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The gut microbiota modifies antibody 
durability and booster responses 
after SARS‑CoV‑2 vaccination
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Abstract 

Background  Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are pivotal in combating coro‑
navirus disease 2019 (COVID-19); however, the declining antibody titers postvaccination pose challenges for sustained 
protection and herd immunity. Although gut microbiome is reported to affect the early antibody response after vac‑
cination, its impact on the longevity of vaccine-induced antibodies remains unexplored.

Methods  A prospective cohort study was conducted involving 44 healthy adults who received two doses 
of either the BNT162b2 or ChAdOx1 vaccine, followed by a BNT162b2 booster at six months. The gut microbiome 
was serially analyzed using 16S rRNA and shotgun sequencing, while humoral immune response was assessed using 
a SARS-CoV-2 spike protein immunoassay.

Results  Faecalibacterium prausnitzii was associated with robust and persistent antibody responses post-BNT162b2 
vaccination. In comparison, Escherichia coli was associated with a slower antibody decay following ChAdOx1 vaccina‑
tion. The booster immune response was correlated with metabolic pathways involving cellular functions and aromatic 
amino acid synthesis.

Conclusions  The findings of this study underscored the potential interaction between the gut microbiome 
and the longevity/boosting effect of antibodies following vaccination against SARS-CoV-2. The identification of spe‑
cific microbial associations suggests the prospect of microbiome-based strategies for enhancing vaccine efficacy.
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introduction
The global response to the coronavirus disease 2019 
(COVID-19) pandemic has resulted in the development 
of new platform vaccines, including adenovirus vector, 
protein subunit, and mRNA vaccines, targeting severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 
Although variable by vaccine platforms, SARS-CoV-2 
vaccines elicited a robust antibody response, reaching 
peak titers at approximately 3–4  weeks after the sec-
ond dose [1–4]. However, the antibody titers gradually 
decline over time, reaching levels similar to those of the 
initial immune response after approximately 6  months 
[5].

Post-vaccination antibody longevity plays a critical role 
in sustaining individual protection and establishing herd 
immunity. Long-lived plasma cells originating from naïve 
or memory B-cells are important for maintaining anti-
body longevity, with memory B-cells further enabling the 
quick and efficient response of the immune system when 
re-exposed to the relevant viral strains [6–8]. Recent 
studies have suggested a relatively consistent presence 
of SARS-CoV-2 vaccine-induced memory B cells for a 
3–6 month period after vaccination, but their levels may 
vary among individuals [9, 10].

Immune responses following vaccination vary among 
individuals owing to the influence of several factors [11, 
12], including the gut microbiota. The microbiota plays 
a central role in the host immune system, particularly in 
the training and maturation of key components of the 
adaptive immune system [13, 14]. First, gut microbes 
stimulate and shape the adaptive immune system through 
exposure to their bacterial components and active metab-
olites [15]. Second, the gut microbiota directly influences 
and modulates adaptive immunity [16]. The sustained 
interaction and maintenance of the complex balance 
between the gut microbiota and adaptive immune system 
are essential for intestinal homeostasis and the inhibition 
of inflammation, ensuring an optimal immune response 
and long-term protection after vaccination [17].

The relationship between peak antibody titers and the 
gut microbiota after vaccination against SARS-CoV-2 
has been investigated in several studies [18–20]. How-
ever, the relationship between the durability of vaccine-
induced antibodies and microbiota has not yet been 
studied. In this study, we investigated the association 
between the gut microbiota and durability of humoral 
immunity, which may provide insights into approaches 
for enhancing vaccine efficacy.

Materials and methods
Study design and participants
In this study, we prospectively recruited healthy adults 
who had received a single dose of the BNT162b2 or 

ChAdOx1 vaccines and were scheduled to get the sec-
ond dose of the primary vaccination series. After enroll-
ment, the participants were divided into two cohorts: 
those receiving two doses of the BNT162b2 vaccine 
(BNT162b2 cohort) and those receiving two doses of the 
ChAdOx1 vaccine (ChAdOx1 cohort). Following this, 
all participants were administered a booster vaccination 
with the BNT162b2 vaccine. Fecal and blood samples 
were collected at four time points: V1 (prior to the sec-
ond dose of the primary vaccination series), V2 (3 weeks 
after the second dose), V3 (6  months after the second 
dose and prior to the booster dose), and V4 (3  weeks 
after the BNT162b2 booster dose). Data on patient 
demographics, medications, probiotics, supplements, 
laboratory results, and dietary records were collected at 
each time point.

Participants were excluded if they received medica-
tions that could have affected the gut microbiota, includ-
ing antibiotics, laxatives, and motility drugs in the month 
prior to vaccination; had a history of positive SARS-
CoV-2 results by nasopharyngeal PCR testing; or tested 
positive for serum antinuclear capsid protein (N) IgG. 
None of the participants contracted COVID-19 during 
the study period, as confirmed by anti-N IgG antibody 
testing (Abbott Laboratories, Chicago, IL, USA).

Fecal samples were collected in a nucleic acid preser-
vation medium using Fecal Swab DNA Preservation and 
Transport Kits (Noble Bio, Hwaseong, South Korea) and 
stored at − 80 °C. Blood samples were collected in serum 
separation tubes via venipuncture. After centrifugation at 
2500  rpm and −  4  °C for 10  min, the serum was trans-
ferred to clean plastic screw-capped vials and stored at 
− 80 °C.

The study protocol was approved by the Institu-
tional Review Board of Korea University Guro Hospital 
(2021GR0097). Informed consent was obtained from all 
participants. All procedures were performed in accord-
ance with the ethical standards of the relevant institu-
tional and/or national research committees, the Helsinki 
Declaration of 1964 and its subsequent amendments, or 
comparable ethical standards.

