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Abstract
Background  Risk stratification and treatment benefit prediction models are urgent to improve negative sentinel 
lymph node (SLN-) melanoma patient selection, thus avoiding costly and toxic treatments in patients at low risk 
of recurrence. To this end, the application of artificial intelligence (AI) could help clinicians to better calculate the 
recurrence risk and choose whether to perform adjuvant therapy.

Methods  We made use of AI to predict recurrence-free status (RFS) within 2-years from diagnosis in 94 SLN- 
melanoma patients. In detail, we detected quantitative imaging information from H&E slides of a cohort of 71 
SLN- melanoma patients, who registered at Istituto Tumori “Giovanni Paolo II” in Bari, Italy (investigational cohort, IC). 
For each slide, two expert pathologists firstly annotated two Regions of Interest (ROIs) containing tumor cells alone 
(TUMOR ROI) or with infiltrating cells (TUMOR + INF ROI). In correspondence of the two kinds of ROIs, two AI-based 
models were developed to extract information directly from the tiles in which each ROI was automatically divided. 
This information was then used to predict RFS. Performances of the models were computed according to a 5-fold 
cross validation scheme. We further validated the prediction power of the two models on an independent external 
validation cohort of 23 SLN- melanoma patients (validation cohort, VC).

Results  The TUMOR ROIs have revealed more informative than the TUMOR + INF ROIs. An Area Under the Curve 
(AUC) value of 79.1% and 62.3%, a sensitivity value of 81.2% and 76.9%, a specificity value of 70.0% and 43.3%, an 
accuracy value of 73.2% and 53.4%, were achieved on the TUMOR and TUMOR + INF ROIs extracted for the IC cohort, 
respectively. An AUC value of 76.5% and 65.2%, a sensitivity value of 66.7% and 41.6%, a specificity value of 70.0% and 
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Introduction
Malignant melanoma is one of the most aggressive skin 
cancers [1, 2]. Characteristics of the primary tumor, 
such as location, stage, ulceration, mitotic index as well 
as loco-regional lymph node involvement play a key role 
in the prediction of the risk of recurrence in melanoma 
patients [3–5].

Since the early 1990s, a crucial advance in the man-
agement of melanoma patients has involved the sen-
tinel lymph node (SLN) biopsy technique, that is now 
routinely used as a staging procedure for patients with 
pT1b, pT2, pT3, and pT4 melanoma, in agreement with 
the 8th edition of the American Joint Committee on Can-
cer (AJCC) Cancer Staging Manual [6]. The frequency 
of SLN metastasis is growing with the increase in thick-
ness of primary lesion and other clinic-pathologic prog-
nostic factors, such as ulceration and number of mitoses. 
Although the new AJCC classification has improved the 
assessment of recurrence risk stratification, negative 
SLN (SLN-) stage IB-IIC melanoma patients represent 
a heterogeneous population in terms of recurrence risk. 
Despite the absence of lymph node involvement, stage 
IB-IIC patients have a very high risk of melanoma recur-
rence and death. Patients with stages IIB and IIC mela-
noma are even associated with a higher risk than stage 
IIIA, and a similar risk if compared to stage IIIB [7].

Anti-CTLA-4 and anti-PD1 immune checkpoint inhib-
itors and combination BRAF/MEK inhibitors for patients 
with BRAF V600 mutations has significantly improve 
recurrence-free survival and distant metastasis-free sur-
vival in patients with stage III melanoma after surgical 
resection, and they are standards of care in this setting 
[8–10]. Recently, two pivotal adjuvant trials of pembro-
lizumab and nivolumab have also reported a significant 
improvement in both RFS and DMFS in stage IIB-IIC 
disease. However, the absolute benefit is low and there 
are concerns about the risk of severe toxicities [11, 12].

