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Abstract

The intricate interplay between the host and its microbiota has garnered increasing attention in the past decade.
Specifically, the emerging recognition of microorganisms within diverse cancer tissues, previously presumed sterile,
has ignited a resurgence of enthusiasm and research endeavors. Four potential migratory routes have been identi-
fied as the sources of intratumoral microbial “dark matter,"including direct invasion of mucosal barriers, spreading
from normal adjacent tissue, hematogenous spread, and lymphatic drainage, which contribute to the highly het-
erogeneous features of intratumor microbiota. Importantly, multitudes of studies delineated the roles of intratumor
microbiota in cancer initiation and progression, elucidating underlying mechanisms such as genetic alterations,
epigenetic modifications, immune dysfunctions, activating oncogenic pathways, and inducing metastasis. With

the deepening understanding of intratumoral microbial composition, novel microbiota-based strategies for early can-
cer diagnosis and prognostic stratification continue to emerge. Furthermore, intratumor microbiota exerts significant
influence on the efficacy of cancer therapeutics, particularly immunotherapy, making it an enticing target for inter-
vention in cancer treatment. In this review, we present a comprehensive discussion of the current understanding per-
taining to the developmental history, heterogeneous profiles, underlying originations, and carcinogenic mechanisms

of intratumor microbiota, and uncover its potential predictive and intervention values, as well as several inevitable
challenges as a target for personalized cancer management strategies.
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Introduction

The human microbiota encompasses a vast number of
interacting microorganisms, including bacteria, viruses,
fungi, and archaea, inhabiting various locations both on
human surfaces and within the body [1]. Thereinto, the
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gastrointestinal tract, particularly the colon, stands out
as the largest microecosystem, harboring several trillion
microbial cells [2]. Moreover, the gene set among the
resident microbes surpasses that of the human host by
more than 100 times [3]. Once as a “forgotten organ’, the
gut microflora has been extensively demonstrated over
the past decade to play a pivotal role in upholding host
homeostasis, which serves as a significant determinant
in the variability of disease occurrence, progression, and
therapeutic response [4, 5]. Thanks to advancements in
modern sequencing and metagenomics techniques, it has
become evident that human tissues and organs, includ-
ing tumor tissues (excluding those on body surfaces
or in cavities), are not entirely sterile but rather harbor
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low biomass microbial communities [6]. Specifically, the
tumor tissue-resident microbes in both extracellular and
intracellular spaces, termed as intratumor microbiota,
has gained significant attention as a novel and crucial
component within the tumor microenvironment (TME)
across various cancer types [7]. Despite their eminently
lower abundance compared to gut microbiota, recent
studies have uncovered tangible findings regarding the
impact of intratumor microbiota on cancer development
and treatment [8].

As of now, only 11 carcinogenic microbes have been
identified in humans, including seven viruses (Epstein-
Barr [EBV], Hepatitis B [HBV], and Hepatitis C [HCV]
viruses; Kaposi sarcoma herpesvirus; human immunode-
ficiency virus-1; human papillomavirus [HPV]; human
T cell lymphotropic virus type 1 [HTLV]), one bacte-
rium (Helicobacter pylori), and three platyhelminths
(Opisthorchis viverrini; Clonorchis sinensis; Schistosoma
haematobium) [9]. However, it is noteworthy that an
estimated 13% of global cancers could be attributable to
these pro-tumorigenic “oncomicrobes” [10]. Actually,
the renewed topic of intratumor microbiota has been
under discussion for thousands of years (Fig. 1). As early
as 2600 BC, the esteemed Egyptian physician Imhotep
advocated an anti-tumor regimen that entailed applying
poultices, followed by incising swellings and then caus-
ing infection [11]. In the fourteenth century, the Italian
priest Peregrine Laziosi (1265—-1345) earned recognition
as the patron saint of cancer patients when the tumor
in his tibia miraculously vanished after the malignant
lesion became severely infected [12]. Likely inspired by
these, several endeavors were undertaken to shrink can-
cers through erysipelas infection. The German physician
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Busch in 1868 pioneered the practice of infecting cancer
patients with erysipelas, resulting in a remarkable regres-
sion of the malignancy [13]. The next notable advance-
ment in microbiotherapy came from William Coley, now
credited as the father of cancer immunotherapy. In 1893,
he invented a vaccine incorporating two inactivated bac-
teria: Streptococcus pyogenes and Serratia marcescens,
known as “Coley’s toxins” Coley’s vaccine demonstrated
universally effectiveness against a variety of malignancies,
including sarcomas, melanomas, lymphomas, myelomas,
and a broad spectrum of carcinomas [14, 15]. Currently,
the sole conventional analogous to Coley’s vaccine is
bacillus Calmette-Guerin. It is administered directly to
the tumor, representing the most effective treatment for
superficial bladder cancer [16, 17].

Additionally, following Bloch’s discovery of the accu-
mulation of phages in tumor tissue leading to the sup-
pression of cancer growth in 1940s [18], significant
progress has been achieved in identifying pro-tumori-
genic viruses, such as EBV and HTLV for special lym-
phoma subtypes [19, 20]. Of note, EBV was the first
human oncogenic virus to be discovered by Epstein
and Barr in 1964 [21], leading to approximately 143,000
(1.8%) annual deaths globally attributed to EBV-related
malignancies [22]. In 2015, the U.S. Food and Drug
Administration approved the first oncolytic virus, talimo-
gene laherparepvec (T-VEC), for the treatment of meta-
static melanoma [23], signifying a promising emerging
category of anti-tumor immunotherapy.

Nevertheless, although the significant milestone
achieved with the first successful cultivation of H.
pylori in 1982 by Marshall and Warren, marking a piv-
otal moment in human medicine, currently, only this
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particular carcinogenic bacterium has been firmly estab-
lished causal relationships with gastric cancer [24, 25].
Notably, through employing real-time quantitative poly-
merase chain reaction of 16S ribosomal RNA (rRNA) in
2020, Nejman et al. investigated 1010 tumors for bacteria
spanning melanoma, glioblastoma, breast, lung, ovary,
bone, and pancreas cancers [6], which unveiled unique
microbial compositions varying among different cancer
types. Subsequently, Narunsky-Haziza [26] and Dohlman
[27] have individually revealed the characteristics of can-
cer mycobiome and its diagnostic as well as prognostic
potential in 2022.