Classification of study groups based on the immune 
response after vaccination
Humoral immune responses were assessed using cor-
responding serum samples. Anti-S titers were measured 
using the Elecsys® Anti-SARS-CoV-2 S assay kit (Roche, 
Rotkreuz, Switzerland) according to the manufacturer’s 
protocol. Titers below the lower limit of quantitation 
were set to 0.4 U/mL.

The half-life of anti-S antibodies was determined from 
the V2–V3 time points. To investigate the microbial fac-
tors associated with the durability of vaccine-induced 
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antibodies, participants from the BNT162b2 and 
ChAdOx1 vaccine cohorts were divided into slow- and 
fast-decay groups based on the median values of anti-
body half-life.

After receiving the BNT162b2 booster, the acute anti-
body responses were evaluated by comparing the fold 
changes in antibody titers between V3 and V4. Using the 
median fold-change in antibody titers across all booster 
vaccine recipients, participants were classified as either 
high or low responders.

Analysis pipeline for 16S rRNA
Total DNA was extracted using the FastDNA® SPIN Kit 
for Soil (MP Biomedicals, Santa Ana, CA, USA) accord-
ing to the manufacturer’s instructions. The extracted 
DNA was PCR amplified by CJ Bioscience (Seoul, Repub-
lic of Korea) using fusion primers targeting the V3–V4 
regions of the 16S rRNA gene. PCR products were con-
firmed by electrophoresis on a 1% agarose gel, followed 
by visualization using the Gel Doc system (Bio-Rad, 
Hercules, CA, USA). The amplified products were puri-
fied using a CleanPCR kit (CleanNA, Waddinxveen, The 
Netherlands). Equal concentrations of purified products 
were pooled, and short fragments (nontarget products) 
were removed using a CleanPCR kit (CleanNA). The 
quality and size of products were assessed on a Bioana-
lyzer 2100 system (Agilent, Palo Alto, CA, USA) using 
a DNA 7500 chip. Mixed amplicons were pooled and 
sequenced using an Illumina MiSeq Sequencing System 
(Illumina, San Diego, CA, USA) according to the manu-
facturer’s instructions. Analysis was performed using the 
EzBioCloud 16S-based Microbiome Taxonomic Profiling 
(MTP) and CJ Bioscience’s bioinformatics cloud platform 
(https://​www.​ezbio​cloud.​net). All microbiome count data 
were normalized to that of 1000 read counts before fur-
ther use.

The alpha diversity indices (abundance-based cover-
age estimator [ACE] and Simpson) were calculated as 
previously described [21–26]. To visualize sample differ-
ences, beta diversity distances were calculated using the 
Jensen–Shannon, Bray–Curtis, Generalized UniFrac, and 
Fast UniFrac algorithms as appropriate [27–30]. With 
respect to antibody durability and fold-change, taxo-
nomic and functional biomarkers were identified using 
the linear discriminant analysis (LDA) effect size method 
[31]. An LDA effect size of ≥ 2.0 was considered signifi-
cant. Functional profiles were predicted using PICRUSt 
and MinPath algorithms [32, 33]. Raw reads were qual-
ity-checked, and low-quality (< Q25) reads were filtered 
using Trimmomatic ver. 0.32. After quality control pro-
cessing, paired-end sequence data were merged using 
the fastq_mergepairs command in VSEARCH ver. 2.13.4. 
with the default parameters. Next, the primers were 

trimmed using the Myers–Miller alignment algorithm 
at a similarity cut-off of 0.8 [34]. Nonspecific amplicons, 
such as those not encoding 16S rRNA, were detected 
using the nhmmer algorithm in the HMMER software 
package ver. 3.2.1 with hmm profiles [35]. Unique reads 
were extracted, and redundant reads were clustered with 
unique reads using the deep-full-length command in 
VSEARCH [36]. Taxonomic assignment was performed 
using the EzBioCloud 16S rRNA database with the use-
arch_global command in VSEARCH, followed by a 
more precise pairwise alignment [34, 36, 37]. Chimeric 
reads were filtered to obtain reads with < 97% similarity 
through reference-based chimeric read detection using 
the UCHIME algorithm and nonchimeric 16S rRNA 
database from EzBioCloud [38]. After chimeric filtering, 
reads not identified to the species level (< 97% similar-
ity) in the EzBioCloud database were compiled, and the 
cluster_fast command was used for de novo clustering 
to generate additional OTUs. OTUs with single reads 
(singletons) were excluded from further analysis [36]. 
Secondary analyses, including diversity calculations and 
biomarker discovery, were performed using in-house 
programs from CJ Bioscience.

Analysis pipeline for shotgun sequencing
Genomic DNA was extracted from isolates using the 
FastDNA™ Spin Kit for Soil (MP Biomedicals) accord-
ing to the manufacturer’s instructions. The concentration 
of the extracted DNA was quantified using a Qubit 2.0 
fluorometer (Invitrogen, Carlsbad, CA, USA). Sequenc-
ing libraries were constructed using the NEBNext Ultra 
II FS DNA Library Prep Kit for Illumina (NEB, Ipswich, 
MA, USA) according to the manufacturer’s protocol for 
use with inputs ≤ 100  ng. Metagenome sequencing was 
performed on the NextSeq 1000 system with 2 × 150 bp 
paired-end reads using a 300-cycle (NextSeq 1000 Rea-
gent Kit) sequencing kit. The profiling process began by 
surveying the potential presence of bacterial and archaeal 
species in each raw metagenomic sample read using 
Kraken2 [39] and a prebuilt core gene database [40] con-
taining k-mers (k = 35) of reference genomes obtained 
from the EzBioCloud database [37]. After acquiring a 
list of candidate species, a custom bowtie2 [41] database 
was built using the core genes of species identified during 
the first step. The raw samples were then mapped against 
the bowtie2 database using the very-sensitive option and 
a phred33 quality threshold. Samtools [42] was used to 
convert and sort the output BAM file. The coverage of the 
mapped reads against the BAM file was obtained using 
Bedtools [43]. To avoid false positives, an in-house script 
was used to quantify all reads mapped to a given species 
only if the total coverage of their core genes was ≥ 25%. 
Finally, species abundance was calculated using the total 

https://www.ezbiocloud.net
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number of count reads, while normalized species abun-
dance was calculated using the total length of all core 
genes.