To improve the assessment of recurrence risk, less 
invasive and more accurate techniques are being under 
investigation. Application of artificial intelligence (AI)-
based models has gaining increasing interest in many 
fields of medicine and oncology, particularly in the image 
analysis branch, including the emerging digital pathol-
ogy [13], which utilizes specialized scanners to digitize 
histological specimens, namely, glass slides, thus gen-
erating digital images. AI techniques have shown value 

in the automatic identification of quantitative imaging 
information from the raw digitalized slides directly, to 
be subsequently used as potential diagnostic or prognos-
tic biomarkers. In other words, such systems are able to 
automatically extract not only information that are usu-
ally evaluated manually and visually by pathologists, but 
also “unperceivable-to-humans” insights hidden to naked 
eyes [14]. To date, the efforts to develop AI models based 
on digital slide analysis have shown great potential to 
provide accurate predictions with respect to clinical out-
comes (e.g., prediction of disease recurrence or response 
to therapy) [15]. This kind of models is still not so popu-
lar in the field of melanoma prognosis and therapy. Only 
recently, some examples of AI models exploring these 
issues have been developed [16]; however, they do not 
reach performance accurate enough to be applied in clin-
ical practice [17–19].

In this study, we wanted to contribute to this debated 
topic by proposing an AI model, which exploited digital 
slides referred to primary lesion with the purpose of pre-
dicting 2-year recurrence-free status (RFS) in SLN- mela-
noma patients. To the aim, Regions of Interest (ROIs) 
containing tumor cells alone or with infiltrating cells have 
been selected by expert pathologists and then automati-
cally analysed by our AI model to classify each patient 
as a recurrence case or a non-recurrence case. Finally, 
to give an interpretation of the decision-making pro-
cess, which could be usable for clinical practitioners, the 
regions of the image mostly contributing to the model 
prediction have been highlighted through the implemen-
tation of an explainable AI technique [20, 21].

Materials and methods
Data collection
This retrospective study was approved by the Scientific 
Board of the Istituto Tumori “Giovanni Paolo II” in Bari, 
Italy Prot. 1177/CE. A cohort of 71 melanoma patients, 
who were cared for at the same Institute, were enrolled 
(investigational cohort, IC). The following criteria were 
required for inclusion: (i) melanoma patients from stage 
IB-IIC with completely resected primary tumor (T) and 
negative SLN; (ii) with available primary tumor speci-
men; (iii) with available clinical information of 2-year 
RFS (a follow-up of at least 24 months for disease-free 
patients, or who presented disease recurrence within 24 
months). A validation cohort of 23 melanoma patients 

55.9%, an accuracy value of 70.0% and 56.5%, were achieved on the TUMOR and TUMOR + INF ROIs extracted for the 
VC cohort, respectively.

Conclusions  Our approach represents a first effort to develop a non-invasive prognostic method to better define the 
recurrence risk and improve the management of SLN- melanoma patients.
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selected according to the previous eligibility criteria was 
provided by Azienda Ospedaliero Universitaria Consor-
ziale Policlinico in Bari, Italy (validation cohort, VC).

Table  1 summarize the main clinical characteristics 
of the IC and VC cohorts, respectively. The associa-
tion between each clinical feature and the classification 
label (recurrence cases vs. non-recurrence cases) was 
evaluated by means of suitable statistical tests, i.e., Wil-
coxon–Mann– Whitney test [22] for continuous features, 
Chi-Square Test [23] for ordinal features. A result was 
considered statistically significant when the p-value was 
less than 0.05.

For each patient, 3-µm thickness were cut from forma-
lin-fixed and paraffin-embedded histological blocks and 
for each sample, staining procedures were performed 
on HE 600 system automated immunostainer (Ventana 
Medical Systems, Tucson, AZ, USA), from deparaffiniza-
tion to counterstaining with hematoxylin and mounting 
with VENTANA HE 600 Coverslipping Activator (Ven-
tana Medical Systems, Tucson, AZ, USA). One slide 
stained with hematoxylin/eosin (H&E) was selected 
for the digitalization process. Digital slides were finally 
obtained by using a high-performing slide scanner at 
40×magnifcation (Aperio AT2, Leica Biosystems).