Nowadays, technological advancements are greatly
expediting the characterization of intratumoral micro-
bial “dark matter,” fueling widespread research interest in
leveraging intratumor microbiota to influence both the
development and treatment of cancer. Here, we present
a comprehensive overview of the heterogeneous compo-
sition and probable origins of intratumor microbiota, as
well as their evolving roles in modulating cancer progres-
sion and underlying mechanisms. Furthermore, we eluci-
date the potential transformative influence of intratumor
microbiota in clinical settings, while also highlighting the
inherent challenges and future prospects it poses as an
intervention target for custom-fit precision cancer man-
agement strategies.

Intratumor microbiota

While the intratumor microbiota has been a subject of
discussion for a long time, recent years have seen a resur-
gence of enthusiasm, driven by advancements in modern
technology and methodology [28], such as 16S rRNA
sequencing, shotgun metagenomic sequencing, electron
microscopy, immunohistochemistry, fluorescence in situ
hybridization (FISH), and culturomics, allowing for the
differentiation of low biomass bacterial DNA from tumor
tissue (Table 1). Here, we present recent encouraging
findings related to intratumor microorganisms, outlining
their distinct compositions and potential migratory tra-
jectories, with the aim to foster an in-depth understand-
ing of the microbe-host interactions within tumors.

Heterogeneity of intratumor microbiota

The abundance, composition, and spatial distribution
of intratumor microbial populations vary significantly
across different cancer types (Table 2). By analyzing
seven tumor types—lung, breast, pancreas, ovary, bone,
melanoma, and brain tumors—using a platform with
species-level resolution, Nejman and colleagues unveiled
cancer type-specific microbial features [6]. Their find-
ings highlighted that breast cancer harbors a notably
rich and diverse microbiome compared to other tumor
types and normal breast tissues from healthy individuals.
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Interestingly, tumor-adjacent normal breast samples
exhibited an intermediate bacterial load and richness
between those of the breast tumors and normal sam-
ples. In terms of microbial composition, Firmicutes and
Bacteroidetes were the predominant bacterial species in
colorectal tumors, while Proteobacteria dominated the
microbiome of pancreatic cancer. Actinobacteria, includ-
ing Corynebacteriaceae and Micrococcaceae families,
were notably prevalent in non-gastrointestinal tumors.
Following that, the research team further revealed can-
cer-type-specific fungal localization patterns [26]. Of
note, intratumor fungi were predominantly found intra-
cellularly in breast, pancreatic, and ovarian cancers,
whereas they primarily localized to macrophages in
melanoma and lung cancers. In a sense, this pronounced
heterogeneity of intratumor microbiota aligns with the
intricate molecular and pathological characteristics of
malignancies, which could be crucial for grasping the
biological behavior of the tumors and exploiting novel
targets for personalized cancer therapy.

Origination of intratumor microbiota

The TME provides conducive niches for microbial habi-
tation owing to its hypoxic microenvironment, nutrients
availability, and immune incompetence [72]. Although
considerable research on the composition of intratumor
microbes, there remains limited understanding regarding
the origins of microorganisms inhabiting tumor tissue
and their migratory pathways. In this context, we pri-
marily delve into four likely originations or pathways of
intratumor microbiota based on recent findings, namely
direct mucosal barriers invasion, dissemination from
normal adjacent tissue (NAT), hematogenous spread, and
lymphatic drainage (Fig. 2).

It is understandable that microorganisms can infiltrate
tumors in tissues or organs that are in direct contact with
the external environment, such as the gastrointestinal
tract, lungs, oral cavity, nasopharynx, and genitourinary
organs, due to compromised mucosal barriers caused
by tumorigenesis. Among these, Fusobacterium nuclea-
tum not only characterized the gut microbial feature of
colorectal cancer (CRC) patients [73], but also exhib-
ited enrichment in CRC tumor tissues, particularly in
those with certain molecular subtypes such as Kirsten
rat sarcoma viral oncogene homolog (KRAS) mutation
and microsatellite instability-high [74, 75]. Recently,
Zhu et al. demonstrated that E nucleatum could invade
cancer cells by binding to DHX15, contributing to colo-
rectal tumorigenesis in Villin-Cre/Kras®'?P+~ mice
[74]. Another analysis of 1697 CRC samples from Aus-
tralasian revealed a close association between F nuclea-
tum and DNA mismatch repair deficiency (MMRd) in
both hereditary and sporadic CRC cases, indicating the
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Fig. 2 Potential sources of intratumor microbiota. The hypoxic, nutrient-abundant, and immunoincompetent TME provides a desirable habitat

for microorganisms. The initiation for microbial migratory involves direct mucosal barriers invasion, while the NAT would serve as a “transfer station”
following microbes’invasions. In addition, hematogenous spread and lymphatic drainage play significant roles as supplementary pathways

for microbial migratory trajectories. Abbreviations: NAT, normal adjacent tissue; TME, tumor microenvironment

pivotal role of MMRd-related TME in E nucleatum colo-
nization [49]. Notably, genetic heterogeneity appears to
play a pivotal role in determining bacterial colonization.
Zepeda-Rivera et al. conducted pan-genomic analyses on
135 E nucleatum strains and found that the F nucleatum
subspecies animalis (Fna) consists of two distinct clades
[76]. Of them, Fna C1 is primarily found in the oral cav-
ity, whereas Fna C2 predominates in human CRC tumor
niches and promotes tumorigenesis by altering intestinal
metabolism to increase oxidative stress.

Furthermore, efforts are underway to trace bacte-
rial migratory pathways more accurately. Through sin-
gle-nucleotide variant analysis, Qiao and colleagues
unveiled that the predominance of microbes, including
Corynebacterium and Staphylococcus, in nasopharyn-
geal carcinoma (NPC) tissues largely stemmed from the

nasopharyngeal microbiota [61]. Likewise, Liao et al
identified 13 species, such as E nucleatum and Prevotella
intermedia, as oral-translocated and enriched in NPC
patients through 16S rRNA sequencing on the paired
nasopharyngeal-oral microbial samples, further validated
by culturomics, clonal strain identification, and meta-
transcriptomes [77].

Despite the discussion of the NAT as a potential source
of intratumor microbiota due to the resemblance in
microbial composition between NAT and tumor tissue in
a number of Reviews [28, 78, 79], the NAT might func-
tion as the “transfer station” subsequent to microorgan-
ism invasion of mucosal barriers. A study involving 82
CRCs, 118 adenomas, and 149 matched adjacent nor-
mal mucosae found that the abundance of F nucleatum
in NAT from cancer cases was significantly higher than
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that in tumor tissue and NAT from adenoma cases [80].
In addition, the detection rate of F nucleatum in CRC
cases at stage III/IV increased gradually from superficial
NAT, deep NAT, to cancer tissue. Likewise, Wong-Rolle
et al. showed that the peak bacterial load was observed
in the airway, followed by a lower level in tumor cells and
further reduction in NAT in early-stage lung cancer [35],
suggesting that intratumor microbes might originate
from the lower airway through NAT. Hence, we catego-
rized the source of spreading from NAT to be a conse-
quence of mucosal barrier invasion.

