer (NSCLC) patients demonstrated the main expression of S100P in tumor cells
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Fig. 3 S100P + TFF1 + tumor cells in spread through air spaces (STAS) sample correlated with worse prognosis in non-small cell lung cancer (NSCLC). 
A The expression profiles of classical cell types marker genes for copy number variation (CNV) clusters. B The expression profiles of the top 5 marker 
genes for each cluster. C The distinct pathway activities among these clusters. D The top3 up-regulated and down-regulated transcription factors 
among these clusters. E The signature of T4 and T5 showed adverse role in patients’ survival time. F Distribution of S100P and TFF1 in CNV clusters. G 
The spatial distribution of TFF1 in STAS sample. H The single-cell dataset was divided into five main clusters: epithelial cells, myeloid cells, fibroblasts, 
endothelial cells, and T/B cells. I Expression patterns of S100P and TFF1 in single-cell level
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angiogenesis, proliferation, antiapoptotic characteristics, 
and differentiation [17]. Additionally, N1, N2 and N3 
displayed B cell marker IGKC, CAF marker ACTA2 and 
epithelial markers KRT17 and MUC6, indicating the infil-
tration of CAF and B cell in normal lung tissues. N4 had 
notable B cells infiltration, expressing markers (IGHG1 
and MS4A1) and chemokines (CXCL13 and CCL19).

Pathway analysis using the PROGENy R package 
unveiled distinct pathway activities among these clusters 
(Fig.  3C). T1 exhibited high levels of MAPK and EGFR 
activities. T2 and T3 exhibited activated WNT, TNFA 
and NFKB activities. T4 and T5, notably, displayed the 
highest TGFb and hypoxia pathway activities, suggest-
ing its potential pro-tumor role within TME. Normal 
clusters demonstrated heightened PI3K activities, VEGF 
and Trail activities. There is mounting evidence support-
ing the notion that tumor cells undergo reversible tran-
sitions between transcriptional states, driving metastasis 
and therapy resistance. To elucidate these transcriptional 
states across tumor cells, we initially analyzed the ST 
data using Dorothea to identify potential TFs (Fig.  3D). 
HIF1A, a crucial component in the hypoxia-induced 
pathway, was the most significantly over-represented 
transcription factor in T4 and T5 [18]. ZEB1, well-known 
epithelial-mesenchymal transition transcription factors, 
exhibited heightened regulon activities in T4 and T5 [19].

Subsequently, we calculated the top 50 DEGs of each 
cluster as the signature and explored their role in clini-
cal outcome. The signature of T4 and T5 showed adverse 
impact on patients’ survival in public datasets, indicating 
their aggressive phenotypes (Fig.  3E). TFF1 was marker 
gene of T4 and T5 and could be combined with the STAS 
marker S100P as the marker for a subset of aggressive 
STAS tumor cells (Fig.  3F). The spatial distribution of 
TFF1 was illustrated in Fig. 3G. In order to confirm this 
discovery at the level of individual cells, we utilized many 
datasets (including GSE148071, GSE127465, GSE143423, 
and EMTAB6149) and found five primary groups: tumor 
cells, fibroblasts, myeloid cells, T/B cells and endothelial 
cells [20, 21] (Fig. 3H). The distribution of TFF1 mainly in 
S100P + tumor cells validated its role as a subtype marker 
for the subpopulation of tumor cells that may lead to 
STAS (Fig. 3I).

S100P + TFF1 + tumor cells correlated with worse 
EGFR‑TKI therapy and immunotherapy
Due to the lack of specific clinical information on STAS 
in the other samples from clinical trials and databases, 
we were unable to definitively classify them as STAS 
or non-STAS samples. Given the aggressive nature of 
STAS, we hypothesized that S100P + TFF1 + may repre-
sent a subtype of aggressive lung cancer cells associated 
with poor prognosis and reduced treatment efficacy. 

Therefore, in the next step, we used S100P and TFF1 as 
markers to detect whether this subtype of cells exsits and 
to explore what influence it may have. Analysis of public 
datasets showed that the expression of TFF1 was higher 
in tumor cells compared to immune cells and normal 
epithelial cells in Fig. 4A and B. The expression of TFF1 
in tumor cells was validated in 20 NSCLC patients using 
MIF labeling, with panCK used to identify the tumor 
cells (Fig. 4C). The correlation coefficient between S100P 
and TFF1 in the bulk transcriptomics data of NSCLC was 
found to be 0.51, confirming their underlying correlation 
(Fig. 4D). In order to validate this association at the pro-
tein level, we performed MIF labeling of S100P and TFF1 
on a specific group of 20 patient samples with NSCLC. 
We observed that S100P and TFF1 were found together 
in the tumor cells of NSCLC, as shown in Fig.  4E. Sur-
vival analyis of public datasets showed patients with high 
levels of either S100P or TFF1 had shorter overall survival 
(OS) time, and those with high levels of both S100P and 
high TFF1 displayed the worst clinical outcome (Fig. 4F). 
In addition, we conducted immunohistochemistry (IHC) 
analysis of S100P and TFF1 on a group of 70 NSCLC 
patients that we have in our own research facility. Fig-
ure 4G shows that tumor cells had higher expression lev-
els of S100P and TFF1 relative to normal epithelial cells.

