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Abstract 

Background Pituitary adenomas (PAs) are the second most common intracranial tumor. While current diagnos-
tic practices rely primarily on histological testing, they often fail to capture the molecular complexities of pituitary 
adenomas, underscoring the need for a molecular-based classification to refine therapeutic strategies and prognostic 
assessments. This study aims to provide a molecularly unbiased classification of pituitary adenomas and explore their 
unique gene expression patterns and clinical features.

Methods We performed unsupervised hierarchical clustering of the gene expression profiles of 117 PA samples 
to identify three distinct molecular subtypes. Subsequently, we analyzed the compiled transcriptomic profiles of each 
individual subtype for pathway enrichment. We also validated the new classification with a validation set containing 
158 PAs and 24 pituitary adenoma stem cells (PASCs).

Results Consensus clustering of transcriptomic data from 117 pituitary adenoma (PA) samples identified three dis-
tinct molecular subtypes, each showing unique gene expression patterns and associated biological processes: Group 
I is enriched in signaling pathways, such as the cAMP signaling pathway and the calcium signaling pathway. Group 
II is primarily related to metabolic processes, including nitrogen metabolism and arginine biosynthesis in cancer. 
Group III predominantly shows enrichment in immune responses and potential malignant transformation of the dis-
ease, especially through cancer-related pathways such as the JAK–STAT signaling pathway and the PI3K–Akt signal-
ing pathway. The immune profiling revealed distinct patterns for each subtype: Group I had higher dendritic cells 
and fewer CD8+ T cells, Group II had more monocytes and macrophages, and Group III had elevated levels of T cells. 
Additionally, there were differences in clinical characteristics and prognosis among the subtypes, with Group III having 
a worse prognosis, despite the smaller tumor size compared to other groups. Notably, differences in PASCs correlated 
with the molecular subtypes, with Group III stem cells being enriched in tumorigenesis pathways, PI3K–Akt signaling 
pathway and Ras signaling pathway.
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Background
Pituitary adenomas (PAs) represent the second most 
prevalent type of central nervous system tumors, com-
prising 15% of all primary brain tumors. They occur at 
an annual incidence rate of four cases per 100,000 indi-
viduals and have a prevalence of 37 cases per 100,000 [1, 
2]. Clinically, these tumors are categorized into secretory 
adenomas and nonfunctional adenomas, while radiologi-
cal classification distinguishes them as microadenomas 
(< 10 mm) and macroadenomas (≥ 10 mm). Recently, the 
term “adenomas” has been changed to “Pituitary neu-
roendocrine tumors (PitNETs)” to refer to these tumors. 
The most common PitNETs originate from the lactotroph 
lineage, followed in frequency by gonadotroph, somato-
troph, corticotroph, and thyrotroph lineage tumors [3]. 
Although pituitary adenomas are usually benign, their 
clinical presentation is remarkably heterogeneous, rang-
ing from asymptomatic lesions to mass effects leading 
to severe endocrine dysfunction and visual impairment, 
thus complicating treatment and prognosis [4–6]. Most 
pituitary adenomas (PAs) are noninvasive and grow 
slowly, first-line treatment typically managed with trans-
sphenoidal surgery or medications like bromocriptine or 
cabergoline. However, 2.5% to 10% of PAs are aggressive, 
recurrent, and show resistance not only to these stand-
ard treatments but also to alternatives like Temozolo-
mide [7–9]. The overall resection rate of PA is only 66% 
to 78% [10], with remission rates ranging from 40 to 70% 
for macroadenomas and 80% to 90% for microadenomas 
[11]. Currently, the diagnosis of pituitary adenomas is 
mainly based on histologic testing, which does not reflect 
pathological changes at the cellular and molecular levels 
in a timely and effective manner, and as a result, a subject 
of debate [12].

Transcriptomic studies have revealed that different 
subtypes of pituitary adenomas have different patterns of 
gene expression [3, 13, 14]. Upregulation of GNAS genes 
is frequently observed in somatotrophs, leading to acti-
vation of the cAMP signaling pathway, which promotes 
cell proliferation and hormone secretion [15]. Corti-
cotrophs tend to exhibit involvement in the process of 
ubiquitylation of genes upregulated, such as USP8, which 
contributes to the pathogenesis of Cushing’s disease 
[16]. Although the pathogenesis of PAs has been exten-
sively studied, identifying specific oncogenes and tumor 

suppressors [17–19], the molecular factors driving tumo-
rigenesis, remission, and therapeutic response are still 
not well understood [20–22].

Cancer stem cells (CSCs) are regarded as a distinct sub-
population of cells possessing stem cell properties within 
certain types of solid tumors [23]. In gliomas, the pres-
ence of glioma stem cells has been associated with poor 
clinical prognosis, resistance to radiotherapy and high 
recurrence rates, and therapies targeting glioma stem 
cells are currently at the forefront. Furthermore, pitui-
tary adenoma stem cells (PASCs) have emerged as a key 
component in understanding pituitary adenoma patho-
genesis and recurrence. Initial studies identified PASCs 
using markers normally associated with neural stem 
cells such as CD133, Nestin, and SOX2, suggesting the 
presence of stem-like regions within these tumors [24]. 
Advanced methods such as single-cell RNA sequencing 
have likewise confirmed the presence of PASCs [25, 26]. 
These studies have shown that genes associated with cell 
proliferation, resistance to apoptosis and maintenance of 
stemness are significantly upregulated in adenomas from 
the pituitary gland, especially aggressive pituitary adeno-
mas, highlighting the contribution of PASCs to tumor 
development and recurrence [27].