Taxonomic data were calculated as the species ratio 
based on the analysis using the Bacteria and Archaea 
database. In contrast, functional data were obtained as 
counts per million values based on the analysis using the 
Kyoto Encyclopedia of Genes and Genomes (KEGG), 
Enzyme commission, and EggNOG databases [44]. Func-
tional profiling was conducted using HUMAnN (the 
HMP Unified Metabolic Analysis Network). HUMAnN 
uses metagenomic data as input and processes them to 
estimate the functions of the microbial community. This 
was done by comparing the genetic sequences to a data-
base of known microbial genes and pathways and then 
inferring the functions of the community [45].

Statistical analysis
All continuous variables are expressed as the 
median ± interquartile range (IQR; third IQR–first IQR), 
whereas categorical variables are presented as numbers 
(percentages). Nonparametric tests were used to com-
pare the differences between different groups. Statistical 
analysis was performed using the LDA effect size method 
to support high-dimensional class comparisons with a 
particular focus on metagenomic analyses and depicted 

using the R Statistical Software (version 4.1.2; R Founda-
tion for Statistical Computing, Vienna, Austria) with the 
ggplot2 and vegan packages.

Results
From March to April 2021, we prospectively recruited 44 
healthy adults who received the first dose of either the 
BNT162b2 (n = 23) or ChAdOx1 (n = 21) vaccine and 
were scheduled to receive the second dose of the pri-
mary vaccination series (Fig.  1). The median age of the 
study participants was 31 ± 8.5 years, with 75% (33) being 
women. The baseline geometric mean titer of anti-S IgG 
of all participants was 98.3 U/mL (Table S1). We analyzed 
fecal and blood samples at four time points: V1 (prior to 
the second dose), V2 (3 weeks after the second dose), V3 
(6 months after the second dose and prior to the booster 
dose), and V4 (3  weeks after the BNT162b2 booster 
dose). After the two-dose primary vaccination series, the 
median antibody half-life between V2 and V3 was 141.0 
d in the BNT162b2 cohort, whereas it was 63.4 d in the 
ChAdOx1 cohort. Based on the half-life of anti-S IgG 
antibodies, each vaccination cohort was classified into 
slow- and fast-decay groups (Tables S2 and S3). After the 
booster dose vaccination, the BNT162b2 recipients were 
divided into two groups (high versus low responders) 

Fig. 1  Schematic study diagram
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based on the median value (34-fold) of the antibody fold-
change from V3 to V4 (Table S4).

Of the 176 stool samples collected, 13 were excluded 
because of poor quality, leaving 36 (V1), 39 (V2), and 44 
(V3 and V4) samples for gut microbiota analysis. Using 
corresponding blood samples, we evaluated the anti-S 
humoral immune response. During the follow-up period, 
the study participants did not show any major changes in 
their dietary habits (data not shown; a pseudonymized 
individual study dataset can be made available upon 
request).

Association between anti‑S antibody half‑life and gut 
microbiota using 16S rRNA sequencing in the BNT162b2 
cohort
Regarding alpha diversity, we calculated species rich-
ness and diversity using the abundance-based coverage 

estimator (ACE) and Simpson indices, which revealed 
significant differences between the slow- and fast-decay 
groups (Fig. 2A). The ACE index in the slow-decay group 
at V2 was significantly higher than that in the fast-decay 
group at V2 (p = 0.035) and V3 (p = 0.012), indicating 
higher species richness in the former. Similarly, the Simp-
son index in the slow-decay group at V2 was significantly 
lower (higher diversity) than that in the fast-decay group 
at both V2 (p = 0.035) and V3 (p = 0.049). Interestingly, 
these differences in the alpha diversity indices between 
the two groups disappeared six months after the sec-
ond dose (V3) (ACE index, p = 0.176; Simpson index, 
p = 0.712). Analysis using the Jensen–Shannon algorithm, 
excluding unclassified operational taxonomic units 
(OTUs) (Fig.  2B), revealed apparent differences in beta 
diversity values between V2 and V3 in the slow-decay 
(p = 0.018) and fast-decay (p = 0.002) groups.