We conducted a thorough analysis using multi-omics 
data to investigate the therapeutic consequences of 
S100P + TFF1 + tumor cells in NSCLC patients who 
were treated with third EGFR-TKI therapy. At first, data 
from single cells were collected from 49 clinical biopsies 
of 30 patients with metastatic lung cancer. The biopsies 
were taken before and throughout targeted therapy. Fig-
ure 5A depicted the distribution of cells in non-respond-
ers (NR) and responders (R). Both S100P and TFF1 
exhibited increased expression levels in patients with 
NR (Fig. 5B). Next, we assessed the levels of S100P and 
TFF1 in a prospective cohort participating in an open-
label, single-arm, phase I/IIa clinical trial called BPI-7711 
(NCT03386955). This group consisted of 186 individuals 
with locally progressed or metastatic NSCLC. Among the 
186 patients included in the investigation, 57 individuals 
(30.65%) did not experience any clinical improvement, 
while 129 patients (69.35%) derived benefits from the 
medication. The enzyme-linked immunosorbent assay 
(ELISA) kit detected a substantial increase in S100P and 
TFF1 levels in NR compared to R, as shown in Fig. 5C. 
Furthermore, the study found a notable negative cor-
relation between TFF1 and OS in patients treated with 
EGFR-TKI, as shown in Fig. 5D. These findings indicate 
that TFF1 has the potential to be used as a biomarker for 
predicting treatment outcomes.

Subsequently, we investigated the capacity of 
S100P + TFF1 + tumor cells to anticipate the efficacy of 
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Fig. 4 Correlation between TFF1 and S100P. A TFF1 displayed elevated expression in tumor cells compared to normal epithelial cells. B TFF1 
exhibited increased expression in tumor cells compared to immune and stromal cells. C Multiplex immunofluorescence (MIF) performed on 20 
non-small cell lung cancer (NSCLC) patients demonstrated the primary expression of TFF1 in tumor cells. D Significant correlation between TFF1 
and S100P. E MIF performed on 20 NSCLC patients demonstrated the co-location of S100P and TFF1 in tumor cells. F Patients with high levels 
of both S100P and TFF1 had shorter overall survival (OS) time, and those with high S100P and high TFF1 displayed the worst clinical outcome. G 
Immunohistochemistry demonstrated elevated expression of S100P and TFF1 in tumor cells compared to normal epithelial cells
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Fig. 5 S100P + TFF1 + tumor cells correlated with worse EGFR-TKI therapy and immunotherapy response. A Distribution of cells in non-responders 
(NR) and responders (R) receiving EGFR-TKI therapy. B Distribution of S100P and TFF1 in NR and R receiving EGFR-TKI therapy. C S100P and TFF1 
measured by enzyme-linked immunosorbent assay (ELISA) kit showed the most significant upregulation in NR compared to R. D TFF1 showed 
a significant adverse association with worse clinical outcomes in EGFR-TKI-treated patients. E Distribution of S100P and TFF1 in NR and R receiving 
immunotherapy. F Role of S100P and TFF1 in predicting the therapeutic results of immunotherapy
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immunotherapy in patients. The transcriptomics data of 
an open-label, randomized trial (ORIENT-3) that was 
conducted in 39 centers across China (NCT03150875) 
was incorporated [22]. This cohort was composed of 
61 patients who had failed first-line chemotherapy and 
were diagnosed with late stage NSCLC. In immunother-
apy-treated patients, S100P and TFF1 were both more 
enriched in NR (Fig. 5E and F). Additionally, we discov-
ered that patients with elevated TFF1 experienced sub-
stantially worse therapeutic outcomes (Fig. 5E and F).

TGFb signaling in self communication 
of S100P + TFF1 + tumor cells
We further investigated cell–cell interactions in the STAS 
sample. T4 and T5 demonstrated the maximum level of 
activity among all clusters, with the highest number of 
incoming and outgoing interactions (Fig. 6A). In general, 
tumor clusters exhibited a greater number of cell–cell 
communication activities than normal clusters. We then 
concentrated on the signaling patterns of each cluster, 
both inbound and outbound. Tumor clusters and normal 
clusters exhibited distinct signaling pathways (Fig.  6B 
and C). The TGFb signaling pathway was the most active, 
which was consistent with the upregulated TGFb path-
way in the pathway analysis. Pathways such as MIF, GRN, 
EGF, and PDGF, known to support cancer progression in 
various cancer types, were also identified. Many immune 
response-related signaling pathways, such as chemokines 
(CCL and CXCL) and complement, were observed to be 
enhanced in normal clusters. In tumor cells, the TGFb 
signaling drives tumorigenesis by inducing EMT, metas-
tasis, angiogenesis, autophagy, and immune suppression. 
Therefore, we mainly focused on this signaling.