Navigating hematogenous or lymphatic migratory
routes for microbes presents more stereotypical chal-
lenges than direct invasion of mucosal barriers. But actu-
ally, the impairment of mucosal barriers consistently
constitutes the initial step for microbial migratory. One
notable example is the work by Bertocchi and colleagues
in 2021, which reported the injured gut vascular bar-
rier by the virulence regulator VirF from Escherichia coli
could boost microbial dissemination along the gut-liver
axis and further induce a premetastatic niche formation
of CRC in the liver [81]. Intriguingly, the hematogenous
migratory route appears to offer a promising avenue
for the microbiota-based cancer modulation. Zhu et al.
observed that the abundance of Akkermansia mucin-
iphila increased in tumor tissue following the gavage of
A. muciniphila in a lung cancer mouse model, which has
a significant impact on the composition of intratumor
microbiota [82]. Crucially, after 2 h of bacterial admin-
istration, A. muciniphila was notably elevated in blood
samples as detected by 16S rDNA sequencing, suggesting
a probable crosstalk between intestinal and intratumoral
microbiota through systemic circulation. Similarly, the
lymphatic drainage route of microbial translocation plays
a pivotal role in bolstering extraintestinal anti-tumor
immune responses during immune checkpoint blockade
(ICB) therapy. Choi and colleagues reported that ICB
treatment could stimulate the translocation of specific
gut bacteria, such as Enterococcus faecalis and Lacto-
bacillus johnsonii, to extraintestinal tissues by inducing
lymph node remodeling and activating dendritic cell
(DC) in a preclinical melanoma model [83], which is
conducive to exert optimal anti-tumor T cell responses
against extraintestinal tumors.

Impacts of intratumor microbiota on cancer
occurrence and progression

The roles of microorganisms in tumorigenesis have been
extensively explored, with H. pylori infection associated
with gastritis, gastric ulcer, and gastric cancer serving
as a paradigm of bacterium-mediated cancer formation
[84]. With advances in detection techniques, accumu-
lating data suggest the presence of tumor type-specific
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intratumor microbes, which are now recognized as inte-
gral components of the TME [85]. Using spatial-profiling
technologies, Li and colleagues established a spatial cou-
pling between microbes and T cells in cancer, which plays
a critical role in shaping the contexture of TME [86].
Here, we mainly discuss emerging evidence regarding the
mechanisms by which intratumor microbiota contribute
to cancer development in recent years (Fig. 3), including
genetic alterations, epigenetic modifications, immune
dysfunctions, activating oncogenic pathways, inducing
metastasis, and other relevant mechanisms.

Genetic alterations

Genome alterations, such as DNA damage and gene
mutations, play a central role in the genesis and progres-
sion of cancer. Members of the microbiota can directly
cause DNA damage through the production of certain
metabolites or secretions such as toxins [87, 88] and
membrane vesicles (MVs) [89], which have the ability
to alkylate DNA, induce DNA double-strand breaks, or
generate excessive reactive oxygen species (ROS). For
instance, Okuda et al. observed the associations between
tumor-residing Fusobacterium and a series of altered
genes in CRC, and they underscored the potential of
Campylobacter in promoting carcinogenesis by inhibit-
ing double-strand DNA break repairs [47]. Moreover,
Campylobacter jejuni has been shown to induce CRC
pathogenesis in a cytolethal distending toxin-dependent
manner in germ-free ApcMW T mice [90]. MVs, which are
nano- or micrometer-sized lipid-bound vesicles released
from cells, serve as vehicles for the systemic delivery of a
variety of molecular cargoes, including nucleic acids, sug-
ars, lipids, and proteins, to recipient cells [91]. Miyakawa
and colleagues discovered that odontolyticus secretes
lipoteichoic acid-rich MVs, which can induce excessive
ROS production by causing mitochondrial dysfunction
in colonic epithelial cells, consequently leading to DNA
damage and the initiation of CRC [89].

Epigenetic modifications

Epigenetic modifications, including DNA methylation,
non-coding RNAs, and histone modifications, consti-
tute another significant mechanism implicated in cancer
development through the regulation of gene expression.
E nucleatum has been implicated in the alterations of
genome-wide methylation levels in esophageal cancer
[52]. Additionally, Park et al. observed an intimate rela-
tionship between high levels of E nucleatum and hyper-
methylation of the CDKN2A promoter CpG island,
potentially linked with M2 macrophages infiltration in
CRC [75]. Apart from DNA modifications, Qiao et al.
suggested an m6A-dependent mechanisms mediated by
the intratumor Mycoplasma hyorhinis in boosting the
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Fig. 3 Underlying mechanisms of intratumoral microbiota-mediated cancer progression. Five putative mechanisms have been proposed
to illustrate how intratumor microbiota contribute to cancer formation and development, including genetic alterations, epigenetic modifications,
immune dysfunctions, activating oncogenic pathways, and inducing metastasis. Abbreviations: TME, tumor microenvironment; MVs, membrane

vesicles; ROS, reactive oxygen species; PD-L1, programmed cell death-ligand 1; DC, dendritic cell; MDSCs, myeloid-derived suppressor cells;
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of Streptococcus anginosus; MSI, microsatellite instability; BFT-1, toxic protein secreted by Bacteroides fragilis; EMT, epithelial-mesenchymal transition;
Fn-Dps, . nucleatum-DNA hunger/stationary phase protective proteins. (By Figdraw)

initiation and progression of hepatocellular carcinoma
[44]. That is, M. hyorhinis infection could facilitate the
degradation of mitochondrial fusion protein 1 mRNA
through increasing the level of RNA modification m6A,
thereby promoting mononuclear polyploidy and cancer
stemness by enhancing mitochondrial fission. Notably,
microbial metabolites often engage in the complex inter-
actions between intratumor microbiota and epigenetic
changes. Ma et al. demonstrated that intratumor-bacte-
ria-derived butyrate could fuel lung cancer development
by upregulating H19 expression in tumor cells through
increasing histone H3 lysine 27 acetylation at the H19
promoter and potentiating M2 macrophage polariza-
tion [92]. Interestingly, further studies have pinpointed

the beneficial roles of butyrate in preventing the patho-
genesis of diverse cancer types by enhancing histone
acetylation and activating antitumor immunity [93-95],
implying the existence of tumor-specific roles for micro-
bial metabolites in different cancers.