Materials and methods
Patients and tissue samples
A total of 117 patients were retrospectively identified for 
RNA-seq analysis which shown in Figure S1. All samples 
were snap-frozen immediately after collection and stored 
in liquid nitrogen to preserve RNA integrity for subse-
quent analysis. This method was chosen to ensure the 
highest quality of RNA for sequencing, minimizing deg-
radation and ensuring reliable results. Additionally, from 
January 2020 to September 2020, 24 pituitary adenoma 
patients meeting the same criteria were enrolled at the 
Department of Neurosurgery, Beijing Tiantan Hospital. 
The subtypes of pituitary adenomas were determined 
based on pre-operative clinical features and post-opera-
tive pathological diagnoses, in accordance with the 2017 
WHO Classification of Pituitary Tumors.

Clinical and molecular information was obtained from 
our database. All patients were evaluated preopera-
tively for tumor invasion using MRI. Postoperative MRI 

Conclusion Our study introduces a novel molecular classification for pituitary adenomas, independent of traditional 
histological methods. Each subtype features distinct genetic, molecular, and immunological profiles. We have isolated 
pituitary adenoma stem-like cells (PASCs), pairing them with tumor tissues for detailed transcriptomic analysis. These 
PASCs exhibit diverse molecular traits consistent with the new classification.
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follow-up scans were performed to assess any residual 
mass and to evaluate tumor progression.

Culture and differentiation of PASCs
The pituitary adenoma specimen was resected and 
immediately divided into two portions during sur-
gery. One portion was snap-frozen and stored in liquid 
nitrogen for subsequent pathological immunostaining 
and RNA sequencing analysis. The other portion was 
transported to the laboratory under sterile conditions 
for PASCs culture. Tumor specimens were thoroughly 
washed with 1× PBS and cut into small pieces. Washed in 
10 ml DMEM/F-12 and centrifuged at 300×g for 2 min. 
The resultant cell pellet was lysed in 2 ml of 1× Accutase 
(Stemcell Technology, USA) and incubated at 37  °C for 
5  min. Subsequent centrifugation was performed for 
3  min. Erythrocytes were removed from the cell pel-
let using erythrocyte lysis buffer, with a 5-min treat-
ment. After a washing step, the cells were resuspended 
and cultured in stem cell medium, which consisted of 
DMEM/F-12 supplemented with 1% penicillin–strep-
tomycin, 1× B27 (50× concentration, Life Technologies, 
USA), 20 ng/ml of bFGF (Peprotech, USA), and 20 ng/ml 
of EGF (Peprotech, USA). The culture was maintained at 
37 °C in a 5%  CO2 incubator.

Immunohistochemical/immunofluorescence staining 
and analysis
Formalin-fixed and paraffin-embedded pituitary tumor 
specimens were cut into 5-μm thick sequential sections 
and processed for staining. The full slides were depar-
affinized using xylene, followed by dehydration through 
a series of graded ethanol solutions. The slides were 
then rehydrated in PBS. For antigen retrieval, the sec-
tions were incubated in 10  mM citric acid (pH 6.0) at 
97 °C for 20 min. To neutralize endogenous peroxidases, 
we treated the samples with 3% hydrogen peroxide for 
15  min. The primary anti-bodies against CD4 (Abcam/
ab133616; 1:250 dilution), CD8 (Abcam/ab17147; 
1:100 dilution), CD20 (ab78237; 1:100 dilution), CD56 
(ab75813; 1:100 dilution), CD68 (ab955; 1:100 dilution) 
were used.

PASCs were cultured in 6-well plates coated with 
poly-d-lysine, washed with 1× PBS, and fixed with 4% 
paraformaldehyde for 30 min at room temperature. Then 
incubated in 0.3% Triton X-100 (Sigma-Aldrich, USA) for 
15 min, washed, and blocked with 5% BSA for 1 h. After 
overnight incubation at 4  °C with primary antibodies, 
cells were washed and incubated with secondary anti-
bodies (Alexa-Fluor 488/647, Abcam, USA) at 1:1000 
dilution. Images were captured at various magnifica-
tions using a Zeiss microimaging system equipped with 
a fluorescence emission system. The antibodies employed 

in the experiments included rabbit anti-Sox2 (Abcam/
ab97959; 1:800 dilution), rabbit anti-Oct4 (Abcam/
ab19857; 1:500 dilution), rabbit anti-Nestin (Abcam/
ab134017; 1:200 dilution), and rabbit anti-CD133 
(Abcam/ab19898; 1:500 dilution).

RNA extraction and synthesis of cDNA
Total RNA from PASCs or specimens was extracted using 
TRIzol reagent (Invitrogen, USA) and assessed with the 
RNA Nano 6000 Assay Kit on the Bioanalyzer 2100 sys-
tem (Agilent Technologies, USA). RNA was stored at 
− 80  °C. RNA sequencing was performed by Novogene 
Co., Ltd. First-strand cDNA was synthesized using a ran-
dom hexamer primer and RNase H, followed by second-
strand synthesis with DNA Polymerase I and RNase H. 
After selecting 250–300  bp cDNA fragments, PCR was 
performed with High Fidelity DNA Polymerase. The PCR 
products were purified using the Agencourt AMPure XP, 
and the quality of the cDNA library was assessed with the 
Agilent Bioanalyzer 2100 system. Clustering of the index-
coded samples was conducted on a cBot Cluster Genera-
tion System using the TruSeq PE Cluster Kit v3-cBot-HS 
(Illumina). The library preparations were sequenced on 
an Illumina Novaseq platform. We performed paired-end 
(PE) sequencing with a read length of 150 bp, generating 
a total of 10 Gb raw data per sample.

Identification of gene expression‑based subtypes
We applied the unsupervised consensus clustering algo-
rithm using the ConsensusClusterPlus package [28]. The 
clustering process was iterated 1000 times, with 80% of 
the data sampled in each iteration. The optimal number 
of clusters was determined based on the relative change 
in the consensus score and the area under the cumulative 
distribution function (CDF) curve of the consensus heat-
map. SigClust analysis was performed to determine the 
significance of the clusters in a pairwise fashion (statisti-
cal significance of clustering for high-dimensional, low-
sample size data).