ROI identification and image pre-processing
The digitalized H&E slides were gigapixel images con-
structed into a multi-layered “pyramid”, enabling opti-
mized real-time viewing across multiple resolutions [24]. 
Thereby, to be handled by AI models, a pre-processing 
phase was required to decrease their computational bur-
den. First of all, two ROIs, one containing tumor cells 
alone (TUMOR ROI) and the other one with tumor-
infiltrating cells (TUMOR + INF ROI) were manually 
identified on each gigapixel H&E image by two expert 
pathologists of our Institute (left panel of Fig. 1A). Areas 
including hyperpigmentation and necrosis as well as 
regions containing artifacts due to staining or cutting 
procedures were not included. Each ROI was automati-
cally divided into sub-regions (right panel of Fig.  1A), 
i.e., tiles with 200 × 200 pixels at 40×magnifcation using 
QuPath open-source software [25].

An automated cell detection to identify both tumor 
and infiltrating cells was implemented and performed 
on each tile by using QuPath software. Only squared 
tiles containing high cell density, i.e., with a number of 
cells occupying at least 25% of the entire tile area were 
retained for further analysis. For the IC cohort, whereas 
a total of 3811 tiles were extracted from TUMOR ROIs 
(TUMOR tiles), an amount of 2732 tiles were col-
lected from TUMOR + INF ROIs (TUMOR + INF tiles). 
The VC cohort counted 950 TUMOR tiles and 593 
TUMOR + INF tiles. As final step of pre-processing anal-
ysis, a colour-normalization based on Macenko’s method 
[26] was implemented to overcome possible inconsisten-
cies during the staining process. The retained tiles of the 
two kinds of ROIs were later given in input to AI-based 
models to finally classify the corresponding patients into 
two classes, namely, recurrence cases vs. non-recurrence 
cases.

Transfer learning-based approach
Transfer learning-based approaches have gained increas-
ing attention in the research field focused on biomedical 
image analysis, especially for reduced size datasets [27]. 
Basically, they exploit the features learned on one task 
by pre-trained neural networks, which have been pre-
viously trained on a huge number (millions) of natural 
nonmedical images to learn how to automatically extract 
features of different level of abstraction, i.e., from low-
level features, e.g., edge and dots, to high-level features, 
e.g., shapes and objects, from a raw image. These fea-
tures are re-used for the task of interest (in our case, RFS 
prediction). The most common transfer learning-based 
approach consists of freezing layers from a pre-trained 
network, and then adding and training some trainable 
layers on top of the frozen layers to turn the old fea-
tures into predictions on the dataset under analysis. In 
this work, we involved some pre-trained architectures, 

Table 1  Clinical characteristics of the investigational and 
validation cohorts
Characteristic, n (%) Investigational cohort Validation cohort
Outcome
non-Recurrence 51 (71.8) 17 (73.9)
Recurrence 20 (28.2) 6 (26.1)
Gender, n (%)
Male 39 (54.9) 15 (65.2)
Female 32 (45.1) 8 (34.8)
Age
Median [q1; q3] 58 [52; 71] 60 [51; 70]
Tumor site, n (%)
Trunk 37 (52.1) 15 (65.2)
Extremities 28 (39.4) 6 (26.1)
Head and neck 6 (8.5) 2 (8.7)
pT, n (%)
T2a 21 (29.6) 3 (13.0)
T2b 8 (11.3) 3 (13.0)
T3a 17 (23.9) 4 (17.4)
T3b 9 (12.7) 5 (21.7)
T4a 7 (9.8) 1 (4.5)
T4b 9 (12.7) 7 (30.4)
Stage, n (%)
IB 21 (29.6) 0 (0.0)
IIA 25 (35.2) 10 (43.5)
IIB 16 (22.5) 6 (26.1)
IIC 9 (12.7) 7 (30.4)
For categorical variables, percentage (%) counts are reported. For continuous 
values, the median and 1rst and 3rd quartiles values are indicated
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both CNNs, such as Xception [28], InceptionV3 [29], 
ResNet50 [30], Densenet201 [31] and, and Vision Trans-
formers, ViT16 [32], and, then, we defined a criterion to 
choose only one of these networks to develop the learn-
ing model we proposed here. Xception is a 71 layers deep 
architecture, whose functioning is to apply the filters on 
each of the depth map and then compress the input space 
using 1 × 1 convolution across the depth. InceptionV3 has 
an architectural design with repeated components called 
inception modules. Both architectures receive 299 × 299 
size images as input. ResNet50 architecture is a 50 layer-
net belonging to the class of residual CNNs, which makes 
use of stacking residual blocks to train much deeper 
networks with the aim of maintaining compelling per-
formances. DenseNet201 model is composed by lay-
ers receiving additional inputs from all preceding layers 
and passing their feature-maps to all subsequent layers. 
Both architectures receive 224 × 224 size images as input. 
ViT16 splits an input image in 16 × 16 size patches and 
encodes each patch as a token using self-attention map 
mechanism. It receives 224 × 224 size images as input. 