Immune dysfunctions

The immune-oncology-microbiome axis denotes
immune-mediated interactions between microbiota
and host anti-tumor responses [7], where intratumor
microbes and their metabolites or by-products within the
TME can exert either immunosuppressive or immune-
promoting effects. In pancreatic ductal adenocarcinoma
(PDAC), the microbiota contributed to a tolerogenic
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immune microenvironment by activating Toll-like recep-
tor (TLR) ligation in monocytic cells [96]. Strikingly,
elimination of intratumor bacteria could reverse the
immunosuppressive TME, lead to diminished myeloid-
derived suppressor cells (MDSCs) and enhanced M1
macrophage differentiation, thereby fostering TH1 dif-
ferentiation of CD4+ T cells and activating CD8 + T cells.
Conversely, Kalaora et al. reported that intracellular bac-
teria-derived HLA-bound peptides could be presented
by tumor cells and elicit immune reactivity in melanoma
[97].

The tumor-associated neutrophils tend to confer a
boosting effect on the microbiota-mediated tumorigen-
esis, but warrants further investigation. In a recent pan-
cancer analysis of 4,160 metastatic tumor biopsy tissues,
Battaglia et al. disclosed potential associations between
microbial diversity and tumor-infiltrating neutrophils
and macrophages, resulting in an immunosuppressive
TME [98]. Similarly, the relationships between neutro-
philic inflammation and the growth of tumor-promoting
bacteria have been observed in vulvar squamous cell car-
cinoma [70]. Furthermore, Tan and colleagues found that
the intratumor Porphyromonas gingivalis could facilitate
pancreatic cancer progression through increasing the
secretion of neutrophilic chemokines and neutrophil
elastase [57]. However, neutrophils have been found to
hinder tumor development by restricting the numbers of
bacteria and tumor-associated inflammatory responses
mediated by interleukin (IL) 17 in colon cancer [99].

To date, various studies have highlighted E nucleatum,
a periodontal pathogen, as an oncogenic bacterium capa-
ble of initiating tumorigenesis [100]. Within the TME of
pancreatic cancer mouse model, intratumor E nucleatum
has been shown to inhibit the infiltration of CD8+ T cells
by recruiting MDSCs [58]. The virulence protein Fn-Dps
(E nucleatum-DNA hunger/stationary phase protective
proteins) plays an essential role in favoring the intra-
cellular survival of E nucleatum within macrophages
through increasing the expression of chemokine CCL2/
CCL7 [101]. Additionally, Li et al. revealed that intracel-
lular infection with E nucleatum could suppress the pro-
liferation and cytokine secretion of T cells and promote
programmed cell death-ligand 1 (PD-L1) expression in
esophageal squamous cell carcinoma (ESCC) [54]. Like-
wise, E nucleatum contributed to the progression of oral
squamous cell carcinoma via potentiating tumor cell
proliferation and inducing M2 macrophage polarization
[102]. Another periodontitis pathogen, Porphyromonas
gingivalis, also exhibited close associations with the phe-
notype of cancer immune cell [100]. Ren and colleagues
found that P gingivalis infection robustly promoted
PD-L1 expression on DCs and suppressed antigen-spe-
cific CD8+T cells [103]. Interestingly, the co-culture
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of P gingivalis and FE nucleatum in oral keratinocytes
markedly increased the expressions of pro-inflammatory
mediators, such as IL-1p, IL-8, IL-6, and TNF-a, imply-
ing potential linkages with the pathogenesis of oral can-
cer [104].

In addition to bacteria, the intratumoral mycobiome
and virome also play pivotal roles in cancer progression.
Among them, Alam et al. demonstrated that intratumor
fungi were capable of accelerating PDAC tumor growth
by activating innate lymphoid cells 2 (ILC2) through
IL-33, and antifungal treatment reduced the infiltration
of T helper 2 and ILC2, thereby extending survival [105].
Moreover, Aspergillus sydowii has been shown to fos-
ter lung cancer development by inducing the expansion
and activation of MDSCs through IL-1f secretion [37].
Viral infections can directly regulate certain immune
cells [106]. In human soft tissue sarcomas, Perry et al.
reported close associations between the intratumor viral
microbiome and NK cell infiltration, with a higher abun-
dance of intratumor Respirovirus observed in patients
without metastases compared to those with metastases.

Activating oncogenic pathways

Activation of oncogenic signaling pathways is a preva-
lent mechanism underlying cancer formation and pro-
gression. Remarkably, intratumoral E nucleatum can
promote tumor growth through modulating multiple
pathways. Zhu et al. revealed that in CRC tumor tis-
sues, E nucleatum upregulated the oncoprotein DHX15
by activating the ERK-STAT3 pathway [74]. Similarly,
E nucleatum infection activated the mitogen-activated
protein kinase (MAPK) pathway, leading to increased
expression of Matrix metalloproteinase 7 protein and
enhanced CRC cell migration capacity [107]. Hsueh and
colleagues demonstrated that E nucleatum facilitated
the proliferation of head and neck squamous cell carci-
noma through inhibiting the expression of DNA mis-
match repair-related genes, including MLH1, MSH2,
and MSHS6, via the TLR4/MYD88/miR-205-5p signaling
pathway [108]. Moreover, the progression of epithelial
ovarian cancer induced by Propionibacterium acnes was
associated with an elevated inflammatory response that
activated the hedgehog pathway [66]. Importantly, intra-
tumor microorganisms can regulate oncogenic pathways
through their metabolites or toxins. Most recently, Fu
and colleagues identified Streptococcus anginosus, apart
from H. pylori, as a pathogen that facilitated gastric tum-
origenesis through its surface protein TMPC, leading to
activation of the MAPK pathway [51]. Administration of
the microbial metabolite trimethylamine-N-oxide could
promote CRC tumor cell and stem cell proliferation by
activating the Wnt/B-catenin pathway [109]. In addition,
intratumor enterotoxigenic Bacteroides fragilis enhanced
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the stemness and chemoresistance of breast cancer cell
by secreting the toxic protein BFT-1, which activated the
NOTCHI1-HEY1 signaling pathway via directly bounding
to NOD1 receptor [110].