Enrichment analysis of differentially expressed genes
After mapping the reads, the counts of differentially 
expressed genes from each library were adjusted and 
analyzed using the “Deseq2” package in R software (ver-
sion 4.0.0). To account for multiple testing, P-values were 
adjusted via the Benjamini and Hochberg method. An 
adjusted P-value of 0.05 and log2 fold change (log2FC) 
threshold greater than 1 were established as cutoffs 
for significant differential expression. For gene ontol-
ogy (GO) enrichment analysis, the ClusterProfiler and 
GOplot R packages were employed, considering GO 
terms with corrected p-values below 0.05 as significantly 
enriched. The ClusterProfiler R package also facilitated 
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the statistical analysis of gene enrichment in various 
pathways.

Functional networks and gene connectivity
Gene connectivity and functional networks were ana-
lyzed using the STRING database, which supplied gene 
connectivity data with a high confidence level (interac-
tion score of 0.9). These data were further analyzed in R 
using the iGraph package, employing techniques such as 
edge-betweenness and random walk methods to identify 
significant subnetworks or neighborhoods. Biological or 
pathway term enrichments for these neighborhoods were 
also conducted using STRING [29].

Identification of immune cell distribution patterns using 
ImmuCellAI
The ImmuCellAI algorithm was used to estimate the 
relative abundances of 24 immune cell types from RNA 
sequencing data, showing enhanced robustness and 
accuracy compared to other algorithms such as CIBER-
SORT and TIMER [30]. This accuracy was confirmed 
through validation using flow cytometry. The immune 
cells detected included six other types: B cells, NK cells, 
monocytes, macrophages, neutrophils, and dendritic 
cells, in addition to 18 subtypes of T cells.

Validation data set
Independent validation of class signatures was con-
ducted using samples from 24 new patients and the 
E-MATB-7768 dataset [31] as a validation cohort, total-
ing 158 patients. Data normalization was performed 
using the “normalize Between Array” function within the 
SVA package in R software to mitigate batch effects and 
other variabilities.

Statistical analysis
Data analysis was conducted using IBM SPSS Statisti-
cal software (version 23.0). Differences in mean gene 
expression were assessed with unpaired two-sided Stu-
dent’s t-tests after log2 transformation. Comparisons 
between normally distributed parameters were evaluated 
using the Mann–Whitney U-test. Pearson’s method was 
employed to analyze correlations between gene expres-
sion and immune cell levels. Patient prognosis was deter-
mined using Kaplan–Meier analysis.

Results
Consensus clustering identifies three subtypes of pituitary 
adenomas
Initially, data from 117 pituitary adenoma samples were 
consolidated into a unified database. After excluding 
genes with extremely low expression, we selected 25,213 
protein-coding genes for their consistent yet variable 

expression levels. We then employed unsupervised hier-
archical clustering methods, specifically the K-means 
algorithm, to cluster the gene expression profiles of the 
117 pituitary adenoma samples. This clustering resulted 
in three stable gene clusters, as shown in Fig. 1A. Three 
stable clusters were established, with cluster stability 
increasing from k = 2 to k = 3, but not for k > 3 (Fig. 1A, 
B). The statistical significance of the clustering was con-
firmed by SigClust, which showed that all class bound-
aries had statistical significance (Fig.  1C). The most 
representative samples of these clusters were determined 
based on their silhouette width, which describes the 
compactness of a class and the similarity of a sample to 
its own cluster versus other clusters. A positive silhou-
ette coefficient indicates that the similarity of a sample 
to its own category is higher than to any other category 
(Fig.  1D). Based on this, we defined three molecular 
subtypes of pituitary adenomas: Group I, Group II, and 
Group III. Within each subtype, the gene expression pat-
terns among samples were more similar to each other 
than to those in other subtypes.

Subsequently, we compared the histopathological clas-
sification with the molecular subtyping formed by the 
gene cluster clustering and found that this categorization 
was independent of the histological subtypes, detailed as 
follows:

– Group I: 58 tumors (49.5%), including 40 nonfunc-
tioning pituitary adenomas, 9 gonadotroph adeno-
mas, 4 growth hormone adenomas, 4 prolactinomas, 
and 1 thyrotropin adenoma.

– Group II: 22 tumors (18.8%), consisting of 10 non-
functioning pituitary adenomas, 5 gonadotroph ade-
nomas, 3 growth hormone adenomas, 3 prolactino-
mas, and 1 corticotroph adenoma.

– Group III: 37 tumors (31.6%), with 16 growth hor-
mone pituitary adenomas, 12 nonfunctioning pitui-
tary adenomas, 7 prolactinomas, 1 thyrotropin ade-
noma, 1 corticotroph adenoma, and 1 gonadotroph 
adenoma.

To further explore genetic differences among the sub-
types, we conducted t-tests to compare the differential 
genes between Group I and Group II and III, between 
Group II and Group I and III, and between Group III 
and Group I and II, respectively. We used a threshold of 
P < 0.05 and an absolute fold change greater than 1 as our 
criteria for selection. Each subtype exhibited a unique 
distribution pattern of protein-coding genes (Fig.  2A). 
We also conducted an analysis of transcription factors 
across the three groups, as shown in Figure S2. Our find-
ings indicate that PIT1 is predominantly concentrated 
in Group III, while SF-1 is mainly found in Group I. The 
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final results of the differential gene analysis are as follows 
(see Fig. 2B):

– Group I: we identified 742 upregulated genes and 835 
downregulated genes.

– Group II: we discovered 477 upregulated genes and 
1198 downregulated genes.

– Group III: we found 932 upregulated genes and 955 
downregulated genes.