To decide which pre-trained network to use as training 
module of our model, for all the pre-trained networks 
taken into accounts, we extracted features from both 
TUMOR and TUMOR + INF tiles by using the last frozen 
layer, i.e., the layer immediately preceding the classifi-
cation layer. A total number of 2048 features was com-
puted by means of Xception, InceptionV3 and ResNet50; 
1920 features were extracted through DensenNet201; 
768 features were obtained by using ViT16. The statisti-
cal significance of each feature fi  extracted by the above 
mentioned pre-trained networks from both TUMOR 
ROIs and TUMOR + INF ROIs was assessed through the 
computation of an individual discriminant power (DP ) 
[33], which was obtained as

	 DP (fi) = max (AUC (fi) , 1− AUC (fi))

where AUC stands for the area under the Receiver Oper-
ating Characteristic (ROC) curve, which expresses the 
general capability of the feature to discern samples with 
respect to a binary classification task, that, in our case, is 

Fig. 1  Pipeline of image data analysis. (A) ROI identification and image pre-processing. Two ROIs, one containing tumor cells alone (TUMOR ROI) and the 
other one with tumor-infiltrating cells (TUMOR + INF ROI) were manually identified. Each ROI was automatically divided into sub-regions, i.e., tiles with 
200 × 200 pixels at 40×magnifcation. (B) Transfer learning-based approach. Two predictive models based on DenseNet101 architecture were trained and 
validated according to a five-fold cross validation procedure on images related to the Investigational Cohort, i.e., taking in input the TUMOR tiles and to 
TUMOR + INF tiles, respectively. The two models were further validated on an external cohort of patients, the validation cohort
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recurrence cases vs. non-recurrence cases. The possible 
DP values belong to the range [0.5, 1]. A score of 0.5 indi-
cates random guessing, while a value of 1 indicates per-
fect separability ability. A score slightly above 0.5 shows 
that a feature has at least some (albeit small) predictive 
power. The network showing features with the maximum 
DP, that was DenseNet201 (see Results), was then used 
as building block of the predictive models, which were 
developed starting from the tiles identified from the two 
ROIs type of each patient.

Pipeline of image data analysis
We developed two predictive models on images related to 
the IC cohort, i.e., taking in input the 3811 TUMOR tiles 
and 2732 TUMOR + INF tiles, respectively. The dataset of 
patients at disposal was divided in turn into training and 
test sets, in agreement with a five-fold cross validation 
procedure (Fig.  1B). The splitting was the same for the 
two models. All the tiles associated to the ROIs (either 
TUMOR ROIs or TUMOR + INF ROIs) of one patient 
were part either of the training set or the test set depend-
ing on whether the patient was assigned to the training 
set or the test set, respectively. The two predictive mod-
els shared the same backbone structure, that was a trans-
fer learning module based on DenseNet201 architecture 
(Fig. 1B). To apply transfer learning, the last layer of the 
network was replaced with some consequent trainable 
layers: a flattening layer, a batch normalization layer, a 
dense layer with ReLu (Rectified Linear Unit) activation, 
another batch normalization layer, and a final dense layer 
as classifier with a sigmoid activation function. The train-
able layers of the transfer learning module were trained 
by choosing 8 as batch size and 30 as epochs. Focal loss 
rather than the binary cross entropy error was defined as 
the loss function, with the aim of addressing class imbal-
ance [34]. As optimizer for the weights of the network, 
Adam optimization algorithm with a starting learn-
ing rate of 10−4 was performed [35]. Data augmentation 
including random flip horizontally and vertically, random 
rotation with angles in the range [-20, 20] degrees with a 
step of 5 degree, and randomly contrast adjustment with 
a factor of 0.2, was implemented in the training phase 
to overcome overfitting. The implementation code was 
written in Python 3.6 and run using ColabPro Notebook.