TGFB2 released from T4/T5 interacted with TGFBR1, 
TGFBR2, and ACVR1 most on tumor cells rather than 
in the normal area (Fig.  6D). This ligand-receptor pair 
exhibited the most strength in the self-communication 
of T4/T5 clusters. T4 and T5 were identified as the main 
senders of the TGFb signaling pathway. Meanwhile, they 
also acted as receivers, mediators, and influencers of the 
TGFb signaling (Fig.  6E). Three tumor clusters, T1, T2, 
and T3, were also influencers of this signaling. These 
findings consistently supported the central role of T4 
and T5 in the TGFb pathway in STAS, demonstrating the 
pro-tumor effect of self-communication of this subtype. 
To validate this finding at the protein level, MIF was per-
formed on 20 tumor samples of NSCLC patients using 
panCK antibody to annotate tumor cells, and S100P and 
TFF1 to annotate this subtype of STAS tumor cells. The 
findings confirmed that TGFB2 functions as a secretory 
protein originating from the S100P + TFF1 + tumor cells. 
Its role is to activate the TGFBR2 receptor on the same 
tumor cells, hence confirming the unique relationship 

between this ligand-receptor pair (Fig. 6F). The findings 
consistently confirmed our ST-level results, highlight-
ing the interaction between TGFB2 and TGFBR2 on 
S100P + TFF1 + tumor cells. These results highlight the 
crucial importance of TGFb signaling in the self-commu-
nication of S100P + TFF1 + tumor cells.

To elucidate the impact of S100P + TFF1 + tumor cells 
on TME, we utilized datasets from 31 NSCLC samples 
available in the GEO database, specifically GSE148071, 
GSE127465, GSE143423, and EMTAB6149. First, we 
calculated the proportion of S100P + TFF1 + tumor cells 
within the tumor cell population and divided all samples 
into high and low groups based on the median propor-
tion of these cells. We then compared the proportions of 
various immune and stromal cells between the high and 
low groups. Our analysis revealed distinct landscapes of 
TME components between the two groups (Figure S1). 
Specifically: The proportion of T cells was significantly 
lower in the high group (mean = 0.27) compared to the 
low group (mean = 0.44). There was a higher infiltration 
of myeloid cells in the high group (mean = 0.28) com-
pared to the low group (mean = 0.19). Fibroblasts exhib-
ited greater infiltration in the high group (mean = 0.08) 
compared to the low group (mean = 0.02) (Figure S1). No 
significant differences were observed in the proportions 
of B cells, endothelial cells, and tumor cells between the 
two groups. To further explore cell–cell communication 
within the TME, we performed CellChat analysis focus-
ing on the interactions between T cells/myeloid cells and 
S100P + TFF1 + tumor cells. Our findings highlighted the 
TGFβ signaling pathway as a key interaction mechanism. 
Specifically, the TGFB2-TGFBR2 ligand-receptor pair 
was predominantly involved in cell–cell communication. 
TGFβ has been reported to inhibit immune function, 
which is consistent with our observation of decreased 
T cells and increased myeloid cells in the TME of high 
S100P + TFF1 + tumor cell samples (Figure S2).

Discussion
STAS has been implicated in facilitating tumor advance-
ment, dissemination, and resistance to treatment. 
Nevertheless, the examination of STAS and its spa-
tial arrangement in NSCLC is still restricted. This work 
aimed to analyze and describe the specific character-
istics of STAS in NSCLC. As a result, we successfully 
identified S100P as a biomarker for STAS. The presence 
of the S100P + TFF1 + subtype of STAS tumor cells had 
a negative impact on survival time and was linked to 
poorer results in both EGFR-TKI therapy and immu-
notherapy. Analysis of spatial transcriptomics revealed 
that the TGFb signaling pathway had the highest level 
of activation in S100P + TFF1 + tumor cells. The results 
of our research offer vital knowledge on STAS, which 
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Fig. 6 TGFb signaling in self-communication of S100P + TFF1 + tumor cells. A Role of spread through air spaces (STAS) tumor subclusters in cell–
cell communication. B Outgoing signaling pattern of all cell clusters. C Incoming signaling pattern of all cell clusters. D Ligand-receptor pairs 
in TGFb signaling pathway signaled from T4/T5 to other clusters. E TGFb signaling pathway network. F MIF image revealing the TGFB2-TGFBR2 
ligand-receptor pair in the self-cell–cell communication of S100P + TFF1 + tumor cells



Page 12 of 18Fan et al. Journal of Translational Medicine          (2024) 22:917 

can be used to direct future experiments and identify 
biomarkers.