Fig. 2  Alpha and beta diversity comparison of the anti-S antibody titer between the slow- and fast-decay groups (BNT162b2 cohort). A Alpha 
diversity (ACE and Simpson). B Principal coordinate analysis (PCoA) using the Jensen–Shannon algorithm, excluding unclassified operational 
taxonomic units (OTUs)
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Following the two-dose primary vaccination series, 
the slow-decay group exhibited distinctly abundant bac-
terial species in the gut microbiota from stool samples 
collected 3  weeks after the second dose compared with 
those in the fast-decay group (Table 1 and Table S5). Cer-
tain bacterial species were significantly associated with 
slower antibody decay in individuals who received the 
BNT162b2 vaccine. Faecalibacterium prausnitzii was 
the most abundant species, with a linear discriminant 
analysis (LDA) effect size of 4.26175 (p = 0.04095). Prevo-
tella_uc and PAC001304_s, both from the genus Prevo-
tella, showed LDA effect sizes of 4.25488 (p = 0.00819) 
and 4.15907 (p = 0.04801), respectively. Another notable 
species, Gemmiger formicilis from the family Ruminococ-
caceae, had an LDA effect size of 3.91776 (p = 0.03896), 
whereas Bacteroides dorei, a member of the fam-
ily Bacteroidaceae, had an LDA effect size of 3.71884 
(p = 0.01251). Similarly, Agathobacter rectalis, a member 

of the family Lachnospiraceae, had an LDA effect size 
of 3.49743 (p = 0.04703). In addition, PAC001173_s, 
PAC000195_s, JPJG_s, PAC001037_s, PAC001187_s, 
PAC001335_s, and Bacteroides_uc showed pronounced 
LDA effect sizes, indicating their potential contributions 
to the modulation of vaccine-induced immunity. At the 
genus level (Table S5), Prevotella had an LDA effect size 
of 4.62838 (p = 0.0147), followed by Faecalibacterium 
with an effect size of 4.26036 (p = 0.04791). Other sig-
nificant genera were Subdoligranulum (LDA = 3.98239, 
p = 0.01467), Agathobacter (LDA = 3.50072, p = 0.04703), 
and Eubacterium_g23 (LDA = 3.05084, p = 0.00962). 
Finally, the compelling LDA effect sizes of PAC000195_g, 
PAC000196_g, PAC000692_g, and PAC001236_g sug-
gested their potential effect in vaccine-mediated host 
immune responses.

Following the BNT162b2 administration, we performed 
16S rRNA gene sequencing analysis of the gut microbiota 

Table 1  Species-level taxonomic markers linked to extended antibody durability following the two-dose primary vaccination series

LDA, linear discriminant analysis. LDA effect size and p-value are expressed as values of V2

Taxon name Taxon rank Taxonomy LDA effect size p-value

BNT162b2

 Faecalibacterium prausnitzii Species Bacteria: Firmicutes: Clostridia: Clostridiales: Ruminococcaceae: Faecalibacte-
rium

4.26175 0.04095

 Prevotella_uc Species Bacteria: Bacteroidetes: Bacteroidia: Bacteroidales: Prevotellaceae: Prevotella 4.25488 0.00819

 PAC001304_s Species Bacteria: Bacteroidetes: Bacteroidia: Bacteroidales: Prevotellaceae: Prevotella 4.15907 0.04801

 Gemmiger formicilis Species Bacteria: Firmicutes: Clostridia: Clostridiales: Ruminococcaceae: Subdoligranu-
lum

3.91776 0.03896

 Bacteroides dorei Species Bacteria: Bacteroidetes: Bacteroidia: Bacteroidales: Bacteroidaceae: Bacte-
roides

3.71884 0.01251

 Agathobacter rectalis Species Bacteria: Firmicutes: Clostridia: Clostridiales: Lachnospiraceae: Agathobacter 3.49743 0.04703

 PAC001173_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Ruminococcaceae: Subdoligranu-
lum

3.14941 0.04366

 PAC000195_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Lachnospiraceae: PAC000195_g 3.1406 0.0476

 JPJG_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Ruminococcaceae: Oscillibacter 3.01913 0.04765

 PAC001037_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Ruminococcaceae: Oscillibacter 2.6809 0.01235

 PAC001187_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Ruminococcaceae: Oscillibacter 2.6189 0.00492

 PAC001335_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Lachnospiraceae: PAC000196_g 2.55763 0.03297

 Bacteroides_uc Species Bacteria: Bacteroidetes: Bacteroidia: Bacteroidales: Bacteroidaceae: Bacte-
roides

2.53203 0.03742

 Bacteroides xylanisolvens Species Bacteria: Bacteroidetes: Bacteroidia: Bacteroidales: Bacteroidaceae: Bacte-
roides

2.38654 0.04201

 PAC001229_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Lachnospiraceae: PAC000692_g 2.32714 0.02256

 PAC001162_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Ruminococcaceae: Sporobacter 2.23478 0.04096

 PAC001306_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Ruminococcaceae: Sporobacter 2.21794 0.04844

 PAC001467_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Lachnospiraceae: PAC000692_g 2.13406 0.01007

 PAC001130_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Ruminococcaceae: Oscillibacter 2.12692 0.03535

 PAC001236_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Mogibacterium_f: PAC001236_g 2.11986 0.01768

 PAC001449_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Lachnospiraceae: PAC001043_g 2.08894 0.01923

ChAdOx1

 Escherichia coli Species Bacteria: Proteobacteria: Gammaproteobacteria: Enterobacterales: Entero‑
bacteriaceae: Escherichia

3.85796 0.00937
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and identified specific functional marker proteins that 
may affect antibody decay rates (Table S6). Interestingly, 
we found that the key functional markers were starch-
binding outer membrane proteins from the SusD/RagB 
family (LDA = 3.02715, p = 0.02956), RNA polymerase 
sigma-70 factor from the ECF subfamily (LDA = 2.89815, 
p = 0.03486), and iron complex outer membrane receptor 
protein (LDA = 2.89246, p = 0.01222). Other notewor-
thy markers included the TonB-dependent starch-bind-
ing outer membrane protein SusC (LDA = 2.83329, 
p = 0.03486), an uncharacterized protein (LDA = 2.58362, 
p = 0.00686), a multidrug resistance protein of the MATE 
family (LDA = 2.56360, p = 0.04095), a HlyD family secre-
tion protein (LDA = 2.53494, p = 0.01470), and integrase/
recombinase XerD (LDA = 2.51074, p = 0.04791).