Functional annotation of subtypes
To explore the biological functional differences behind 
the differentially expressed genes among the three sub-
types, we performed Gene Ontology (GO) functional 
enrichment and KEGG pathway analyses of the above 

differential gene results, focusing on those with p-values 
below 0.05. In GO and KEGG analyses, several common 
terms appeared for each subtype, including cell adhesion, 
positive regulation of cell proliferation, positive regula-
tion of gene expression, positive regulation of cell sur-
face receptor signaling pathways, neuropeptide signaling 
pathways, and MAPK cascades. In addition, each subtype 
showed different functional enrichments. Group I pri-
marily studies signaling pathways, including the cAMP 
and Calcium signaling pathways. Group II focuses on 
metabolic processes, specifically nitrogen metabolism 
and arginine biosynthesis in cancer. Group III predomi-
nantly showed enrichment in immune responses and 
potential malignant transformation of the disease, espe-
cially through cancer-related pathways such as the JAK–
STAT signaling pathway and the PI3K–Akt signaling 
pathway (Fig. 3, Table S1).

Fig. 1 Identification of three pituitary adenomas subtypes. A Consensus clustering matrix of 117 samples for k = 2 to k = 5. B Consensus clustering 
CDF for k = 2 to k = 10. C SigClust p values for all pairwise comparisons of clusters. D Silhouette plot for identification of core samples
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Using the STRING database, we predicted associa-
tions between upregulated genes and their functional 
annotations, extracting sub-networks for each group 
(Fig.  4). Pathway enrichment analysis showed that the 
cAMP signaling pathway, followed by the cGMP–PKG 
signaling pathway and the Wnt signaling pathway, was 
predominantly affected in Group I, and the PI3K–Akt 

signaling pathway, the MAPK signaling pathway, and 
the Ras signaling pathway were predominantly affected 
in Group II. The PI3K–PKG signaling pathway and the 
Ras signaling pathway were mainly affected in Group II. 
In addition to the entries that appeared in Group I and 
Group II, Group III features enrichment in more path-
ways, including the JAK–STAT, mTOR, PI3K–Akt, and 
Hippo signaling pathways.

Fig. 2 A Heatmap representing the gene expression data identify three gene expression subtypes, sort the top 200 genes for each group by log2 
fold change (log2fc). B Volcano plots show differential genes in three groups
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Immune landscape of the TME of PAs
The relative abundances of 24 immune cell types in the 
tumor microenvironment (TME) of PAs are depicted 
in Fig.  5A. Notably, immune cell proportions varied 

significantly not only between the groups but also within 
the same subtype, reflecting diverse immunological 
profiles.

Analysis of immune cell infiltration revealed (Table 1):

Fig. 3 Functional annotation of three subtypes. A, C, D GO analysis of differentially expressed genes between three groups. B KEGG enrichment 
of differentially expressed genes between three groups



Page 8 of 19Peng et al. Journal of Translational Medicine          (2024) 22:892 

– Group I exhibited significantly higher levels of den-
dritic cells (DCs) and lower levels of various T cells, 
including CD8+ T cells, naïve CD8+ T cells, cyto-
toxic T cells, exhausted T cells, and mucosal-associ-
ated invariant T cells (MAIT), compared to the other 
groups.

– Group II was characterized by elevated levels of B 
cells, monocytes, and macrophages, but significantly 
lower levels of CD4+ T cells and follicle-assisted T 
(Tfh) cells.

– Group III displayed increased levels of natural killer 
(NK) cells, CD4+ T cells, gamma–delta (γ–δ) T cells, 
natural regulatory T (nTreg) cells, induced regula-
tory T (iTreg) cells, T-helper 1 (Th1) cells, T-helper 
17 (Th17) cells, and central memory T cells, whereas 
natural killer T (NKT) cells were less prevalent.

To validate the effectiveness of our analysis, we uti-
lized the available samples, which included a total of 49 
cases: 21 from Group I, 10 from Group II, and 18 from 

Group III. We performed immunohistochemical (IHC) 
staining for tumor-infiltrating lymphocytes, targeting 
markers such as CD4, CD8, CD56, CD68, and CD20 (as 
shown in Fig. 6). Additionally, we quantified the num-
ber of positive cells and found that the results were 
consistent with our transcriptional data analysis (as 
shown in Fig. 6C). In correlation analyses, we observed 
distinct intercellular interactions between immune 
cells, with CD4+ T cell subsets (including CD4+ T cells 
in general as well as Tr1 cells, Th1 cells, and Tem cells 
showing correlation attenuated in all three groups. In 
addition, the CD8+ T cell subset (including CD8+ T 
cells in general as well as Tc cells, MAIT cells, and Tex 
cells) showed a strong positive correlation in all three 
groups. Group I showed strong positive correlations 
mainly between cytotoxic T cells, NK cells and B cells. 
Group II showed a complex pattern, showing positive 
correlations between macrophages and dendritic cells 
and negative correlations between T regulatory cells. 
Group III showed predominantly negative correlations 
(Fig. 5C).

Fig. 4 RNA-Seq analysis of up-regulated genes in each of the three groups. A–C Gene interaction network (confidence level = 0.9) 
of the differentially expressed genes in each of the three groups, using the STRING database. Subnetworks (neighborhoods) are colored 
and annotated with enriched functional categories. Gray lines, connections within a neighborhood; red lines, connections between neighborhoods. 
D GO enrichment for KEGG pathways
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Fig. 5 Estimation of tumor-infiltrating immune cells (TIICs) in 117 pituitary adenomas based on ImmuCellAI. A Immune landscape of the TME, 
the relative abundances of the 24 types of TIICs are indicated by various colors. B Heatmap representing the distributions of 24 types of TIICs 
among the three groups. C Correlation analyses of the TIICs in three groups. The red color represents a positive correlation, and the blue color 
indicates a negative correlation
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We analyzed the expression profiles of 60 immune 
checkpoint molecules (ICMs) as reported by Rieder 
et  al. [32], details of which are presented in Figure 
S3A. Group I predominantly showed high expression 
levels of CD40, CD276, C10orf54 and SIRPA, coupled 
with low expression levels of CD209 and TNFSF4. 
There were strong positive correlations between 
BTN3A1 and CD40, TNFRSF9 and CD40L, PVR and 
CD276, and negative correlations between PVR and 
HAVCR2, VTCN1 and CD27. Notably, most of the 
ICMs were significantly downregulated in Group II and 
negative correlations among nearly all HLA-related 
genes. In contrast, immunosuppressive genes such as 