The predictive models returned classification scores 
for each tile corresponding to one patient. To obtain 
a unique classification score per patient in correspon-
dence of each kind of ROI, a majority voting rationale 
was applied: the final class assignment returned by a 
model corresponds to the class that was most frequently 
assigned for the tiles related to that patient (Fig. 1B). The 
corresponding classification score was computed as the 
maximum/minimum score of the models labelling the 
patient into the recurrence/non-recurrence class, if the 

class assigned by the majority voting was the recurrence/
non-recurrence class, respectively. Finally, the models 
were validated on an external cohort of patients, the VC 
cohort (Fig.  1B), which involved 950 TUMOR tiles and 
593 TUMOR + INF tiles.

The developed models were evaluated after major-
ity voting by computing AUC of ROC curve and other 
standard metrics such as accuracy, sensitivity, specificity, 
and precision. Moreover, G-mean, that is the square-root 
of the product between sensitivity and specificity, thus 
allowing a balance between sensitivity and specificity, is 
also calculated, since it is an explanatory metric to assess 
model performance over imbalanced datasets, as in our 
case (recurrence cases represent the 28.2% and 26.1% of 
the IC and VC cohorts). All the metrics except for AUC 
are threshold metrics since their value depends on a 
threshold, which is usually set a priori pr defined by well-
known techniques such as Youden’s index. In this work, 
we imposed this threshold as the ratio of the number of 
patients belonging to the recurrence class over the total 
number of patients composing the training sets under 
study (approximated to the first decimal digit) [36].

When the models were validated on the independent 
cohort, the weights of the models saved for the five train-
ing sets of the cross-validation scheme of the IC cohort 
were used. Hence, the median and interquartile ranges 
(IRGs) of all the standard metrics were computed as eval-
uation metrics.

Explanation of the decision-making process
The decision-making process underlying the transfer 
learning module of the proposed model after training 
the trainable top layers was visually explained by apply-
ing the Local Interpretable Model-agnostic Explanations 
(LIME) [20, 21], whose functioning arises from the con-
struction of a new dataset of “perturbed” samples with 
the corresponding predictions of the network. Then, an 
interpretable model is trained on the new dataset, tak-
ing into account ‘local’ approximations, i.e., the proxim-
ity of the sampled instances to the instance for which we 
want to have an explanation. When samples are images, 
variations of the images are generated through “super-
pixels” segmentation and turning superpixels off or on. 
The regions mainly contributing to the decision-making 
process, whose number is chosen a priori by users (in 
our case 20), are highlighted as superpixels on heat-
maps overlapped to the raw images. With respect to 
the label predicted by the network (recurrence vs. non-
recurrence), the positive contributing superpixels are 
colored green, whereas the regions which contribute to 
the assignment of that image into the predicted class are 
colored green.
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Results
To decide which pre-trained network to use as the 
transfer learning module, we firstly evaluated the dis-
criminant power of the features extracted from the last 
frozen layer of pre-trained networks mentioned in the 
Methods section. Figure  2A-B depict the percentage of 
the extracted features, whose DP value was higher than 
0.6 (left panels), and the maximum DP score among the 
extracted features (right panels) for the TUMOR tiles and 
TUMOR + INF tiles, respectively.

From the comparison between the two kinds of tiles 
emerges how the percentage of features with DP score 
higher than 0.6 is greater for all the pre-trained networks 
in the case of TUMOR tiles (left panels). Such a result 
suggests how the TUMOR ROIs contain potential more 
informative content than TUMOR + INF ROIs. The best 
DP values were achieved by DenseNet201 architecture in 
correspondence of both kinds of tiles: 0.78 for TUMOR 
tiles and 0.66 for TUMOR + INF tiles. Hence, this archi-
tecture was then used to develop the transfer learning 
module of the predictive models.