Further investigation into the functional capabilities of 
the microbiota revealed specific modules and pathways 
that may influence vaccine immunogenicity. PICRUSt 
analysis revealed that F-type ATPase (LDA = 2.93490, 
p = 0.00686) and an incomplete reductive citrate cycle 
(LDA = 2.69979, p = 0.04095) were significantly associ-
ated with a longer antibody half-life. MinPath analysis 
highlighted the positive relationship between a longer 
half-life and lysine biosynthesis via the aromatic amino 
acid pathway (LDA = 2.74262, p = 0.01470) and formalde-
hyde assimilation via the serine pathway (LDA = 2.73185, 
p = 0.01761). Furthermore, PICRUSt analysis identified 
the lysosome (LDA = 2.53934, p = 0.02956) and photosyn-
thesis (LDA = 2.46671, p = 0.00835) pathways, whereas 
MinPath analysis revealed the vitamin B6 metabolism 
(LDA = 3.15938, p = 0.01382) and lipopolysaccharide bio-
synthesis (LDA = 3.09433, p = 0.01162) pathways to be 
more abundant in the slow-decay group.

Association between anti‑S antibody half‑life and gut 
microbiota using 16S rRNA sequencing in the ChAdOx1 
cohort
Unlike the BNT162b2 cohort, we did not detect any sig-
nificant differences in alpha and beta diversity between 
groups in the ChAdOx1 cohort (data not shown). Post-
vaccination analysis of stool samples collected from 
ChAdOx1 recipients 3  weeks after the second dose 

revealed the presence of distinct gut bacterial species 
associated with longer antibody half-lives (Table  1 and 
Table  S5). Specifically, Escherichia coli was associated 
with slow antibody decay (LDA effect size of 3.85796, 
p = 0.00937). At the genus level, Alistipes was significantly 
more abundant, with an LDA of 4.46179 (p = 0.03844), 
followed by Escherichia (LDA = 3.8579, p = 0.00937), 
Parabacteroides (LDA = 3.85644, p = 0.01235), and Ente-
rococcus (LDA = 3.23579, p = 0.04323).

Detailed 16S rRNA gene analysis of samples from 
ChAdOx1 recipients revealed specific functional mark-
ers based on their gut microbiota (Table  S6). In par-
ticular, we identified the insertion element IS1 protein 
InsB (LDA = 2.47573, p = 0.00937) and transposase 
(LDA = 2.44395, p = 0.00937) as primary ortholog 
markers reflecting a longer antibody half-life. Further 
exploration of specific modules and pathways showed 
that ADP-L-glycero-D-mannohypertose biosynthe-
sis (LDA = 2.50396, p = 0.01614) and photorespiration 
(LDA = 2.40116, p = 0.04331) were correlated with a 
longer antibody half-life in PICRUSt analysis, whereas 
the trehalose biosynthetic pathway (LDA = 2.70821, 
p = 0.00937) was identified in MinPath analysis.

Association between gut microbiota and acute immune 
response after BNT162b2 booster vaccination—
comparison of the fold changes of anti‑S antibody titers
To evaluate acute antibody responses after the BNT162b2 
booster vaccination, we divided vaccine recipients into 
two groups (high versus low responders) based on the 
median value (34-fold) of the antibody fold-change.

Using 16S rRNA gene sequencing, we did not detect 
any significant differences in alpha and beta diversity 
between the two groups (data not shown). Table 2 shows 
the gut microbiota that potentially contributed to sig-
nificant fold changes in antibody titers following booster 
vaccination. In species-level analysis, F. prausnitzii, a 
member of the family Ruminococcaceae, was abundant 
in high responders, exhibiting the highest LDA effect size 
of 4.40539 (p = 0.03998). Peptoniphilus duerdenii (LDA 
effect size 2.98548, p = 0.03822) of the family Pepton-
iphilaceae, JRNA_s (LDA effect size 2.30296, p = 0.04727) 

Table 2  Species-level taxonomic markers associated with high fold increase in antibody titer following BNT162b2 booster vaccination

LDA, linear discriminant analysis. LDA effect size and p-value are expressed as values of V3

Taxon name Taxon rank Taxonomy LDA effect size p-value

Faecalibacterium prausnitzii Species Bacteria: Firmicutes: Clostridia: Clostridiales: Ruminococcaceae: Faecalibacterium 4.40539 0.03998

Peptoniphilus duerdenii Species Bacteria: Firmicutes: Tissierellia: Tissierellales: Peptoniphilaceae: Peptoniphilus 2.98548 0.03822

JRNA_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Mogibacterium_f: JRNA_g 2.30296 0.04727

PAC001048_s Species Bacteria: Firmicutes: Clostridia: Clostridiales: Ruminococcaceae: PAC000672_g 2.18111 0.02423

Anaerococcus provencensis Species Bacteria: Firmicutes: Tissierellia: Tissierellales: Peptoniphilaceae: Anaerococcus 2.16254 0.01913
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of the family Mogibacterium_f, PAC001048_s (LDA 
effect size 2.18111, p = 0.02423) of the family Rumino-
coccaceae, and Anaerococcus provencensis (LDA effect 
size 2.16254, p = 0.01913) of the family Peptoniphilaceae 
were also significantly enriched in high responders. At 
the genus level (Table  S7), Faecalibacterium, belonging 
to the family Ruminococcaceae of the order Clostridiales 
in the phylum Firmicutes, was abundant in high respond-
ers, exhibiting the highest LDA effect size of 4.40882 
(p = 0.03998). Similarly, Clostridium (LDA effect size 
3.65726, p = 0.02734) and Agathobaculum (LDA effect 
size 2.41073, p = 0.03071), both of the order Clostridiales, 
were associated with a higher antibody fold-change.