In addition to the oncogenic pathways discussed above,
several other signaling pathways involve interactions
between intratumor microbiota and cancer development.
For instance, intracellular bacteria residing in breast
cancer suppressed the RhoA/ROCK signaling, thereby
enhancing the survival of circulating tumor cells through
cytoskeleton reorganization [31]. Kong and colleagues
demonstrated the crucial role of the TLR4/Keapl/NRF2
pathway in which F nucleatum regulates CRC metabo-
lism to promote metastasis [111]. Additionally, cytokines
such as IL-6 and TNEF-q, stimulated by intratumor micro-
biota, could activate the NF-kB and STAT3 signaling and
facilitate tumor proliferation [112]. Remarkably, activa-
tion of the stimulator of interferon genes (STING) path-
way by intratumor microbes has been shown to confer
beneficial roles in enhancing anti-tumor responses [113—
115], such as promoting M1 macrophage polarization, as
well as activating NK cells and dendritic cells, which pre-
sents a promising opportunity to improve the therapeutic
outcomes of cancer patients.

Inducing metastasis

Tumor metastasis stands as a primary driver of the lim-
ited efficacy seen in cancer therapies, and emerging find-
ings underscore the crucial involvement of intratumor
microbiota in this metastatic process [116]. Detectable
bacterial DNA within tumors has been noted in vari-
ous cases of cancer metastasis [98]. Notably, Hilmi et al.
reported that the diversity of intratumor microbiota cor-
related more closely with the biopsy site than with the
primary cancer type [117]. Specifically, they observed
lower bacterial richness in lymph node metastases com-
pared to metastases in the lung and liver. Intratumor
bacteria have the capacity to trigger the formation of
a premetastatic niche in the metastatic organ, thereby
facilitating the recruitment of metastatic cells [81]. Once
entering the circulatory system, metastatic cancer cells
can leverage intracellular bacteria to enhance their sur-
vival by rearranging the actin cytoskeleton [31]. Further-
more, the virulence proteins or metabolites produced by
intracellular microbes play a critical role in the metastatic
process. For instance, the virulence factor Fn-Dps from F
nucleatum can enhance its survival within macrophages
and stimulate the migration of CRC cells through the epi-
thelial-mesenchymal transition (EMT) induced by CCL2/
CCL7 [101]. Additionally, low concentrations of butyrate
produced by intratumor bacteria have been implicated in
driving lung cancer metastasis by promoting H19 expres-
sion and enhancing M2 macrophage polarization [92].
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Other relevant mechanisms

Exosomes, carrying diverse proteins, lipids, and RNAs,
play a crucial role in intercellular communication and
regulation [118]. Importantly, increasing evidence sug-
gests intimate interactions between exosomes released
by bacteria-infected tumor cells and cancer development
(Fig. 4) [119]. Among them, E nucleatum infection could
upregulate the expression of microRNA-21 by activat-
ing TLR4/MYD88/NF-kB pathway, which indicated a
higher risk of inferior outcomes in CRC patients [120].
Tang et al. reported that sustained E nucleatum-induced
expression of microRNA-31 enhanced the tumorigenic-
ity of CRC cells by targeting eukaryotic initiation fac-
tor 4F-binding protein 1/2 [121]. In addition, a variety
of researches have revealed the relationships between
exosomes derived from bacteria-infected tumors, includ-
ing miRNA and long non-coding RNA (IncRNA), and
cancer metastasis [122—125], and these exosomes served
as an important hinge joint for intratumor microbiota-
mediated cancer progression. For instance, E nucleatum
has the ability to facilitate CRC metastasis by the miR-
1322/CCL20 axis and M2 macrophage polarization [125].
In oral epithelial carcinomas, Zhang and colleagues dem-
onstrated the capacity of F nucleatum in triggering EMT
through IncRNA  MIR4435-2HG/miR-296-5p/Akt2/
SNAII1 pathway [126].

Inducing resistance to anti-tumor drugs represents
another critical mechanism for exosomes-induced tumor
development. In a recent study, Hui et al. observed that
exosomes derived from E nucleatum-infected CRC cells
transferred hsa_circ_0004085 between cells and impart-
ing resistance to oxaliplatin/5-fluorouracil via relieving
endoplasmic reticulum stress in recipient cells [127].
Likewise, Zeng and colleagues demonstrated that E
nucleatum-induced expression of miR-135b could inhibit
KLF13 expression and promote cisplatin resistance in
CRC [128]. While much of this research has focused
on the interactions between E nucleatum infection and
CRC, these findings highlight the potential of exosomes
as an intervention target for cancer patients, which
deserves further exploration.

Metabolic dysregulation, such as heightened glucose
metabolism, is a critical hallmark of cancer. Of note, F
nucleatum has been shown to promote CRC pathogen-
esis through enhancing glycolysis in tumor cells via the
activation of IncRNA ENO1-IT1 transcription [129]. In
oral squamous cell carcinoma, Sun et al. demonstrated
that tumor-resident E nucleatum could drive the forma-
tion of tumor-associated macrophages and a pro-tumo-
rigenic microenvironment through regulating glycolysis
and extracellular lactate deposition [130]. Apart from
glucose metabolism, alterations in amino acid and nucle-
otide metabolism, inositol phosphate metabolism, and
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Fig. 4 Roles of exosomes derived from bacteria-infected tumor cells in cancer development. Exosomes released by microbiota-infected tumor
cells can promote the progression of tumor by enhancing cell proliferation, EMT, metastasis, anti-tumor drug resistance, and M2 macrophage
polarization. M2, M2-type macrophages; EMT, epithelial-mesenchymal transition

fatty acid biosynthesis have also been implicated in intra-
tumor bacteria-mediated tumorigenesis [79].

Clinical implication and therapeutic potential

of intratumor microbiota

Diagnostic and prognostic tools

The considerable heterogeneity within the intratumor
microbiota, coupled with significant disparities in com-
position between normal and malignant tissue, empha-
sizes its potential as a target for cancer diagnosis and
risk stratification. Nejman and co-authors elucidated
the distinct microbial profiles across multiple cancer
types [6]. Specifically, intratumor microbiota of CRC
was dominated by Firmicutes and Bacteroidetes, and
Proteobacteria was prevalent in pancreatic cancer, while
extra-gastrointestinal tumors primarily featured the Act-
inobacteria phylum. Subsequently, Narunsky-Haziza
et al. highlighted the diagnostic utility of cancer-type-
specific fungal compositions in distinguishing diverse

tumors from normal controls [26]. Among these, the
most robust diagnostic performance was noted in breast
cancer, with an area under receiver operating characteris-
tic curve of 95% CI 81.40-93.53%.