The prominence of the TUMOR ROIs over the 
TUMOR + INF ROIs was also quantitatively confirmed 
in terms of performance reached by the predictive 
modes on the two types of ROIs, as shown in Table  2. 
For TUMOR + INF ROIs and TUMOR ROIs, an AUC 
value of 62.3% and 79.1%, a specificity value of 43.3% and 
70.0%, a sensitivity value of 76.9% and 81.2%, an accuracy 
value of 53.4% and 73.2%, a precision value of 37.1% and 
52.0%, a G-mean value of 57.7% and 75.4% were achieved, 
respectively. The corresponding ROC curves are depicted 
in Fig. 3A.

The models developed in this paper were finally tested 
on the external validation VC cohort of patients, reaching 
AUC value of 76.5% and 65.2%, a median accuracy value 
of 70.0% and 56.5%, a median sensitivity value of 66.7% 
and 41.6%, a median specificity value of 70.0% and 55.9%, 
a precision value of, 31.7% and 44.4%, and a median 
G-mean value of 68.6% and 52.4% for the TUMOR ROIs 
and TUMOR + INF ROIs, respectively. The resulting 
ROC curves are represented in Fig. 3B. These results are 
consistent with those reached on the IC cohort.

Fig. 2  Discriminant power (DP) evaluation. (A) The percentage of the extracted features, whose DP value was higher than 0.6 (left panels), and (B) the 
maximum DP score among the extracted features (right panels) for the TUMOR tiles and TUMOR + INF tiles, respectively
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Finally, the statistical tests mentioned in the Methods 
Section were performed between RFS and each clini-
cal factor to understand whether there was a relation-
ship between the two variables: no association between 
RFS and the clinical factors emerged for the IC cohort 
(p > 0.05); a significant association of the RFS with stage 
was highlighted for the VC cohort (p = 0.0042). This 
result can be justified from the distribution of the recur-
rence cases in the diverse categories of the stage variable. 
The recurrence cases included in the IC cohort were dis-
tributed across all the categories of the stage variable: 
among the 20 recurrence cases, three belong to stage IB, 

nine to stage IIA, four to stage IIB, and four to stage IIC. 
Conversely, the six recurrence cases referred to the VC 
cohort are divided between stage IIA (one case) and stage 
IIC (five cases).

According to these last results, we investigated the 
behavior of the best model, i.e., that based on TUMOR 
ROIs, with respect to sub-cohorts of patients of the IC 
cohort divided by stage, by combining the stages with 
better and worse recurrence-free curves in the same cat-
egory [37]. Specifically, we joined the patients with stage 
IB-IIA melanoma and those with stage IIB-IIC melanoma 
into two different categories. Then, we computed the 
metrics already being used: stage IB-IIA (AUC = 80.3%, 
sensitivity = 88.9%, specificity = 61.5%, accuracy = 68.5%), 
stage IIB-IIC (AUC = 80.6%, sensitivity = 57.1%, specific-
ity = 85.7%, accuracy = 76.2%). The corresponding ROC 
curves are depicted in Fig. 4.

In the vein of explainable artificial intelligence, Fig 
5  A-B depict a TUMOR tile and a TUMOR + INF tile, 
respectively, which are related to a correctly classified 
recurrence case (left panels) alongside to the same tiles 
overlaid by the areas which mostly contribute to the 
decision of the AI model (right panels). The red color 
highlights the negatively contributing areas to the assign-
ment to recurrence class (i.e., against the occurrence of 
recurrence), whereas the green represents the positively 
contributing areas to the assignment to recurrence class 
(i.e., in favour of the occurrence of recurrence). This 
explanation was then used by our pathologists to make 
an informed decision on the reliability of the predic-
tions in agreement with their expectations. Afterwards, 
a naked-eye analysis of the images was performed by 
our pathologists, who highlighted some findings. In the 

Table 2  Performance evaluation of the two AI-based models on 
investigational and validation cohorts, respectively. The metric 
values for the IC cohort are represented by a unique number 
according to the evaluation using a cross-validation scheme. The 
metric values for the VC cohort are expressed as median values 
and IRGs according to the evaluation using the training sets of 
the cross-validation scheme
Cohort Metric (%) ROI type

TUMOR + INF TUMOR
Investigational cohort AUC 62.3 79.1

Specificity 43.3 70.0
Sensitivity 76.9 81.2
Accuracy 53.4 73.2
Precision 37.1 52.0
G-mean 57.7 75.4