CEACAM1, LAG3, CD209 and CD160 were upregu-
lated. In Group III, a significant upregulation of immu-
nostimulatory genes was observed, including BTN2A1, 
BTN3A1, various TNFRSF genes and several HLA 
genes (refer to Table  S2). PD1 and PDL1, CTLA4 and 
CD80 demonstrated strong positive correlations in all 
groups. We specifically focused on analyzing the PD1/
PDL1 and CTLA4 axis, as shown in Fig. 6D. Our results 
indicate that PD1 and PDL1 expression levels in Group 
III are significantly higher compared to the other two 
groups, while CTLA4 expression shows no significant 
difference across the three groups.

Table 1 Comparisons of relative abundance of 24 tumor-infiltrating immune cell among 3 groups of pituitary adenomas

TIIC tumor-infiltrating immune cell

P value (total) refers to the variation among the 3 groups. P (1, 2) indicates the variation between group 1 and 2. P (1, 3) shows the variation between group 1 and 3. P 
(2, 3) indicates the variation between group 2 and 3

TIICs (%) Group I
58

Group II
22

Group III
37

p (total) p (1, 2) p (1, 3) p (2, 3)

B cell 9.07 ± 2.97 9.90 ± 2.46 8.93 ± 3.43 0.489 < 0.01 0.883 < 0.01

CD4+ T cell 5.10 ± 2.52 3.27 ± 1.74 7.62 ± 2.97 < 0.01 < 0.01 < 0.01 < 0.01

CD8+ T cell 2.73 ± 2.12 5.04 ± 2.07 6.19 ± 2.90 < 0.01 < 0.01 < 0.01 0.088

CD4+ naïve T cell 0.05 ± 0.07 0.01 ± 0.03 0.03 ± 0.06 0.025 0.010 0.100 0.250

CD8+ naïve T cell 0.14 ± 0.13 0.37 ± 0.19 0.34 ± 0.22 < 0.01 < 0.01 < 0.01 0.597

Cytotoxic T cell 0.28 ± 0.24 0.54 ± 0.33 0.66 ± 0.43 < 0.01 < 0.01 < 0.01 0.204

Exhausted T cell 0.17 ± 0.16 0.32 ± 0.12 0.27 ± 0.20 < 0.01 < 0.01 0.010 0.196

T cells regulatory 1 0.61 ± 0.33 0.39 ± 0.23 0.52 ± 0.28 0.015 < 0.01 0.135 0.136

Natural regulatory T cell 0.21 ± 0.21 0.21 ± 0.21 0.60 ± 0.33 < 0.01 0.982 < 0.01 < 0.01

Induced regulatory T cell 0.19 ± 0.13 0.13 ± 0.10 0.52 ± 0.37 < 0.01 0.258 < 0.01 < 0.01

T-helper 1 cell 0.15 ± 0.14 0.09 ± 0.07 0.29 ± 0.28 < 0.01 0.252 < 0.01 < 0.01

T-helper 2 cell 0.34 ± 0.20 0.30 ± 0.20 0.26 ± 0.31 0.293 0.465 0.122 0.594

T-helper 17 cell 0.29 ± 0.15 0.14 ± 0.09 0.99 ± 0.79 < 0.01 0.190 < 0.01 < 0.01

Follicular T-helper cell 0.47 ± 0.20 0.19 ± 0.14 0.29 ± 0.28 < 0.01 < 0.01 0.304 < 0.01

Central memory T cell 0.13 ± 0.10 0.09 ± 0.06 0.35 ± 0.31 < 0.01 0.418 < 0.01 < 0.01

Effector memory T cell 0 0 ± 0.02 0.04 ± 0.11 < 0.01 0.781 < 0.01 0.026

Mucosal-associated invariant T cell 0.28 ± 0.28 0.46 ± 0.24 0.55 ± 0.35 < 0.01 0.017 < 0.01 0.237

Natural killer T cell 24.95 ± 3.78 22.67 ± 4.07 16.95 ± 6.29 < 0.01 0.059 < 0.01 < 0.01

Gamma delta T cell 7.04 ± 3.17 8.11 ± 3.08 11.8 ± 4.73 < 0.01 0.253 < 0.01 < 0.01

Dendritic cell 13.71 ± 2.44 7.71 ± 2.17 7.86 ± 3.32 < 0.01 < 0.01 < 0.01 0.831

Monocyte 9.57 ± 3.12 11.36 ± 2.50 9.40 ± 3.15 0.037 0.02 0.793 0.018

Macrophage 5.26 ± 2.37 7.90 ± 2.39 5.33 ± 2.43 < 0.01 < 0.01 0.883 < 0.01

Natural killer cell 10.36 ± 4.14 10.88 ± 3.45 13.63 ± 3.76 < 0.01 0.587 < 0.01 0.010

Neutrophil 8.89 ± 3.39 9.90 ± 3.99 6.38 ± 3.93 < 0.01 0.276 < 0.01 < 0.01

Fig. 6 Analysis of infiltrating immune cells within pituitary tumors. A Concordance between IHC-detected positive cell percentages 
and corresponding gene expression levels (log2 TPM) from RNA-seq. Pearson correlation (R) and p-values are indicated in the bottom right 
corner of each plot. B Representative pictures of CD4, CD8, CD56 and CD 20 IHC between three groups. C Quantification of IHC staining for CD4, 
CD8, CD56, and CD68 in pituitary adenomas across three patient groups. D PD-1/PD-L1, CTLA-4 expression in the data set according to the new 
molecular classification of PAs though RNA-seq. Unpaired two-sided Student’s t-tests were used. *P < 0.05. Scale bar 50 μm

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Subtypes and clinical correlations
To evaluate the clinical impact of our newly defined clas-
sification, we analyzed clinical and biological variables 
for all samples with data available at the time of sampling 
(Table 2). We observed differences in the age of diagnosis 
among the groups. Group I and Group II exhibited simi-
lar age distributions with mean ages of 49.6 ± 11.11 years 
and 49 ± 10.73  years, respectively, while Group III con-
sisted of significantly younger patients, with a mean age 
of 40.67 ± 9.94 years. This younger age in Group III may 
be attributed to a higher prevalence of somatotroph PA 
patients, who typically exhibit more noticeable symp-
toms such as acromegaly and snoring.