Initially, we examined the characteristics of tumor cells 
in the STAS sample and discovered that S100P could 
serve as a promising biomarker for STAS. The expres-
sion level of S100P mRNA is directly associated with 
the activation state of the PI3K/AKT pathway, which 
is a well-known mechanism implicated in facilitating 
the migration, invasion, proliferation, and resistance to 
therapy in different types of malignancies. S100P + epi-
thelial cells, which are linked to negative outcomes, are 
more abundant in advanced stages [23]. In vitro, it pro-
motes cell proliferation, migration, and invasion. In vivo 
experiments have shown that elevated S100P expres-
sion significantly triggers cancer metastasis to the liver 
[24]. Increased S100P expression is strongly correlated 
with the metastatic spread of colorectal cancer and is 
associated with shorter metastasis-free survival periods 
[25]. Additionally, S100P plays a role in activating the 
transcription of SLC2A5, thereby promoting cancer cell 
dissemination in colorectal cancer [26]. S100P shows 
potential as a biomarker for the immunosuppressive 
microenvironment [27]. t is also identified as a distinctive 
indicator for intrahepatic cholangiocarcinoma, a cancer 
type characterized by a notable decrease in CD4 T cells, 
alongside an increase in CCL18 TAM and PD1CD8 T 
cells [28].

The pro-tumor role S100P plays in NSCLC is similar to 
that in other cancers by enhancing cell migration, inva-
sion and metastasis. In  vitro, S100P overexpression in 
less invasive lung cancer cells increased these traits, while 
its knockdown in highly invasive cells reduced them and 
reversed EMT. In  vivo, S100P knockdown prevented 
metastasis of highly metastatic cells. These effects are 
mediated through S100P’s interaction with integrinα7, 
activating FAK and AKT pathways [29]. Blocking FAK 
or inhibiting AKT reduces S100P-induced migration and 
ZEB1 expression. Additionally, genes involved in the reg-
ulation of S100P translation also promote NSCLC metas-
tasis. RBMS1, a gene coding for an RNA-binding protein, 
promotes NSCLC metastasis by enhancing S100P trans-
lation, correlating with increased lymphnode metastasis 
and shorter survival [30]. S100P also stimulates tumor 
cell proliferation by binding to the receptor for advanced 
glycation end products (RAGE), activating MAP kinase 
and NFκB pathways. RAGE is linked to metastasis and 
poor prognosis in various cancers. However, its role in 
NSCLC is complex, as it both inhibits growth through 
p21CIP1 suppressing CDK2 activity and promotes 
metastasis via ERK signaling, further accelerating tumor 
growth by inducing tumor-associated macrophage accu-
mulation [31].

Moreover, our study explored the heterogeneity of 
STAS tumor cells and identified S100P + TFF1 + tumor 
cells in the STAS sample as a subtype associated 
with adverse survival outcomes, as validated by pub-
lic datasets. Subsequent validation using samples 
from clinical trials confirmed that this subtype of 
S100P + TFF1 + tumor cells is linked to poorer therapeu-
tic responses and outcomes in both EGFR-TKI therapy 
and immunotherapy. TFF1, a constituent of the trefoil 
factor family peptides, has a vital function in preserving 
the integrity of mucous membranes and facilitating the 
restoration of epithelial tissue in different organs [32, 33]. 
Previous research using biochemical and genetic animal 
models has indicated that TFFs have tumor suppressor 
roles. However, current experimental and clinical inves-
tigations have provided compelling data suggesting that 
TFFs actually play a role in promoting the development 
of many solid tumors. TFF1 acts as a tumor suppressor 
in hepatocellular carcinoma by decreasing the amounts 
of nuclear β-catenin [34]. The absence of TFF1 in indi-
viduals with gastric cancer was linked to increased tumor 
invasiveness and poorer patient survival, especially in 
those who received curative surgery without additional 
treatment [35]. Furthermore, TFF1 was discovered to 
play a role in promoting the development of breast can-
cer by enhancing the levels of expression of cell cycle-
regulatory molecules and transcription factors [36]. The 
investigation of the pathway network revealed that the 
overexpression of TFF1 controls the transcription factor 
FOXA2 in the luminal A subtype, which is a mechanism 
that contributes to the unique response to chemotherapy 
in this subtype [37]. In NSCLC, the functional role of 
TFF1 is also complex and context-dependent. Overex-
pression of TFF1 in NSCLC cells drove cell cycle tran-
sition, increased the proportion of cells in the S-G2/M 
phases, while simultaneously enhanced the apoptosis, 
resulting in a 19 to 25% decrease in proliferation and a 71 
to 82% decrease in migration. These effects were restored 
by transfection with TFF1 siRNA [38]. Contrarily, in 
a KRAS-mutated NSCLC cell line, TFF1 knockdown 
inhibited cell proliferation and induced apoptosis [39].