Shotgun sequencing-based microbiota analysis yielded 
consistent results (Fig.  3). In particular, the species F. 
prausnitzii (high: 2.8%, low: 1.05%) and P. duerdenii 
(high: 0.55%, low: 0%) and the genus Faecalibacterium 
(high: 15.7%, low: 11.2%) were more abundant in high 
than in low responders.

Correlation between abundance of specific gut microbiota 
and antibody half‑life or titer fold changes
To elucidate the correlations between species-level taxo-
nomic markers (with an LDA effect size > 2.0) and anti-
body half-life in the BNT162b2 and ChAdOx1 vaccine 
cohorts, we conducted Spearman’s correlation analysis. 
Significance was determined using criteria of absolute 
correlation coefficients > 0.4 and p-values < 0.05 (Fig-
ure S1). In the BNT162b2 cohort, we observed notable 

positive correlations between the antibody half-life and 
F. prausnitzii, Prevotella_uc, PAC001304_s, A. rectalis, 
PAC001173_s, JPJG_s, PAC001187_s, and PAC001335_s. 
In contrast, in the ChAdOx1 cohort the antibody half-life 
was only positively correlated with E. coli. Additionally, 
F. prausnitzii and JRNA_s were positively correlated with 
the fold changes in antibody titers.

Shotgun sequencing‑based functional gene analysis—
comparison of the fold changes of anti‑S antibody titers 
following BNT162b2 booster vaccination
A detailed shotgun-based analysis of BNT162b2 booster 
vaccine recipients revealed specific functional mark-
ers in the gut microbiome (Table  3). In particular, 
the translation initiation factor IF-1 (LDA = 2.5893, 
p = 0.0433), ATP-dependent Clp protease, protease 
subunit (LDA = 2.5134, p = 0.0341), large subunit ribo-
somal protein L35 (LDA = 2.4083, p = 0.2066), ribosome-
binding factor A (LDA = 2.3489, p = 0.0341), bacterial/
archaeal transporter family-2 protein (LDA = 2.21821, 
p = 0.0341), beta-lactamase class A TEM [EC:3.5.2.6] 
(LDA = 2.2132, p = 0.0178), and excinuclease ABC subu-
nit B (LDA = 2.187, p = 0.03433) were more abundant 
in high than in low responders. Except for one marker 
(bacterial/archaeal transporter family-2 protein), high 
responders showed higher abundances of these primary 
ortholog markers. Using the Clusters of Orthologous 
Genes (COG) database, we identified the IstB domain 
ATP-binding protein (LDA = 2.6756, p = 0.0421) as an 

Fig. 3  Shotgun sequencing-based compositional differences in gut microbiota between high and low responders after the BNT162b2 booster 
vaccination. A Species level. B Genus level
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important marker of an increased antibody response. 
This gene is associated with DNA replication, membrane 
fusion, and gene expression regulation [46]. Further-
more, EC:2.1.1.37 (cytosine-specific DNA methyltrans-
ferase) and EC:4.2.3.4 (3-dehydroquinate synthase) were 
enriched in high responders compared with those in low 
responders.

Discussion
In this longitudinal cohort study of SARS-CoV-2 vac-
cine recipients, the longevity of anti-S antibodies was 
significantly associated with the gut microbiota com-
position. Specifically, F. prausnitzii, Prevotella_uc, and 
PAC001304_s from the genera Prevotella, as well as G. 
formicilis, B. dorei, and A. rectalis were associated with 
a significantly prolonged antibody half-life after SARS-
CoV-2 mRNA vaccination. Analysis of the associations 
between gut microbiota species and fold changes in anti-
body titers after BNT162b2 booster vaccination revealed 
that, in comparison to low responders, high responders 
had a significantly higher abundance of F. prausnitzii, 
which activates the metabolic pathways EC:2.1.1.37 
(cytosine-specific DNA methyltransferase) and EC:4.2.3.4 
(3-dehydroquinate synthase).

Antibody longevity is influenced by long-lived plasma 
cells, which are mainly located in the bone marrow, while 
the magnitude of the acute antibody response to booster 
vaccinations is likely determined by memory B-cells. 
Both long-lived plasma and memory B-cells are influ-
enced by the interaction of B-cells, follicular helper T 
(Tfh) cells, and follicular dendritic cells in the germinal 
center of B-cell follicles. Kim et al. discovered that short-
chain fatty acids (SCFAs) facilitate Tfh cell differentiation 

both in vitro and in vivo by upregulating cellular metabo-
lism in activated T-cells [47]. Moreover, SCFAs, notably 
butyrate, have been shown to increase the population of 
Foxp3 + regulatory T-cells (Tregs) in the colon [48, 49]. 
Interestingly, under specific conditions, certain Tregs can 
be converted into Tfh cells within Peyer’s patches [50, 
51].