Regarding gender distribution, Group I predomi-
nantly comprised male patients, whereas Group II was 
mostly female. Recurrent tumors were noted across all 
subtypes; however, Group III demonstrated a poorer 
prognosis with nearly half of the patient’s experiencing 
recurrence (Fig. 7). Notably, the tumors in Group III were 

Table 2 Clinical and phenotypical characteristics of 117 pituitary adenomas

a Median were analyzed using one-way ANOVA
b Frequencies were analyzed using Pearson’s Chi-square test
c Median survival was estimated from Kaplan–Meier curve

Gene expression subtypes Group I Group II Group III Total p value

Number of patients 58 22 37 117

Age (ys) 49.6 + 11.11 49 + 10.73 40.67 + 9.94 46.7 + 11.36 < 0.01a

Sex < 0.01b

 Male 42 3 13 58

 Female 16 19 24 59

Lost to follow-up 6 2 2 10

Recurrence 13 (25%) 3 (15%) 20 (57.1%) 31

PFS (in months) 73.1 75.2 65.1 65.5 < 0.01

Tumor size

 Volume  (cm3, mean ± SD) 14.78 ± 16.31 7.97 + 5.78 9.48 ± 12.51 11.82 ± 13.93 0.07

Knosp grade 0.06b

 0 1 1 2 4

 1 14 1 10 25

 2 15 3 3 21

 3 21 9 14 44

 4 6 8 7 21

Nonfunctional/functional < 0.01b

 Nonfunctional adenoma 40 10 12 60

 Functional adenoma 18 12 15 55

Histological subtype < 0.01b

 NON 40 (68.9%) 10 (45.5%) 12 (32.4%) 62

 GH 4 (6.9%) 3 (13.6%) 16 (43.2%) 23

 ACTH 0 5 (22.7%) 1 (2.7%) 6

 PRL 4 (6.9%) 3 (13.6%) 7 (18.9%) 14

 FSH 9 (15.5%) 1 (4.5%) 2 12

 TSH 1 (1.7%) 0 1 (2.7%) 2

Fig. 7 Probability of progression-free survival of three groups 
of pituitary adenomas. Blue denotes Group I, red denotes Group II, 
and green denotes Group III
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comparable in size or even slightly smaller than those in 
the other groups. Additionally, there were no statistically 
significant differences in Knosp grading among the three 
groups.

External validation of the novel subtypes of PAs
To identify genes associated with each subtype, we 
employed the Random Forest method and designated 
genes with an importance score greater than 1 as core 
genes. A gene signature comprising 597 genes (243 
in Group I, 190 in Group II, and 164 in Group III) was 
established based on differentially expressed genes, 
each demonstrating a distinct signature (Fig.  8). We 
collected samples from 24 new patients and used the 
E-MATB-7768 dataset [31] as the validation cohort, 
comprising a total of 158 patients to validate the reliabil-
ity of our new molecular subtype classification. Addition-
ally, we isolated and characterized pituitary tumor stem 
cells from these 24 patients in culture. The 158 pituitary 
adenomas in the validation set were similarly catego-
rized into three distinct groups, achieving clear separa-
tion among them. Pituitary tumor stem cells from these 
patients were also classified into the same three groups.

– Group I: 49 tumors (31.0%), including 36 nonfunc-
tioning pituitary adenomas, 1 gonadotroph adeno-
mas, 3 growth hormone adenomas.

– Group II: 39 tumors (24.7%), consisting of 11 non-
functioning pituitary adenomas, 1 thyrotrophin ade-
nomas, and 27 corticotrophin adenomas.

– Group III: 79 tumors (50.0%), with 44 somatotroph 
adenomas, 12 nonfunctioning pituitary adenomas, 18 
prolactinomas, 5 thyrotropin adenomas.

Each subtype exhibited a unique distribution pattern 
of protein-coding genes (Figure S3). The final results of 
the differential gene analysis (adjust p value < 0.05 and 
log2FC > 2) are as follows:

– Group I: we identified 458 upregulated genes and 
1177 downregulated genes.

– Group II: we discovered 615 upregulated genes and 
637 downregulated genes.

– Group III: we found 601 upregulated genes and 865 
downregulated genes.

Functional annotation and immune microenvironment 
in the validation set
In the validation set, the results of differential gene func-
tion annotation were similar to those observed in the 
training set. All three groups showed enrichment in 
functions such as cell adhesion, positive regulation of 

gene expression and neuropeptide signaling, cell–cell 
signaling, neuroactive ligand-receptor interactions, and 
the cAMP signaling pathway. Group I was also predomi-
nantly enriched in functions related to signaling, whereas 
Group III was predominantly related to potential malig-
nant transformation. Notably, unlike the training set, 
group II in the validation set was enriched for PI3K–Akt, 
JAK–STAT, and Wnt signaling pathways, which may be 
due to the higher prevalence of Cushing’s disease patients 
in the validation cohort (Fig. 8, Table S3).

The results of the immune microenvironment for 
each group were also consistent with the test set results. 
Group I was characterized by high levels of B cells and 
macrophages, with strong correlations between B cells, 
macrophages and various T cell types. Group II had a 
marked monocyte infiltration, and showed a significant 
correlation between neutrophils, natural killer cells and 
monocytes; Group III had markedly elevated levels of T 
cells, with weaker correlations between dendritic cells 
and natural killer T cells and other immune cells (Figure 
S5, Table S4).