As a plasma biomarker of cancer cells, TFF1 has the 
potential to predict prognosis and response of immu-
notherapy in a noninvasive way. When combined with 
pathological detection of S100P and TFF1 expression, it 
enhances the accuracy of evaluating patients’ condition 
and facilitates the selection of effective treatment. Fur-
thermore, conducting a plasma test prior to tissue biopsy 
could minimize unnecessary invasive procedures for 
patients. Future studies should encompass patients at dif-
ferent stages of treatment, different endpoints and can-
cer staging, incorporating not only IHC but also plasma 
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protein as experimental indices to validate the predictive 
value of these biomarkers.

In addition, our investigation revealed the intercellular 
communication of tumor cells that express both S100P 
and TFF1. Analysis of spatial transcriptomics showed 
that the TGFb signaling pathway had the highest level 
of activation in S100P + TFF1 + tumor cells. The primary 
ligand-receptor pair responsible for cell–cell communi-
cation was TGFB2-TGFBR2. The TGFB2-TGFBR2 axis is 
involved in the advancement of cancer in solid tumors, 
indicating an essential pathway for intercellular com-
munication between cancer cells and other constituents. 
TGFβ exerts pro-tumorigenic effects through several key 
pathways, including the suppression of immunological 
function, stimulation of angiogenesis/lymphangiogenesis, 
and induction of EMT [40, 41]. TGFβ suppresses numer-
ous elements of both the innate and adaptive immune 
systems, hence establishing a conducive environment for 
tumor proliferation [42]. EMT, is a vital biological process 
in which cells derived from epithelial tissue acquire the 
traits of mesenchymal cells. EMT plays a crucial role in 
embryonic development and the healing of wounds [43]. 
TGFβ upregulates various EMT-transcription factors 
such as SNAIL, resulting in a reduction in the expression 
of epithelial genes and an increase in the expression of 
mesenchymal genes [44]. The activation of the TGF-beta 
pathway in S100P + TFF1 + tumor cells indicated that 
either S100P or TFF1 exerts functions through this sign-
aling cascade, making this pathway holds the potential 
to be therapy target. Extensive anti-cancer interventions 
targeting TGF-β have been researched, including neu-
tralizing antibodies, TGF-β inhibitors, ligand traps, vac-
cines, and other approaches. Some of them have passed 
clinical satge, such as Fresolimumab (GC1008), Gal-
unisertib (LY2157299), Trabedersen (AP12009) [45]. In 
other studies, TFF1 was found to suppress EMT through 
inhibition of the TGF-beta pathway in gastric cancer as 
a tumor suppressor [46]. In breast carcinoma cells, TFF1 
and TGF-β serve as downstream genes of estrogen recep-
tor (ER) and mediate many growth effects of estrogen, 
which could be inhibited by curcumin [47].

Our study possesses numerous significant strengths in 
comparison to prior research. This study is the first to 
thoroughly describe the characteristics of STAS tumor 
cells in NSCLC and investigate their spatial arrange-
ment. We have effectively determined and confirmed 
the specific subtype of STAS tumor cells, which allows 
us to identify and focus on the pro-tumor element 
inside the tumor microenvironment. It is crucial to rec-
ognize certain limitations when examining the role of 
S100P + TFF1 + tumor cells in EGFR-TKI therapy and 
immunotherapy utilizing two real-world cohorts. How-
ever, this study has certain limitations. Due to the limited 

clinical information and patient samples, we identified 
only one case of STAS, and the initial analysis of STAS 
spatial data was based on this single case. Nonetheless, 
the S100P + TFF1 + subtype identified in our study was 
present in many samples from clinical cohorts and data-
sets. Given the uncertainty regarding the sampling loca-
tion and the finding that S100p serves as a biomarker 
for STAS, these S100P + TFF1 + samples may represent 
STAS or a mixture of primary lesions and STAS. Besides, 
despite identifying cell–cell communication involving 
S100P + TFF1 + tumor cells, we did not determine the 
existence of a specific axis or signaling pathway between 
S100P and TFF1. Furthermore, the mechanism by which 
TFF1 functions in tumors via the TGF-β signaling path-
way remains poorly understood, presenting significant 
obstacles to the identification of useful and effective drug 
targets. In conclusion, the specific functions of S100P 
and TFF1 in NSCLC remain insufficiently explored. Their 
interactions with tumor cells vary across cancer types, 
in vitro or in vivo environments, signaling pathways, and 
expression levels. In this study, we have presented our 
finding on the roles of these two markers in the tumo-
rigenesis of NSCLC patients. Further experiments and 
studies with larger cohorts are necessary to elucidate the 
detail roles of S100P, TFF1 and S100P + TFF1 + tumor 
cells in NSCLC.

Conclusions
This study demonstrated the phenotype of STAS 
in NSCLC, identifying S100P as its biomarker. 
S100P + TFF1 + tumor cells as the subtype of STAS 
tumor cells exhibited the adverse role in survival time 
and associated with worse EGFR-TKI therapy and 
immunotherapy.