SCFAs promote antibody production via various mech-
anisms that profoundly affect the human immune system. 
First, SCFAs effectively enhance the cellular metabolism 
of B-cells, providing the necessary energy and build-
ing blocks for the activation, differentiation, and anti-
body production of B-cells. In addition, SCFAs increase 
mitochondrial energy production and glycolysis, which 
are essential for plasma cell differentiation [52]. Second, 
SCFAs are involved in the regulation of cellular metabolic 
pathways as they are converted to acetyl-CoA, which is 
used for energy production and fatty acid synthesis. In 
SCFA-treated B-cells, the levels of acetyl-CoA and lipid 
droplets increase, thereby fostering B-cell differentiation 
and antibody production [47]. Third, SCFAs regulate the 
expression of key genes involved in B-cell differentia-
tion. In particular, they upregulate the expression of the 
immunoglobulin gene family members and that of genes 
such as Xbp1, Irf4, and Aicda, which are vital for plasma 
B-cell differentiation and Ig class switch recombina-
tion [47]. Finally, SCFAs activate T-cells and phagocytes, 
enhancing antibody responses [49, 53–55]. Specifically, 
SCFAs promote the generation and function of Tfh cells, 
which play a key role in B-cell differentiation and the ger-
minal center reaction, leading to the production of high-
affinity antibodies and long-term humoral responses 
[47]. In this study, the group with a longer antibody 

Table 3  Functional markers associated with high fold increase in antibody titer following BNT162b2 booster vaccination

Meta shotgun

Definition High V4 Low V4 LDA effect size p-value

COG (eggNoG)

 COG1484 IstB domain protein ATP-binding protein 0.116 0.0421 2.6756 0.0421

Ortholog

 K02518 Translation initiation factor IF-1 0.2564 0.1872 2.5893 0.0433

 K01358 ATP-dependent Clp protease, protease subunit 
[EC:3.4.21.92]

0.168 0.1052 2.5134 0.0341

 K02916 Large subunit ribosomal protein L35 0.2111 0.1582 2.4083 0.0266

 K02834 Ribosome-binding factor A 0.133 0.0893 2.3489 0.0341

 K09936 Bacterial/archaeal transporter family-2 protein 0.0161 0.0415 2.2182 0.0341

 K18698 Beta-lactamase class A TEM [EC:3.5.2.6] 0.0412 0 2.2132 0.0178

 K03702 Excinuclease ABC subunit B 0.1087 0.0772 2.187 0.0433

EC (enzyme commission)

 2.1.1.37 DNA (cytosine-5-)-methyltransferase 0.1886 0.1208 2.4818 0.1208

 4.2.3.4 3-dehydroquinate synthase 0.1684 0.1199 2.3975 0.1199
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half-life (slow decay) within the BNT162b2 cohort was 
significantly enriched in F. prausnitzii, which is one of the 
most important butyrate-producing species [56]. Other 
SCFA-producing bacterial agents, including members of 
the genera Prevotella and Bacteroides, as well as the fami-
lies Ruminococcaceae and Lachnospiraceae, were also 
significantly abundant in the slow decay group.

Moreover, F. prausnitzii is one of the most abundant 
bacteria present in the healthy human gut [57], where it 
plays a crucial role in the induction of colonic Treg cells 
[58]. Tregs modulate the immune response and main-
tain immune homeostasis [59]. Therefore, in individuals 
with a high abundance of F. prausnitzii, the unnecessary 
nonspecific activation of T-cells might be suppressed, 
and chronic low-grade inflammation might be reduced, 
ensuring an appropriate immune response upon expo-
sure to antigens. These findings align with the concept of 
inflammaging (age-related chronic inflammation), under-
scoring the decline in the numbers of anti-inflammatory 
bacteria such as F. prausnitzii in older individuals [60].

Our study suggested a potential association between a 
high abundance of E. coli in the gut and an extended anti-
body half-life in ChAdOx1 vaccine recipients. Antibody 
half-life is modulated by several factors, including the 
magnitude of the immune response, antibody produc-
tion efficiency, and degradation kinetics. E. coli secretes 
signaling molecules with notable immunostimulatory 
properties such as LTA1 (A1 domain of heat-labile enter-
otoxin), monophosphoryl lipid A, and maltose-binding 
protein, which are instrumental in dendritic cell (DC) 
activation [61–63]. Upon activation, DCs relocate to the 
proximate lymph nodes to present the antigens to T-cells, 
potentially initiating T- and B-cell activation. Further-
more, E. coli has been suggested to amplify the activity 
of proinflammatory CD4 + T-cells, potentially heighten-
ing the responsiveness to vaccine antigens [64]. In the 
case of adenovirus-vector vaccines, the quantitative and 
qualitative activity of DCs may be particularly important 
in inducing a strong and durable immune response [65].

In the slow-decay group of the BNT162b2 cohort, 
a notable activation of Kyoto Encyclopedia of Genes 
and Genomes (KEGG) orthologs K21572 and K21573, 
which are starch-binding outer membrane proteins, was 
observed. Specifically, K21572 was associated with the 
SusD/RagB family, whereas K21573 was associated with 
SusC. These proteins play pivotal roles in starch bind-
ing and transport. A significant proportion of Bacteroi-
detes strains, particularly those belonging to the genera 
Prevotella and Bacteroides, have evolved to specialize in 
the breakdown of complex carbohydrates [66, 67]. The 
observed increase in the abundance of these microbial 
species in our taxonomic analysis may be correlated with 
the heightened activation of the above-mentioned KEGG 

orthologs. Furthermore, the metabolism of starch and 
other intricate carbohydrates by gut microbes often leads 
to SCFA production [68]. Therefore, K21572 and K21573 
may influence SCFA synthesis, indirectly affecting anti-
body longevity.

Memory T-cells, particularly memory Tfh cells, assist 
in activating B-cells, which then differentiate into anti-
body-producing plasma cells [69]. Therefore, a strong 
memory T-cell response can support rapid and robust 
antibody production during subsequent encounters 
with a pathogen. In 16S gene analysis of the BNT162b2 
cohort, we observed that the ortholog K01897, together 
with module M00157 and pathway ko00540, which are 
functional markers of oxidative phosphorylation and 
lipid metabolism, respectively, were notably activated 
in the slow antibody decay group. Memory T-cells typi-
cally exhibit a metabolic profile that relies more on oxi-
dative phosphorylation and lipid metabolism, whereas 
activated effector T-cells are more glycolysis-dependent 
[70]. Given this distinction, our findings suggested that 
the activation of K01897, M00157, and ko00540 in the 
slow-decay group may be associated with the activation 
of memory T-cells.