Multiple studies have underscored the prognostic sig-
nificance of intratumor microbiota across a spectrum
of cancer types. Among these, intratumor infection by
anaerobic bacteria, including Bacteroides, Peptoniphilus,
and Lactobacillus, has been strongly linked to shorter
survival time in PDAC [59]. Patients with a higher
intratumor bacterial load, compared to those with low
bacterial load, exhibited significantly inferior rates of
overall survival (hazard ratio [HR], 3.41; 95% CI 1.90—
6.11, P<0.001), disease-free survival (HR, 2.90; 95% CI
1.72-4.90; P<0.001), and distant metastasis-free survival
(HR, 3.18; 95% CI 1.58-6.39; P<0.001) in nasopharyn-
geal carcinoma [61]. In addition, a higher abundance of
intratumor E nucleatum is frequently indicative of poor
survival in various tumor types, such as esophageal
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squamous cell carcinoma, cervical carcinoma, and CRC
[131-133]. However, Neuzillet et al. noted that E nucle-
atum-positive cases in oral squamous cell carcinoma
exhibited a lower metastatic recurrence rate and longer
overall survival when compared to E nucleatum-negative
tumors [60], implying the complexity to develop microbi-
ota-based prognostic strategies specific to tumors.

Bracingly, intratumor microbiota-based cancer strati-
fication models demonstrate exceptional capability in
demarcating patients with particular clinic-molecular
characteristics and prognosis. In an analysis of 423
patients with stage I to IV CRC, Mouradov et al. identi-
fied oncomicrobial community subtypes capable of strat-
ifying CRCs into three distinct subgroups with unique
features and outcomes, which supports the develop-
ment of a framework for intratumor microbiota-based
stratification of CRC [134]. Another classification system,
termed hepatotype, developed through clustering analy-
sis of microbial profiles in HCC, could serve as an inde-
pendent biomarker for predicting prognosis after surgery
[45]. Namely, patients with hepatotype A exhibited
remarkably shorter overall survival and recurrence-free
survival compared to those with hepatotype B. Further-
more, Zhang et al. constructed a virus-associated prog-
nostic signature based on selected viral compositions in a
pan-cancer level, which could classify patients into three
prognostic groups, including good, intermediate, and
poor survival outcomes [135].

Impacting the efficacy of cancer therapy
Chemo- and radiotherapy
Nowadays, radiotherapy and chemotherapy remain the
cornerstone for cancer therapy, and ample evidence indi-
cates the critical roles of intratumor microbiota in modu-
lating the efficacy of chemo- and radiotherapy. According
to a metagenomic analysis of biopsy tumoral tissues, five
core bacteria, including Streptococcus equinus, Blautia
producta, Schaalia odontolytica, Pseudomonas azoto-
formans, and Clostridium hylemonae, exhibited close
interactions with the resistance of neoadjuvant chemora-
diotherapy in locally advanced rectal cancer [136]. More-
over, Colbert et al. demonstrated that the intratumor
Lactobacillus iners could trigger resistance of chemother-
apy and radiation in cervical cancer cells through altering
tumor metabolism and lactate signaling pathways [137].
Various intratumor “oncomicrobes” have been docu-
mented to influence the therapeutic outcomes of chem-
otherapy. The heightened abundance of E nucleatum
has been intimately linked to chemoresistance in CRC
patients, possibly result from its role in preventing pyrop-
tosis by the Hippo pathway [138]. Furthermore, Li et al.
delineated how E nucleatum contributed to oxalipl-
atin resistance in CRC by suppressing ferroptosis [139].
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Interestingly, E nucleatum levels may decrease with the
administration of the chemotherapeutic agent 5-fluo-
rouracil in CRC [140]. However, when 5-fluorouracil
was metabolized by Escherichia coli, it no longer effec-
tively curtailed cancer cell growth or the proliferation
of E nucleatum, highlighting the intricate relationships
between intratumor microbes with chemoresistance.
Intratumor Desulfovibrio desulfuricans has been found
to exhibit increased colonization in CRC tissues among
non-responders [141], and further in vivo experiments
demonstrated that Desulfovibrio, along with its metabolite
S-adenosylmethionine, could attenuate the effectiveness
of the FOLFOX chemotherapy regimen by upregulating
the expression of methyltransferase-like 3. In addition,
Colibactin-producing Escherichia coli has been shown
to induce chemotherapeutic resistance in CRC through
facilitating EMT and cancer cell stemness [142].

Immunotherapy

Immunotherapy represents the cutting-edge in cancer
treatment methods, such as ICB therapy and chimeric
antigen receptor (CAR) T cell therapy. Remarkably,
mounting evidence indicates the substantial influence
of intratumor microbiota on regulating cancer immu-
notherapy response in recent years [143]. In a recent
analysis of the intratumor microbiota in metastatic can-
cer, Battaglia et al. indicated the potential relationships
between Fusobacterium and ICB resistance in lung can-
cer. Specifically, a higher abundance of Fusobacterium,
after adjusting for genome-wide mutational burden, was
significantly linked with reduced overall survival and
progression-free survival in non-small cell lung can-
cer patients [98]. Moreover, differences in intratumoral
microbial composition have been observed between
responders and non-responders to ICB therapy in meta-
static melanomas [6]. That is, responders were enriched
in Clostridium, while Gardnerella vaginalis was more
abundant in tumors of non-responders. Nevertheless, the
accumulation of intratumor Bifidobacterium can convert
the non-responders into responders to anti-CD47 immu-
notherapy by stimulating STING pathway in CRC- and
lymphoma-bearing mouse models [114]. Similarly, Wu
and colleagues demonstrated that the enrichment of
Streptococcus in tumor tissues was conducive to a favora-
ble outcome to anti-PD-1 treatment by inducing CD8+T
cell infiltration in an ESCC mouse model [55]. In addi-
tion, Bender et al. elucidated the interactions between
intratumoral Lactobacillus reuteri and the TME in mela-
noma, mediated by the metabolite indole-3-aldehyde,
using a preclinical mouse model, which simulated anti-
tumor immunity and augmented the efficacy of ICB ther-
apy by amplifying interferon-y-producing CD8+T cells
[144].



Shi et al. Journal of Translational Medicine (2024) 22:837

Reinvigorating anti-tumor immunity
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Although CAR-T cell therapy stands as a monumen-
tal breakthrough in cancer treatment, demonstrating
remarkable efficacy against multiple lymphohematopoi-
etic malignancies, its application to solid tumors remains
challenging due to limited effector cell infiltration
into tumors and the highly immunosuppressive TME
[145]. Encouragingly, emerging evidence suggests the
potential to improve CAR-T efficacy through geneti-
cally engineered virus. Wang and colleagues revealed
that adenovirus armed with the chemokine CXCL11
could significantly potentiate CAR-T effectiveness and
establish a long-lasting anti-tumor response by reshap-
ing the immunosuppressive TME in glioblastoma [146],
including elevated infiltration of CD8+T cells, NK cells,
and M1l-polarized macrophages, along with reduced

frequencies of MDSCs, regulatory T cells, and M2-polar-
ized macrophages.