Pituitary adenoma stem cells and classification correlation
We isolated, cultured, and characterized pituitary ade-
noma stem cells. Their morphology under light micros-
copy is presented, along with immunofluorescence and 
confocal images highlighting markers such as Oct4, Sox2, 
CD133, and Nestin, as shown in Fig.  9. To examine the 
correlation between our new classification and pituitary 
adenoma stem cells, we isolated and characterized these 
cells from tumor tissues of 24 newly collected patients in 
the validation cohort; the specific details are provided in 
Table  S5. Notable variations in stem cell characteristics 
were observed among the three groups.

Our analysis particularly focused on the differences 
between Group III and Groups I and II. We identified a 
total of 491 genes that were upregulated and 142 genes 
that were downregulated in Group III stem cells. Func-
tionally, the upregulated genes in this group were pre-
dominantly enriched in processes such as cell adhesion, 
cell differentiation, positive regulation of gene expres-
sion, negative regulation of cell proliferation, and cell 
migration. Moreover, pathway enrichment analysis 
revealed significant involvement in tumorigenesis path-
ways in cancer, PI3K–Akt signaling, calcium signaling, 
cAMP signaling, and Ras signaling pathways (Fig.  10). 
Similar patterns of gene expression and pathway enrich-
ment were observed in the tumor tissues as well.

Discussion
In this study, we identified three transcriptionally dis-
tinct subtypes of pituitary adenomas. These subtypes are 
independent of traditional histological classifications, 
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Fig. 8 Gene expression data identify three gene expression subtypes: A using the predictive 597 gene list, samples were ordered on the basis 
of subtype predictions. B Gene order from the E-MATB-7768 samples and 24 new samples were maintained in the validation data set (n = 158). C 
Visualizing the results of multi-cohort variance analysis of test and validation sets. D GO analysis of differentially expressed genes between three 
groups of the validation set. E KEGG enrichment of differentially expressed genes between three groups of the validation set
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each characterized by unique genetic and molecular fea-
tures that correlate with various stages of tumor genesis, 
progression, and interactions within the immune micro-
environment. The robustness of this novel classification 
was confirmed in an independent validation set, demon-
strating that these subtypes are not artifacts of technical 
errors, chance, or biased sample selection. The identifica-
tion of these subtypes is pivotal because it indicates that 

the clinical outcomes and therapeutic needs of patients 
vary significantly among the subtypes.

Additionally, we have isolated, cultured, and charac-
terized PASCs, revealing widespread alignment with the 
new classification. This suggests that different subtypes 
may originate from distinct cells or are driven by diver-
gent pathogenic mechanisms. Studying these subtypes 
and their corresponding PASCs could greatly enhance 

Fig. 9 The morphology of pituitary adenoma stem cells. A The morphology of human pituitary adenoma stem cells. A Representative 
morphological change of PASC on day 3, day 7, day 14 and day 21 by microscopic observation. B Immunohistochemistry and confocal analysis 
of Oct4, Sox2, CD133 and Nestin in PASCs cultured on day 14. All the markers were positively stained in the PASCs. Scale bar is 100um for all panels
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our understanding of pituitary adenoma pathology. Cur-
rent classifications are largely empirical, based primarily 
on histological observations [33]. However, histo-prog-
nostic classification is a topic of debate, which is not 

directly related to patient prognosis and does not reflect 
pathological changes at the cellular and molecular level. 
Our molecular classification, which is independent of 
traditional histological typing, closely correlates with 

Fig. 10 Illustration of differentially expressed genes in PASC between Group III and Groups I and II. A Volcano plots illustrating differential gene 
expression in Group III, with 491 genes upregulated and 142 genes downregulated. B, D Pathway enrichment analysis of differentially expressed 
genes in Group III based on the KEGG database. C GO analysis of differentially expressed genes in Group III. E ID of GO term and KEGG pathway
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clinical phenotypes and molecular distinctions. This 
approach provides a robust framework for enhancing our 
understanding of tumor biology and improving therapeu-
tic strategies.

Our study delineates the unique clinical features and 
prognostic outcomes of each subtype, revealing signifi-
cant biological diversity characterized by distinct gene 
expression profiles and clinical attributes. Group I pri-
marily comprises nonfunctioning adenomas, typically 
presenting fewer symptoms and associated with a bet-
ter prognosis. These adenomas are prevalent in older 
patients with a balanced gender distribution. The main 
molecular features are related to signal transduction 
mainly including the cAMP signaling pathway, followed 
by the cGMP–PKG signaling pathway, which signifi-
cantly impacts cellular proliferation and hormone secre-
tion [34]. Group II, characterized by a significant female 
predominance, includes a wide range of adenoma types; 
noteworthy, almost all corticotrophic adenomas fall 
within this group. Group II is notably affected by meta-
bolic alterations, including nitrogen metabolism, argi-
nine biosynthesis in cancer, and the PI3K–Akt pathway. 
The validation set showed enrichment for the Ras, Hippo, 
JAK–STAT, and Wnt signaling pathways, possibly due to 
the higher prevalence of Cushing’s disease patients in the 
cohort. There is a notable enrichment of males in Group I 
and females particularly in Group II. This is an intriguing 
observation, though we currently do not have a definitive 
explanation for the sex-related differences in these spe-
cific subtypes. Literature suggests that prolactinomas, 
which are typically benign prolactin-secreting adeno-
mas derived from lactotrophs, account for approximately 
50% of all pituitary adenomas in both women and men. 
Interestingly, in individuals aged 25–44 years, prolactino-
mas predominantly affect women, with a female-to-male 
ratio ranging from 5:1 to 10:1. However, this ratio tends 
to equalize after menopause [35]. Group III, consist-
ing of younger patients and primarily harboring growth 
hormone adenomas, did not show a significant differ-
ence in tumor size compared to the other two groups. 
However, this group exhibited a higher recurrence rate, 
with nearly half of the patients experiencing recurrence. 
Group III showed upregulation in the JAK–STAT and 
PI3K–Akt signaling pathways. These pathways contribute 
to the subtype’s aggressive behaviors, promoting survival 
and proliferation and linking to the more severe tumor 
phenotypes observed in this group [26, 36]. In addition, 
recent studies have shown that transcription factors also 
play a key role in regulating pituitary adenoma behavior, 
which adds to the complexity of our understanding of 
pituitary adenomas, e.g. dysregulation of the transcrip-
tion factor PIT1 may contribute to the pathogenesis of 
somatotroph and lactotroph adenomas by altering the 

network of genes involved in cell cycle control and apop-
tosis [18, 37].