Materials and methods
Patient samples
Seventy pre-treatment patients at the Cancer Hospital, 
Chinese Academy of Medical Science in Beijing, China, 
provided FFPE NSCLC samples. The collection of these 
samples followed institutional ethical procedures and 
required informed agreement from the patients. The 
procedure obtained approval from the Ethics Committee 
of Institut Curie (No.23/262-4004). Out of the samples, 
70 were employed for IHC, while spatial transcriptomic 
sequencing was performed on 15 selected samples.

Data and materials
Single-cell data from GSE148071, GSE127465, 
GSE143423, and EMTAB6149 were obtained from the 
GEO database [20, 21]. The clinical data and metadata 
that matched were obtained from the original trials. Fur-
thermore, the researchers acquired the single-cell data 
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of 49 clinical samples taken from 30 patients with meta-
static lung cancer both before and during EGFR-TKI tar-
geted therapy [48]. The response status of these patients 
may be obtained from the original study. To conduct a 
comprehensive study, we obtained mRNA expression 
data and clinical information for patients with NSCLC 
from The Cancer Genome Atlas (TCGA).

Spatial transcriptomics sequencing
We acquired eight FFPE tissue blocks from individuals 
with cancer. The samples were mounted on IHC slides 
using FFPE sections that were five micrometers thick. 
Subsequently, the slides were subjected to incubation at 
a temperature of 42 °C for a duration of 2 h, followed by 
air drying at ambient room temperature. Subsequently, 
the slides were subjected to a further drying process for a 
duration of 3 h at a temperature of 60 °C. The H&E stain-
ing procedure utilized Hematoxylin (Dako, Part number 
S330930-2) and Eosin (Sigma-Aldrich, Product number 
HT110216). The staining duration was modified based on 
the specific tissue being stained. Approximately 100 µl of 
85% glycerol (Thermofisher, Catalog number 15514011) 
was poured, coverslips were placed on top, and tissue 
imaging was conducted. A beaker filled with Milli-Q 
water was employed to eliminate the coverslips.

The Visium slide was inserted into a cassette. Each well 
was treated with 100 µL of 0.1 N HCl (Sigma-Aldrich, 
Product number H1758) and incubated at 42  °C for 
15 min. After the HCl was extracted, the decrosslinking 
buffer was introduced. The slide was subjected to incu-
bation at a temperature of 95  °C for a duration of 1  h. 
The Pre-hybridization stage was performed in accord-
ance with the instructions provided in The Visium Spatial 
Gene Expression for FFPE reagent kit (10 × Genomics, 
User Guide CG000407 Rev C, human transcriptome 
Product number 1000338). Each well was supplemented 
with 100 µL of Pre-hybridization mix and then incubated 
at room temperature for a duration of 15  min. Follow-
ing the incubation period, the Pre-hybridization mix was 
extracted, and 100 µL of Hybridization mix was intro-
duced. The Visium slide was subjected to incubation with 
the Hybridization mix for the duration of one night at a 
temperature of 50 °C.

The user followed the instructions provided in the user 
guide of "Visium Spatial Gene Expression for FFPE rea-
gent kit" (10 × Genomics, User Guide CG000407 Rev C, 
mouse transcriptome Product number 1000339, human 
transcriptome Product number 1000338) for the remain-
ing steps of library preparation, which include probe 
ligation, probe release and extension, probe elution, 
and FFPE library construction. The completed libraries 
underwent sequencing using the Novaseq6000 platform 

from Illumina. The length of read 1 was 28 base pairs, 
while the length of read 2 was 91 base pairs.

Pathological annotations for HE images
Each spots within the Visium sections was separately 
annotated by two pathologists, Lin Li and Tongji Xie. The 
pathologists classified the spots into histological classi-
fications, such as normal hepatocytes, tumor cells, stro-
mal cells, and immune cells, using a coverage criterion 
of > 50% specific to each cell type.

Clustering analysis of spatial transcriptomics
The gene-spot matrices obtained from the ST data were 
analyzed using the R Seurat tool. Normalization was 
accomplished using the SCTransform function in Seurat. 
Clustering analysis was performed inside each sample 
using tools such as FindVariableFeatures, FindNeighbors, 
and FindCluster.