Validation cohort AUC 65.2 [58.3; 67.2] 76.5 [71.1; 80.2]
Specificity 55.9 [52.9; 67.7] 70.6 [69.1; 80.9]
Sensitivity 41.6 [33.3; 58.3] 66.7 [50.0; 66.7]
Accuracy 56.5 [52.2; 60.9] 70.0 [68.5; 72.8]
Precision 31.7 [25.0; 33.3] 44.4 [42.1; 52.1]
G-mean 52.4 [46.3; 56.8] 68.6 [64.7; 68.6]

Fig. 3  ROC curves. (A) ROC curves related to the two AI models, analyzing tiles from TUMOR ROIs and TUMOR + INF ROIs on the IC cohort, respectively (B) 
ROC curves related to the two AI models, analyzing tiles from TUMOR ROIs and TUMOR + INF ROIs on the VC cohort, respectively. The curves are obtained 
by averaging the y-values over the values obtained on the VC cohort by using the diverse training sets of the cross-validation scheme in turn. The cor-
responding IRGs are represented as shaded areas
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regions including both tumor and infiltrating cells, the 
AI algorithm was able to automatically detect and mor-
phologically divide tumor cells from the infiltrating ones. 
In addition, it assigned them in green and red areas, 
respectively. It confirmed pathologists’ expectations 
since tumor cells contribute to recurrence, while infil-
trating cells could have a protective effect on the spread 
of the disease. Conversely, the pathologists did not 
notice perceivable-to-humans morphological differences 
among more and less aggressive tumor cells involved on 
TUMOR tiles.

Discussion
In this study, we proposed an AI-based model exploiting 
ROIs annotated from H&E slides to predict recurrence 
risk in SLN- melanoma patients. We decided to analyze 
stage IB-IIC patients due to their high recurrence rate. 
Indeed, roughly 20% of stage IB patients and up to about 
60% of stage IIC patients show recurrence within 10 years 
after radical surgery [37, 38]. Therefore, all these patients 
would deserve an adjuvant therapy, if available. Recent 
research works demonstrated a significantly improve-
ment of the adjuvant therapy efficacy in terms of recur-
rence-free survival and distant metastasis-free survival 
in stage IIB-IIC and III melanoma after radical surgical 
resection, including immune checkpoint inhibitors for 
stage II/III, and a combination of BRAF/MEK inhibitors 
for BRAFV600 mutated stage III patients [8–12]. Notori-
ously, stage I and stage IIA patients were not included in 
those studies, and, to date, there are not available adju-
vant therapies for these patients.

Despite the undoubted advantages, the absolute ben-
efit of adjuvant therapy is low, and there are concerns 
about the risk of severe toxicity [8–12]. Thus, the valida-
tion of patient risk-stratification and treatment-benefit 

prediction models are needed to improve patient selec-
tion and limit exposure to toxicity in the large population 
of patients with low recurrence risk [39].

Here, we proposed an AI-model to address this chal-
lenging task. The proposed model was able to automati-
cally extract some quantitative imaging information 
directly from H&E images, that are usually evaluated 
manually and visually by pathologists. Some interesting 
observation could be discussed. First, the achieved per-
formances highlighted how the regions containing tumor 
cells alone have revealed as more informative than those 
containing both tumor and infiltrating cells. An AUC 
value of 79.1% and 62.3%, a sensitivity value of 81.2% and 
76.9%, a specificity value of 70.0% and 43.3%, an accuracy 
value of 73.2% and 53.4%, were achieved on the TUMOR 
and TUMOR + INF ROIs extracted for the IC cohort, 
respectively. An AUC value of 76.5% and 65.2%, a sen-
sitivity value of 66.7% and 41.6%, a specificity value of 
70.0% and 55.9%, an accuracy value of 70.0% and 56.5%, 
were achieved on the TUMOR and TUMOR + INF ROIs 
extracted for the VC cohort, respectively. These results 
could be justified since the heterogeneity of the immune 
cell populations. Then, we deeper investigated the deci-
sion made by the algorithm by applying an explainable 
AI technique, which enabled us to visually interpret the 
regions of the input images that the algorithm as deemed 
as the most informative in its decision-making process. A 
variety of tumor microenvironment (TME) cells, namely 
T and B lymphocytes, natural killer cells, macrophages 
and dendritic cells, as well as neutrophils and fibroblasts, 
support the growth and invasiveness of melanoma cells, 
thanks to a plethora of mechanisms including secretion 
of pro-inflammatory molecules, induction of receptor 
inhibitors expression, or depletion of essential nutrients. 
The connection between tumor cells and TME deter-
mines the architecture and cellular plasticity of TME. 
These continuous changes affect tumor growth and ther-
apeutic response with significant impact on clinical out-
comes [40–43]. Understanding the interactions between 
tumor cells and TME is essential for the development of 
new algorithms to analyze different TME patterns. How-
ever, since an overall assessment of the TME is not suffi-
cient, a detailed study of individual cellular components, 
their functional state, and spatial distribution is required. 
Therefore, our next step will be to verify if the analysis of 
specific cellular components of the TME and their spatial 
distribution is able to improve the sensitivity and speci-
ficity of our model in predicting the RFS of SLN- mela-
noma patients.