Targets for cancer therapy

As a leading cause of mortality worldwide, cancer poses
a significant global public health challenge. Thus, there is
an urgent imperative to explore novel targets for cancer
treatment [147]. Considering the profound influence of
intratumor microbiota on cancer progression and treat-
ment outcomes, harnessing intratumor microbiota as
therapeutic targets would present innovative strategies
to complement existing cancer treatments (Fig. 5), such
as (1) modulating microbial composition to reinvigorate
anti-tumor immunity; (2) engineering bacteria to deliver
therapeutic payloads directly to tumors or convert the
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immunosuppressive TME to an immunostimulatory one;
and (3) exploiting oncolytic viruses or bacteria to directly
eliminate tumor cells.

Reinvigorating anti-tumor immunity

The intratumor microbiota emerges as a promising target
for revitalizing the anti-tumor immune response that is
crucial for advancing cancer treatments. The elimination
of intratumor bacterial by antibiotics could potentially
reverse the immune tolerance within the TME in PDAC,
thereby enhancing the efficacy of ICB therapy [96]. Nev-
ertheless, given the potential influence of oral antibiotics
on systemic microbial flora, such as the induction of gut
microbial dysbiosis, which often correlates with damp-
ened responses to immunotherapy [148], therefore, a
more targeted bacteriolytic approach within the tumor is
warranted. Indeed, several studies have demonstrated the
effectiveness of nanoparticle-coupled antibiotics in elimi-
nating tumor-promoting intratumor bacteria without
disrupting the body’s microbiota balance. For instance,
Wang et al. devised a liposome-encapsulated antibiotic
silver-tinidazole complex (LipoAgTNZ) to target intratu-
mor bacteria in primary CRC tumors and liver metastases
with the aim to prevent gut dysbiosis [149]. Significantly,
LipoAgTNZ treatment contributed to the generation of
microbial neoantigens, thereby potentiating anti-tumor
CD8+T cells and resulting in long-term survival in two
E nucleatum-infected CRC models. Additionally, Gao
et al. reported that dual-targeting nanoparticles contain-
ing metronidazole and fluorouridine accumulated within
the TME and released these drugs, achieving a synergis-
tic anti-tumor effect by attacking intratumor bacteria and
cancer cells, respectively [150]. This finding underscores
the feasibility of “kill two birds with one stone” by target-
ing intratumor microbes in cancer therapy.

Peptides derived from intracellular bacteria has been
observed to be immunogenic and can be presented by
the human leukocyte antigen class (HLA)-I and HLA-II
molecules on tumor cells to elicit anti-tumor immune
reactivity in melanoma [97], highlighting the theoretical
foundation for intratumor microbiota-mediated anti-
tumor immune activation. Bacterial outer membrane
vesicles (OMVs) serve as potent immune adjuvants, capa-
ble of transforming the immunosuppressive TME into an
immunologically active one. Caproni et al. demonstrated
that intratumor injection of OMVs derived from the
E. coli BL21(DE3)A60 strain could induce robust anti-
tumor activity, accompanied by rapid infiltrations of DCs
and NK cells in a tumor-bearing mouse model [151]. In
addition, intratumoral vaccination can trigger signifi-
cant anti-tumor immunity. Peng and colleagues indicated
that intratumoral Tissue Antigen-Cervical Intraepithelial
Neoplasia vaccination arouse a stronger antigen-specific
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CD8+T cell responses and anti-tumor effects when
combined with anti-PD-1 blockade therapy in a preclini-
cal HPV model [152].

Engineered bacteria
Bacteria can be genetically engineered to function as
therapeutic delivery vehicles in cancer therapy [153].
Intercellular self-replication and translocation repre-
sent the primary mechanisms facilitating bacterial pen-
etration into tumors [154]. Gurbatri et al. developed a
probiotic bacteria system to meticulously produce and
release nanobodies targeting PD-L1 and cytotoxic T lym-
phocyte-associated protein-4 within tumors [155]. They
observed a significantly amplified anti-tumor effect with
this probiotic E. coli Nissle 1917 (EcN) system, leading
to superior tumor eradication and survival benefits com-
pared to analogous clinically relevant antibodies. Moreo-
ver, Savage and colleagues engineered bacteria to secrete
chemokines, including CXCL16 and CCL20, directly into
tumors [156], which could recruit and activate innate
(DCs) and adaptive (CD8+ T cells) anti-tumor immune
responses, thus providing a novel approach to poten-
tiate cancer immunotherapy. It is worth mentioning
that in a phase I clinical trial involving advanced cancer
patients, Luke et al. investigated the safety and efficacy
of intratumoral injection of engineered EcN expressing
a STING agonist, with and without ICB therapy [157].
The researchers observed the well-tolerated and effective
nature of this probiotic EcN treatment, with no severe
therapy-related adverse events or infections reported.
Notably, beyond serving as a platform for the intratu-
moral delivery of cancer therapeutics, engineered bacte-
ria also possess the capability to activate the anti-tumor
response within the immunologically “cold” TME. Zhou
and colleagues demonstrated the activation of CD8+T
cells in the TME of melanoma following the treat-
ment with genetically modified Salmonella typhimu-
rium, which induced targeted methionine deprivation
in tumor tissues [158]. Additionally, these encoded bac-
teria could be employed as in situ cancer vaccines with
minimal systemic exposure and adverse effects. Among
them, calcium carbonate biomineralized Salmonella has
been shown to function as a cancer vaccine producer,
inducing immunogenic cell death (ICD) in cancer cells
and promoting the formation of gap junctions between
tumor cells and DCs to enhance antigen presentation
[159]. On the other hand, the internalization of Ca®* into
various immune cells could synergize with Salmonella
to systematically regulate the immune system, includ-
ing DCs maturation, macrophages polarization, and T
cells activation. Likewise, Zhu et al. displayed that intra-
tumoral delivery of a probiotic, food-grade Lactococcus
lactis-based in situ vaccination (FOLactis), contributed
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to sustained activation of NK cells, cytotoxic T cells, and
conventional-type-1-dendritic cells within tumors and
tumor-draining lymph nodes by secreting a fusion pro-
tein of Fms-like tyrosine kinase 3 ligand and co-stimula-
tor OX40 ligand in a murine colon cancer model [160].
Further, FOLactis established long-term immunological
memory and protection lasting over 60 days, significantly
prolonged the survival of tumor-bearing mice in combi-
nation with anti-PD-1 therapy.