In shotgun sequencing-based functional gene analysis, 
we found that the aromatic amino acid synthesis path-
ways serve as a link between the gut microbiota and the 
vaccine immune response. The synthesis of aromatic 
amino acids (L-tyrosine, L-phenylalanine, and L-trypto-
phan), which are essential for protein biosynthesis in all 
living organisms, is accomplished via the shikimate and 
chorismate pathways. These metabolic pathways exist 
in some protists, bacteria, fungi, and plants, but not in 
animals [71]. In particular, the shikimate pathway con-
nects primary metabolism and aromatic amino acid bio-
synthesis. The first enzyme in the shikimate pathway, 
3-deoxy-D-arabino-heptulosonate 7-phosphate synthase 
(DAHPS), generates 3-deoxy-D-arabino-heptulosonate 
7-phosphate (DAHP), while the second enzyme, 3-dehy-
droquinate synthase (DHQS), converts DAHP into 
3-dehydroquinate. DAHPSs are divided into two types 
according to their amino acid homology: type I DAHPS 
derived from microorganisms, and type II DAHPS found 
in plants and some microorganisms [72, 73]. F. prausnitzii 
activates the shikimate and phenylpropanoid pathways 
by inducing the activity of 3-dehydroquinate synthase 
(EC:4.2.3.4), which is involved in the early increase in the 
expression of DAHPS and phenylalanine ammonia lyase 
(PAL). In this study, shotgun-based analysis revealed 
that F. prausnitzii and EC:4.2.3.4 were more abundant 
in high responders to the BNT162b2 booster vaccina-
tion. In plants, the expression of DAHPS1 is strongly 
induced within 1  h of wound infection, whereas the 
expression of PAL has been reported to play a major role 
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in inducing resistance to cassava brown streak disease by 
pathogenic viruses, reflecting early immune responses 
[74, 75]. In contrast, EC:2.1.1.37 (cytosine-specific DNA 
methyltransferase), another enriched enzyme in high 
responders, is known to be involved in gene expression, 
genome protection against selfish DNA developmental 
regulation, and T-cell development [76]. Furthermore, 
six ortholog markers, which were more abundant in high 
responders, are also involved in maintaining and regu-
lating cellular functions, such as protein synthesis, DNA 
damage removal, and resynthesis. Considering the results 
of taxonomic and functional analyses, including enzyme 
and ortholog analyses (Table  3), the gut microbiome 
may be significantly associated with the vaccine immune 
response at the cellular level.

As discussed above so far, the gut microbiota compo-
sition might play an important role in modulating the 
process of immune response after vaccination. Grow-
ing evidences have shown that the abundance of phylum 
Actinobacteria is consistently associated with good vac-
cine immune responses [77]. Some genera and species 
of Firmicutes and Proteobacteria is also known to affect 
vaccine immune responses [77]. Conversely, the compo-
sition of gut microbiome is also affected by vaccination 
as shown among the BNT162b2 recipients in this study. 
Vaccination might induce changes in the gut microbiota 
composition, thereby influencing vaccine immunogenic-
ity. A recent study reported that both inactivated and 
mRNA SARS-CoV-2 vaccination led to lower gut micro-
bial diversity with the relatively high abundance of Bacte-
roides caccae and low abundance of Coprococcus comes, 
Dorea longicatena and Ruminococcus obeum [18]. Several 
studies have highlighted the bidirectional relationship 
between the gut microbiota and vaccine efficacy, empha-
sizing that the gut microbiota can influence the immune 
response to vaccines—including cholera, rotavirus, hepa-
titis B, tetanus, and influenza vaccines, not limited to the 
COVID-19 vaccine—and that vaccination itself can also 
lead to changes in the gut microbiota [78–80]. It is uncer-
tain whether the composition of gut microbiota is influ-
enced mainly by the vaccine platform or by the antigen 
itself in relation to the immune response pattern.

This study had several strengths, including both short- 
and long-term assessments of vaccine immunogenicity 
and its association with the gut microbiome. Moreover, 
the linkage between the microbiota and functional path-
ways could be confirmed more clearly by perform-
ing both 16S rRNA and shotgun sequencing. However, 
this study also had some limitations. First, as this was 
an observational cohort study, establishing causality 
between specific microbiota/metabolites and vaccine 
immune responses was not feasible. Second, the partici-
pants in this study were healthy individuals; we did not 

include groups of older individuals or those with chronic 
medical conditions. Finally, the sample size was limited 
due to the rapidly evolving pandemic situation. It was 
necessary to exclude individuals who had contracted 
COVID-19 and to enroll participants who received the 
COVID-19 vaccine within a short timeframe that aligned 
with the study schedule. These limitations should be 
addressed in future studies to enable the investigation of 
causality in a more diverse cohort of participants.

In conclusion, the longevity of COVID-19 vaccine 
immunity was significantly associated with the composi-
tion of the gut microbiota. We showed for the first time 
the beneficial impact of F. prausnitzii in short and long-
term vaccine immune responses and identified several 
intermediate metabolites and enzymes as potential post-
biotic candidates for vaccine microbiome adjuvants. The 
results of this study provide evidence for a gut microbi-
ome-based personalized approach for enhancing vaccine 
efficacy.
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