To the best of our knowledge, few research works 
investigated the potential of deep learning and trans-
fer learning to fulfill the task of predicting recurrence 
in melanoma patients [17, 19]. Specifically, in our previ-
ous work [17], we developed a transfer learning model 

Fig. 4  ROC curves related to the best AI model by dividing the melanoma 
population under analysis by stage
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analyzing H&E images referred to the primary melanoma 
to predict 2-year RFS in stage I-III melanoma patients. 
An investigational cohort of 43 patients from Clinical 
Proteomic Tumor Analysis Consortium Cutaneous Mela-
noma (CPTAC-CM) public database was firstly used to 
train the model. A validation cohort of 11 cutaneous mel-
anoma patients referred to our Institute was then used to 
test the model. Areas containing both tumor and infiltrat-
ing cells were taken into account to extract imaging infor-
mation. As a result, AUC values of 69.5% and 66.7% were 
achieved on public and private databases, respectively. 

Recently, Kulkarni and colleagues [19] developed a deep 
learning model using H&E images of primary melanoma 
to predict visceral recurrence and death in stage I-III 
melanoma patients, reaching an AUC value of 88.0% on a 
validation cohort of 51 patients. Compared to these stud-
ies, we analyzed a more homogeneous population, thus 
achieving less biased results. In addition, we probed the 
differences in model performances by analyzing TUMOR 
ROIs and TUMOR + INF ROIs, also visualizing the areas 
on the image that the model judged as the most informa-
tive to the prediction. As far as we know, this is the first 

Fig. 5  Explainability results. (A) A TUMOR tile and a (B) TUMOR + INF tile related to a correctly classified recurrence case (left panels) alongside to the same 
tiles overlaid by the areas which mostly contribute to the decision of the AI model (right panels). The red color highlights the negatively contributing areas 
to the assignment to recurrence class, whereas the green represents otherwise
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work addressing RFS prediction in melanoma patients 
in which explainable algorithms was used, thus adding 
value to make clearer the decision-making process of the 
algorithm.

Beyond the promising results, the main limitation of 
the study consists in the relatively small size of the data-
set under study; therefore, a larger dataset is needed for 
a more comprehensive evaluation of the performance 
of the proposed model. However, the current analysis is 
a hypothesis-generating study which aims to answer an 
interesting unmet clinical need in this setting. As future 
work, to make the entire image analysis workflow as 
fully operator-independent, an automatic cell detection 
and classification (tumor cells and infiltrating cells), and, 
hence, an automatic ROI identification will be performed. 
Therefore, we are currently collecting data from multi-
ple centres across Italy to re-train the optimized model 
on a wider cohort of patients. In conclusion, the added 
value of this work is represented by the automatic iden-
tification of quantitative imaging information from the 
raw H&E slides directly: fine tumor and infiltrating cells’ 
characteristics, such as morphology of tumor nuclei as 
well as density distribution of infiltrating cells, are identi-
fied and then used as prognostic factors in SLN- mela-
noma patients. The promising results make this study as 
a valuable basis for future research investigation on wider 
cohorts of patients enrolled with a multi-centric study.
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