Oncolytic virus and bacteria

Oncolytic viruses (OVs) refer to native viral species or
genetically engineered viruses that selectively infect and
preferentially lyse tumor cells while sparing non-neo-
plastic cells [23], making them appealing candidates for
precise cancer treatment. Additionally, exposure to OVs
can trigger ICD by prompting the release of damage-
associated molecular pattern molecules, pathogen-asso-
ciated molecular pattern molecules, tumor-associated
antigens, and tumor-associated neoantigens, leading to
the amplification of innate immunity and adaptive anti-
tumor response [161]. So far, a host of preclinical, clinical
trials, and real-world clinical studies have highlighted the
promise of oncolytic virotherapy. Four commercial OVs,
including H101, T-VEC, ECHO-7, and Teserpaturev,
have been approved for cancer therapy globally, as exten-
sively reviewed [23, 161-163]. Notably, the combination
of OVs with immunotherapeutic strategies, such as ICB
and adoptive cellular therapy, has yielded compelling
results and manageable safety profiles in tumor interven-
tion in recent years (Table 3). Most recently, Wang et al.
evaluated the efficacy of combining an oncolytic vac-
cinia virus encoding hyaluronidase with diverse cancer
therapies, including gemcitabine, doxorubicin, liraglu-
tide, anti-PD-1 and anti-CD47 monoclonal antibodies, or
CAR-T cells [164]. The authors found that OVs remarka-
bly improved the therapeutic outcomes of existing cancer
therapeutics by degrading hyaluronic acid in the TME,
highlighting the alluring foreground of OVs in potentiat-
ing the efficacy of cancer treatments. Despite this, sev-
eral concerns regarding oncolytic adenovirus should be
acknowledged, such as the potential safety thereat if “off-
target” and dissemination throughout the body, in vivo
pre-existing neutralizing antibodies to restrain OVs, and
poor targeting delivery efficacy to reach tumor tissues
(162, 165].

In addition, particular bacteria have demonstrated onc-
olytic effects in recent years. Among these, Clostridium
ghonii has shown oncolytic abilities both in in-vitro and
in a mouse model of lung cancer by facilitating the apop-
tosis and necrosis in tumor cells [197]. Notably, Goto
et al. were the first to document the safety and tumor-
suppressing effects of administering tumor-isolated
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oncolytic bacteria via intravenous injection in various
preclinical models, including CRC, sarcoma, metastatic
lung cancer, and drug-resistant breast cancer [198]. Fur-
ther, the tumor-derived Cutibacterium acnes has proven
to be an effective anti-tumor “living drug” with oncolytic
potential in a mouse model of CRC [199]. Importantly, in
the pioneering phase I clinical trial investigating bacteri-
olytic therapy utilizing attenuated Clostridium novyi-NT
(non-toxic) for refractory solid tumors [200], Janku and
colleagues observed that a sole intratumoral injection of
C. novyi-NT led to bacterial spore germination, resulting
in tumor masse lysis in 42% of patients with manageable
toxicities. Despite these findings hint at the potential fea-
sibility of utilizing oncolytic bacteria in cancer therapy,
further research is warranted to verify their safety, effi-
cacy, and underling mechanisms of action.

Prospect and challenges

The burgeoning recognition of the roles played by intra-
tumor microbiota in tumorigenesis presents both prom-
ising prospects and formidable challenges in cancer
management. On one front, the nuanced understanding
of the intricate interactions between microbial communi-
ties and the processes driving tumor initiation and pro-
gression offers novel avenues for innovative therapeutic
intervention strategies. Targeting specific cancer-pro-
moting or immunosuppressive oncomicrobes inhabiting
tumors holds the potential to disrupt tumorigenic path-
ways and augment the efficacy of existing cancer treat-
ments. Furthermore, leveraging the tumor microbiome
as a discerning biomarker for cancer diagnosis and prog-
nostication exhibits considerable promise for advanc-
ing personalized medicine paradigms. Lastly, exploiting
microbiota-mediated cancer therapy involves harnessing
engineered microorganisms as “living drugs” to rejuve-
nate anti-tumor immunity, deliver therapeutic payloads,
or directly kill cancer cells.

Nevertheless, several challenges must be addressed
to fully utilize the potential of intratumor microbiota in
cancer management. Foremost among these obstacles
is the highly heterogeneity within and between tumor
types but low biomass characterizing tumor microbiome,
which impede precise characterization and establish-
ment of universal therapeutic approaches. Meanwhile,
it is essential to refine and standardize methodologies
for profiling intratumor microbial communities while
eliminating host genome and environmental contamina-
tion, which is imperative for reproducibility and com-
parability of intratumor microbiota studies. In a recent
quantitative microbiome profiling analysis of CRC, Tito
et al. did not observe significant associations between
the well-established microbial marker E nucleatum and
CRC diagnostic groups, including healthy individuals,
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adenoma patients, and those diagnosed with carcinoma,
when controlling for several covariates [201], highlight-
ing the challenges and uncertainties inherent in delin-
eating appropriate controls for identifying biomarkers
in cancer microbiome research. In addition, deciphering
how host factors, including genetics, immune status, and
environmental exposures, regulate microbial coloniza-
tion and activity within tumors necessitates interdiscipli-
nary collaborations and innovative research approaches.
Importantly, untangling the causal relationships between
specific microbial taxa and tumorigenesis warrants com-
prehensive longitudinal investigations spanning diverse
cancer types and patient cohorts.

Furthermore, the development of cancer therapeu-
tic strategies targeting intratumor microbiota requires
meticulous attention to safety and efficacy considera-
tions. Apart from potential off-target effects, manip-
ulating microbial populations within tumors may
inadvertently disrupt the symbiotic balance of com-
mensal microbiota in the host, potentially precipitat-
ing adverse effects or engendering treatment resistance.
Thus, refining precision medicine approaches that selec-
tively target carcinogenic microbiota populations without
altering the composition of beneficial microbial commu-
nities assumes paramount importance for the success of
microbiota-based cancer therapies.

In summary, while the exploration of intratumor
microbiota signifies a promisingly revitalized frontier in
cancer research, navigating the complexities and uncer-
tainties inherent in this field demands a concerted effort
from researchers, clinicians, and policymakers alike.
By embracing interdisciplinary collaborations, advanc-
ing technological innovations, and upholding ethical
standards, we can unlock the full potential of intratumor
microbiota as pivotal determinants of cancer pathogen-
esis and therapeutic response, ultimately improving out-
comes for cancer patients.
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