In our analysis, the distribution of the 24 TIICs showed 
a high degree of heterogeneity across different PA histo-
logical subgroups. Also, a high degree of heterogeneity 
was shown in the new subtypes. Even within subgroups 
TIIC distribution differed significantly between cases. 
Our study reveals a complex immune microenviron-
ment across the three subtypes of pituitary adenomas, 
emphasizing the significant heterogeneity in immune 
landscapes. This heterogeneous immune infiltration phe-
nomenon in the tumor microenvironment (TME) has 
been observed in other tumors [50–53]. While previous 
studies have described generalized immune suppres-
sion in pituitary adenomas, researchers have not reached 
a consensus on the distributions of tumor-infiltrating 
immune cells (TIICs) in PAs. Andrew et al. reported that 
more Macrophages in larger adenomas [38] and Zhou-
wen et  al. found that growth hormone adenomas had 
more T-cell infiltration [39].

Our findings provide a more nuanced understanding. 
Group I exhibited significantly higher levels of DCs and 
lower levels of various T cells. Group II was character-
ized by elevated levels of B cells, monocytes, and mac-
rophages. Group III displayed increased levels of NK cells 
and most types of T cells including CD4+ T cells, γ–δ T 
cells, nTreg cells, iTreg cells, Th1 cells, Th17 cells, and 
Tcm cells. The expression of immune checkpoints across 
the subtypes varies, with Group III showing upregula-
tion of both stimulatory and inhibitory checkpoints like 
PD-1, CTLA-4, and various HLA molecules, which is 
consistent with the findings of our previous studies [39]. 
This pattern could indicate a sophisticated strategy by 
the tumor to evade immune surveillance while maintain-
ing an inflammatory state, making it a potential target 
for checkpoint blockade therapies. In contrast, Group I 
predominantly showed high expression levels of CD40, 
CD276, C10orf54 and SIRPA. Notably, most of the ICMs 
were significantly downregulated in group II and negative 
correlations among nearly all HLA-related genes, exhib-
its a distinctly “cold tumor” nature. In contrast to Group 
III, enhancing the overall immune response or modifying 
the inflammatory milieu in the first and second groups 
could improve the efficacy of existing therapies.

Studies targeting pituitary tumor PASC are still lacking, 
remaining at the stage of stem cell isolation, while genetic 
analysis of PASC is even more limited. We investigated 
the isolation, culture and characterization of pituitary 
adenoma stem cells (PASCs), performed transcriptomic 
analysis and matched tumor tissues to explore the char-
acteristics of PASCs in molecular typing. Our analysis 
particularly focused on the third group with the worst 
prognosis. A recent study demonstrated that somatic 
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mutations found in primary pituitary tumor samples 
were consistently detectable in the exomes of the pitui-
tary glands corresponding to each tumor. Additionally, 
the analysis of tumor DNA revealed a relatively low count 
of somatic mutations [40–42]. Our RNA sequencing 
analysis showed that some pathways identified in tumor 
tissues were also present in matched PASCs. Function-
ally, the upregulated genes in this group predominantly 
showed enrichment in processes associated with anti-
apoptotic behaviors and stemness characteristics, includ-
ing cell adhesion, cell differentiation, positive regulation 
of gene expression, negative regulation of cell prolifera-
tion, and cell migration. Moreover, pathway enrichment 
analysis revealed significant involvement in tumorigen-
esis pathways in cancer, PI3K–Akt signaling, calcium 
signaling, cAMP signaling, and Ras signaling pathways. 
PASCs in aggressive pituitary tumors exhibit increased 
self-renewal capabilities and resistance to conventional 
therapies, likely driven by active signaling pathways such 
as PI3K–Akt and Wnt/β-catenin [43].

These insights enhance our understanding of the bio-
logical underpinnings of pituitary adenomas, advanc-
ing personalized treatment approaches. In response to 
the current problem of aggressive pituitary adenomas 
(PAs), which are often refractory to standard therapies 
and temozolomide (TMZ), targeted therapies against 
PI3K/Akt signaling and immunotherapies against PD1/
PDL1 have been investigated [36, 44]. However, clinical 
trials are scarce, with only a few case reports confirming 
its efficacy, and most studies still in in vitro cellular vali-
dation or in animal studies [24]. Novel molecular clas-
sifications may enhance these personalized treatment 
strategies. For instance, patients in immunotherapy 
Group III might benefit more than those in Group II, 
suggesting targeted approaches based on tumor subtype. 
Further research is essential to translate these prelimi-
nary findings into effective clinical interventions.

Conclusion
In conclusion, our study proposes a new molecular classi-
fication of pituitary adenomas, which provides an impor-
tant basis for understanding changes in tumor behavior 
and prognosis. This new molecular classification is inde-
pendent of traditional histological classifications, with 
each subtype individually exhibiting unique genetic and 
molecular features, as well as a distinct immune micro-
environment. The robustness of this novel classification 
has been confirmed through an independent validation 
set. We isolated and identified pituitary adenoma stem-
like cells (PASCs) and paired them with tumor tissues for 
transcriptomic analysis.
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