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used FUSION software to identify gene expression asso-
ciations in the amygdala, with expression weights from 
GTEx V8 data. PWAS analysis computed SNP impacts 
on protein levels using predictive models (top1, blup, 
lasso, enet, bslmm), combined with GWAS z-scores 
using FUSION. Co-localization analysis employed the 
COLOC method to assess variant impact on ASD risk 
and protein levels with priors p1 = 10^-4, p2 = 10^-4, and 
p12 = 10^-5. An H4 value ≥ 0.75 indicated strong evi-
dence for co-localization. MR analysis used SNPs with 
genome-wide significance (P < 5E-08) as instrumental 
variables to estimate causal effects. Cell-type specificity 
analysis used CSEA-DB data to map genetic signals to 
specific cell types. PPI networks were constructed using 
the GeneMANIA database for gene function analysis. 
LDSC and PheWAS explored ASD gene associations with 
other diseases. Single-cell RNA-seq analysis utilized the 
GSE165398 dataset from the hippocampus of ASD mice. 
Quality control was performed using the Seurat pack-
age, filtering cells with nFeature < 200 and mitochondrial/
ribosomal gene expression > 10%. Cell annotation was 
done using SingleR and cross-verification. Differential 
expression of gene sets and hub genes was analyzed using 
Seurat’s AddModuleScore and the Wilcoxon test. Path-
way differences were analyzed with the irGSEA package, 
pseudotemporal analysis was conducted using monocle2; 
and cell communication was investigated using the Cell-
Chat package. See Figure S1 for the study’s flowchart. The 
software versions and parameter settings used are pro-
vided in the Supplementary Material 4.

Autism Spectrum Disorder (ASD) is a complex neurode-
velopmental condition characterized by a range of behav-
ioral and communication challenges [1]. Understanding 
the genetic and molecular underpinnings of ASD is crucial 
for developing targeted interventions. This study employs 
an integrative analysis to reveal the significant genetic and 
molecular foundations of ASD, emphasizing the role of 
SLC30A9 in neuronal inhibition, endothelial cell matura-
tion, and metabolism, thereby suggesting novel biomark-
ers and therapeutic targets for ASD.

Autism Spectrum Disorder data were sourced from 
the iPSYCH-PGC database, which included 18,381 ASD 
cases and 27,969 controls [2]. Proteomic data on 1475 
plasma proteins were extracted from the dorsolateral 
prefrontal cortex of 376 participants [3], and validated 
with 198 additional samples [4]. Transcriptome data 
were obtained from GTEx V8 [5], and cell-type specific-
ity data profiled from the CSEA-DB (https://bioinfo.uth.
edu/CSEADB).Statistical analyses included several steps: 
MAGMA analysis assessed P-values of 18,841 genes 
using 1KGP LD information, with gene set analysis uti-
lizing the MSigDB v.7.0 database, and forward selection 
identifying significant gene sets (P < 0.05). TWAS analysis 
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In our study, we used MAGMA to analyze ASD summary data, identifying 1,782 genes significantly 

Fig. 1  (A) Intersection of MAGMA, TWAS, PWAS in this study; (B) SLC30A9 is expressed in CSEA-DB database: (B1) SLC30A9 is expressed in bodily tissues; 
(B2) SLC30A9 is expressed in Brain cells. (C) Protein-protein interaction networks identified in this study. (D):PheWAS results in this study
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associated with ASD and discovering 10 pathways related 
to its pathogenesis (Tables S1 and S2). Functional enrich-
ment analysis highlighted pathways such as dorsal-ven-
tral axis specification and T-tubule formation. Using the 

FUSION TWAS pipeline, we conducted a summary-
based TWAS analysis, identifying 218 genes signifi-
cantly associated with ASD (P < 0.05), with 65 validated 
by MAGMA (Fig.  1A). Additionally, PWAS confirmed 

Fig. 2 Single-cell analysis. (A) Cell annotation; (B) Violin plots of cell marker expression; (C) Difference in SLC30A9 related gene scores between two 
groups; (D) Difference in SLC30A9 expression between two groups; (E) Difference in SLC30A9 related gene scores in endothelial cells between two 
groups; (F) Difference in SLC30A9 expression in endothelial cells between two groups; (G) Distribution of SLC30A9 expression in cells of both groups; (H) 
Classification of endothelial cells based on high or low SLC30A9 expression; (I) Analysis of differences in HALLMARK signaling pathways between high 
and low groups; (J) Pseudotemporal state staging; (K) Distribution of SLC30A9 expression in pseudotemporal order; (L) Pseudotemporal time series dis-
tribution; (M) Histogram of interaction numbers and intensities between cells of both groups; (N) Differences in cell functional interactions between two 
groups; (O) Overall distribution of signaling pathways in both groups; (P)Heatmap of significant signaling pathways among cells with endothelial cells as 
target cells; (Q) Heatmap of significant signaling pathways among cells with endothelial cells as source cells
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the involvement of GSTZ1, MPI, and SLC30A9, whose 
cis-regulated brain and blood protein levels were linked 
to ASD (Figures S2A and Fig.  1A). Co-localization 
(COLOC) and Mendelian Randomization (MR) analy-
ses provided robust evidence for the association of four 
proteins, particularly SLC30A9, with ASD, suggesting its 
potential impact on relevant biological processes (Fig-
ure S2B). Cell-type specificity analysis revealed a higher 
abundance of SLC30A9 in the brain, primarily involved 
in neuronal inhibition (Fig. 1B1 and 1B2). Protein-protein 
interaction (PPI) networks linked SLC30A9 to essential 
metabolic processes, including zinc ion homeostasis and 
response to metal ions (Fig. 1C). LDSC analysis showed 
ASD’s correlation with other mental disorders, such as 
depression, ADHD, schizophrenia, and loneliness (Table 
S4). PheWAS indicated a strong association between 
SLC30A9 and depression (Fig. 1D).

Following stringent quality control measures, we ana-
lyzed 28,702 ASD cells and 13,576 control cells using Sin-
gleR and manual refinements to annotate hippocampal 
cell populations (Fig. 2A). Violin plots displayed distinct 
cell marker expression profiles between groups (Fig. 2B). 
Significant differences were observed in SLC30A9-related 
genes (Fig. 2C) and SLC30A9 expression itself (Fig. 2D), 
with a notable distribution of SLC30A9 expression at the 
cellular level (Fig.  2G). Notably, differences in endothe-
lial cells were observed (Fig. 2E and F). Endothelial cells 
were categorized into High and Low SLC30A9 groups 
based on median expression values (Fig.  2H). Pathway 
analysis using Rank-based Reduction Analysis(RRA) 
showed increased activation of apoptosis, adipogenesis, 
and androgen response in high SLC30A9 cells (Fig.  2I). 
Pseudotemporal analysis revealed that higher SLC30A9 
expression correlated with terminal differentiation states, 
implicating SLC30A9 in endothelial maturation in ASD 
(Fig.  2J and K, and 2L). Intercellular communication 
analysis indicated reduced interactions in ASD, except 
for increased signaling from neurons to fibroblasts and 
astrocytes to fibroblasts (Fig. 2M and N). The APP path-
way was notably enriched in ASD, especially in interac-
tions from endothelial cells to macrophages, suggesting 
a crucial role in ASD pathogenesis (Fig.  2O, P and Q). 
These findings highlight SLC30A9’s potential influ-
ence on endothelial cell behavior and intercellular sig-
naling in ASD, providing new insights into the disease 
mechanisms.
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