Identification of malignant cells in spatial analysis
Spot scoring was performed using a collection of 
immune-related signatures that included pan-immune 
markers (PTPRC), pan-T cell markers (CD2, CD3D, 
CD3E, CD3G), B cell markers (CD79A, MS4A1, CD79B), 
and myeloid cell markers (CD68, CD14). The mean of 
these features was assigned as the immunity score for 
each spots. The cluster with the highest median immuno-
logical score was selected as the reference for inferCNV, 
based on the results of clustering. The inferCNV analy-
sis was performed using the following parameters: cut-
off = 0.1, cluster_by_groups = FALSE, denoise = TRUE, 
HMM = TRUE, analysis_mode = "subclusters," and 
tumor_subcluster_partition_method = "random_trees." 
The HMM_type is "i6." The Hidden Markov Model was 
used to evaluate the levels of CNV within spots. In order 
to differentiate between malignant and non-malignant 
spots, a hierarchical clustering analysis was performed 
using the inferCNV package with the random trees 
approach. This analysis resulted in the division of all 
observed spots into 8 distinct clusters. The spots that 
were used as a point of reference were clearly identified 
as "reference." During inferCNV analysis, a gene state 
of 3 signifies the absence of CNV variation, a state more 
than 3 indicates CNV amplification, and a state less than 
3 indicates CNV deletion. The CNV score for each gene 
was determined by subtracting 3 from the absolute value 
of the gene state. The cluster CNV score was calculated 
by adding up the CNV scores for all genes. The identifica-
tion of the tumor cluster was established using the utili-
zation of CNV scores and pathological annotations.
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Differential expression analysis and gene set enrichment 
analysis
We employed the FindMarkers function from the Seurat 
package, utilizing the MAST approach for differential 
expression analysis, to detect the DEGs between dis-
tinct groups. The run was conducted using a cutoff log 
fold change of 0.25. We utilized the GSEA function in 
the R package fgsea to assess the enrichment of cancer 
hallmark and Biological Process Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
genesets.

Transcription factor analysis
Our goal was to examine the distinct functionality of TFs. 
The Dorothea resource, which includes signed TF-target 
interactions, was used to infer TF activity [49]. In order 
to create TF regulons, we employed the ’dorothea regu-
lon human’ wrapper function from the ’dorothea’ library 
and chose high-confidence TFs at levels ’A’, ’B’, and ’C’. The 
run_viper function was subsequently utilized to compute 
the activities of the regulons. Regulons were formed by 
analyzing the mRNA expression levels of each TF and its 
direct targets. We utilized the run_viper function to inte-
grate the VIPER method with DoRothEA and estimate 
TF activity based on the Dorothea regulons.

MIF
The MIF panel, consisting of panCK (abcam, ab234297), 
S100P (abcam, ab124743), TFF1 (abcam, ab92377), 
TGFB2 (abcam, ab53778), and TGFBR2 (abcam, 
ab61213), was conducted following the instructions pro-
vided by the manufacturer (Akoya, 5-Color Multiple IHC 
Kit). In summary, sections of a formalin-fixed FFPE block 
were briefly treated with xylene to remove the paraffin 
and then soaked in ethanol to restore moisture. Following 
microwave antigen retrieval in a heated citric acid buffer 
with a pH of 6.0 for a duration of 10 min, the activity of 
endogenous peroxidase was inhibited using a 3% H2O2 
solution for 10  min. Additionally, any nonspecific bind-
ing sites were blocked using goat serum for 10 min. The 
primary antibodies were placed in a humidified cham-
ber at room temperature and incubated for 1  h. After 
that, they were treated with the appropriate secondary 
horseradish peroxidase-conjugated polymer. Each target 
was seen using a 1:100 dilution of fluorescein TSA Plus. 
Subsequently, the slide was subjected to microwave anti-
gen retrieval in a heated citric acid solution (pH 6.0) to 
eliminate excess antibodies before to proceeding to the 
next stage. Ultimately, the nuclei were then seen using 
DAPI, and the slices were covered with antifade mount-
ing media.

Immunohistochemistry
Seventy samples of NSCLC were analyzed using IHC. 
The pathology department determined the histologic 
stage of all NSCLC tissues. The dewaxed slices were 
subsequently exposed to particular primary antibod-
ies (S100P: abcam ab124743, TFF1: abcam ab92377) at 
a temperature of 4C for the duration of one night. This 
was followed by incubation with a biotinylated second-
ary antibody (Proteintech, Wuhan, China) at room tem-
perature for a period of 1  h. Positive staining was seen 
by utilizing DAB chromogenic reagent, and each section 
was subsequently counterstained with hematoxylin. Each 
sample was given a grade based on the level of staining 
intensity (0 = no staining; 1 = weak staining; 2 = moderate 
staining; and 3 = strong staining) and the percentage of 
stained cells (0 = 0%; 1 = 1–25%; 2 = 25–50%; 3 = 50–75%; 
4 = 75–100%). The final score was determined by multi-
plying the staining intensity with the positive area score, 
which ranged from 0 to 12. Two expert pathologists, who 
were unaware of the clinical data, independently assessed 
the IHC results of the samples.

ELISA
ELISA is a method used to measure the levels of proteins 
in serum. Before treatment, around 5  mL of peripheral 
blood samples were obtained from the test individuals 
using sterile tubes without anticoagulants. The centrifu-
gation process was performed on all samples at a speed 
of 4000 revolutions per minute for a duration of 10 min, 
maintaining a constant temperature of the room. Ulti-
mately, the serum samples were preserved at a tem-
perature of -20  °C until they were examined. The levels 
of Serum S100P and TFF1 were quantified using an 
Enzyme-Linked Immunosorbent Assay (ELISA) on a 
TECAN Freedom EVOlyzer-2 150 platform manufac-
tured by Tecan in Männedorf, Switzerland. The S100P 
and TFF1 ELISA kit were acquired from Shanghai 
Tongwei Biotechnology Co. Ltd. (Shanghai, China). The 
absorbance of S100P and TFF1 was measured at 450 nm, 
as instructed by the manufacturer. Concentrations were 
then determined using a suitable calibration curve.

Survival analysis
The R package survival was utilized to perform sur-
vival analysis. The Cox proportional hazards model was 
utilized to compute the hazard ratio, along with a 95% 
confidence interval. Additionally, the survfit function 
was implemented to construct Kaplan–Meier survival 
curves. The "maxstat.test" function from the R package 
maxstat was used to dichotomize cell population infil-
tration or gene expression by testing all possible cutting 
points to find the highest rank statistic. The patients were 
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separated into two groups based on the selected maximal 
logarithm statistics. Subsequently, the two-sided log-rank 
test was utilized to compare the Kaplan–Meier survival 
curves. The Chi-squared test was utilized to examine the 
comparison of the response rate to immunotherapy treat-
ment among different groups.

Collection of plasma samples from patients undergoing 
third‑line therapy with EGFR‑TKI
186 plasma samples were collected from 186 NSCLC 
patients who took part in the BPI-7711 phase I 
(NCT03386955) and phase IIa (NCT03812809) clinical 
trials42. These patients had non-small cell lung cancer 
(NSCLC) that was either locally progressed or had spread 
to other parts of the body (metastatic/recurrent). They 
also had a verified mutation in the EGFR gene called 
T790M. These patients had either suffered disease pro-
gression after being treated with first- or second-genera-
tion EGFR TKI therapy, or they had the T790M mutation 
from the beginning. The clinical trial database (https:// 
clini caltr ials. gov/) provided comprehensive information 
regarding the clinical studies. The collection of blood 
samples was conducted using EDTA tubes. After centri-
fuging at 16,000 times the force of gravity (16,000 g) and a 
temperature of 4 °C for a duration of 10 min, the plasma 
was isolated and kept at a temperature of − 80 °C until it 
was needed.

The effectiveness of the treatment was assessed by 
oncologists and radiologists through clinical and radio-
logical tests. Clinical responses were classified as com-
plete response, partial response, stable disease, or 
advancing disease based on the Response Evaluation 
Criteria in Solid Tumours (RECIST) version 1.1. R was 
defined as the group of patients who achieved either 
complete response or partial response, while NR referred 
to those who experienced either advancing disease or 
stable disease. All experiments were approved by the 
Research Ethics Committee and conducted in accordance 
with the Declaration of Helsinki.

Dataset of the ORIENT‑3 study
The ORIENT-3 phase 3 trial was carried out at 39 cent-
ers throughout China. It was an open-label, randomized 
controlled trial. Approval from the Ethics Committee 
was received from all participating centers, and written 
informed permission was obtained from all patients. The 
study followed the criteria of Good Clinical Practice and 
the Declaration of Helsinki. The trial was registered on 
ClinicalTrials.gov with the identifier NCT03150875. The 
primary endpoint was OS, which was defined as the time 

from randomization to death from any cause within the 
whole study set. Patients who received anti-PD-1/PD-L1 
medication before their disease progressed after rand-
omization were not included in the entire analysis set of 
the docetaxel arm.

Transcriptome sequencing
Out of the 157 patients that were sequenced, 86 were in 
the sintilimab group and 71 were in the docetaxel group. 
Among these patients, 110 samples had available archi-
val tumor tissue samples and validated RNA sequencing 
data. Specifically, 61 samples were from the sintilimab 
group and 49 samples were from the docetaxel group. 
These samples were included in the downstream analy-
sis. The RNeasy FFPE Kit (Qiagen, Hilden, Germany) was 
used to extract RNA from FFPE baseline tumor tissues.

Analysis of intercellular communication
The R package CellChat was employed to analyze com-
munication relationships and identify communicating 
molecules. CellChatDB.human enabled the examination 
of primary signaling inputs and outputs across all cell 
clusters. The netAnalysis_signalingRole_scatter func-
tion was used to determine the role of all cell types in the 
cell–cell communication network.

Quantitative analysis
The Mann–Whitney U test was conducted to examine 
the disparities between the two groups. The Spearman’s 
correlation test was employed to evaluate the associa-
tions between two variables. A two-tailed P-value of 0.05 
was deemed to be statistically significant. The entire data 
processing, statistical analysis, and charting operations 
were conducted using R 4.1.0.
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