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Background
Ovarian cancer is the third most common cancer among 
female reproductive system tumors, with the highest 
mortality rate among gynecological malignancies [1]. 
Although tumor cytoreductive surgery and platinum-
based chemotherapy have witnessed substantial progress 
in the management of ovarian cancer [2, 3], the recur-
rence rate in patients with ovarian cancer continues to be 
notably high [4]. Up to 70% of patients will relapse within 
3 years, and the interval between subsequent relapses 
will become shorter and shorter until platinum resistance 
[5]. In order to delay and solve platinum resistance, it has 
become a breakthrough to improve the survival rate of 
ovarian cancer by finding effective maintenance therapy 
drugs [6]. Polyadenosine diphosphate ribose polymerase 
inhibitors (PARPi) are targeted drugs primarily designed 
for BRCA1/2 gene mutations or homologous recombi-
nation deficiency (HRD) in ovarian cancer. Their main 
mechanism is to kill tumor cells through the “synthetic 
lethality” effect [7]. The emergence of PARPi therapy, 
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Abstract
The advent of polyadenosine diphosphate ribose polymerase inhibitors (PARPi) has brought about significant 
changes in the field of ovarian cancer treatment. However, in 2022, Rucaparib, Olaparib, and Niraparib, had their 
marketing approval revoked for third-line and subsequent therapies due to an increased potential for adverse 
events. Consequently, the exploration of new treatment modalities remains imperative. Recently, the integration of 
PARPi with immune checkpoint inhibitors (ICIs) has emerged as a potential remedy option within the context of 
ovarian cancer. This article offers a comprehensive examination of the mechanisms and applications of PARPi and 
ICIs in the treatment of ovarian cancer. It synthesizes the existing evidence supporting their combined use and 
discusses key considerations that merit attention in ongoing development efforts.
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particularly in the context of BRCA1/2 mutations, has 
established a cornerstone for precision treatment in 
ovarian cancer [8]. Numerous clinical studies have con-
sistently demonstrated that PARPi substantially extend 
progression-free survival (PFS) among ovarian cancer 
patients [9–13]. Currently, there are six PARPis approved 
by the Food and Drug Administration (FDA) for anti-
cancer therapy. They are Olaparib, Rucaparib, Nirapa-
rib, Talazoparib, Fuzuloparib, and Pamiparib [14, 15]. 
Among them, Olaparib, Rucaparib, and Niraparib have 
obtained approvals from both the FDA and the European 
Medicines Agency (EMA) for using in epithelial ovarian 
cancer [16]. In 2022, the FDA withdrew the accelerated 
approval for certain indications of three PARPi (Rucapa-
rib, Olaparib, and Niraparib) in the advanced treatment 
of ovarian cancer due to insufficient evidence of clinical 
benefit in confirmatory trials.

As the follow-up duration in corresponding clinical 
trials have been extended, the data reveals an elevated 
risk of mortality among patients who received second- 
or third-line or third-line maintenance treatment with 
PARPi compared to those who underwent chemotherapy 
[17]. This suggests that PARPi treatment did not result 
in overall survival (OS) benefits for those ovarian cancer 
patients who received it as a monotherapy in the third 
line or subsequent lines of treatment [18, 19]. Conse-
quently, finding ways to enhance the survival outcomes 
for this specific group of patients have become a focal 
point of attention and research.

Immune checkpoint inhibitors (ICIs) have significantly 
altered the treatment paradigm for various malignant 
tumors, leading to substantial improvements in patient 
survival outcomes [20–24]. Preclinical data indicates that 
combining ICIs with PARPi could potentially generate 
synergistic effects, particularly in ovarian cancer patients 
who may not be suitable candidates for platinum-based 
retreatment [25–28]. In this article, we will provide an 
in-depth review of the development and clinical appli-
cations of PARPi and ICIs. We will also delve into their 
combined use in ovarian cancer, with a particular focus 
on their roles in second-line and subsequent-line treat-
ments. To explore whether this combination can bring 
hope to ovarian cancer patients.

Treatment of PARP inhibitors in ovarian cancer
The synthetic lethal mechanism of PARP inhibitors
The human genome changes dynamically. According 
to statistics, each cell will experience more than 20,000 
DNA damage events [29]. Healthy cells can resist the 
harmful effects of DNA damage through a series of 
interrelated molecular pathways, namely DNA damage 
response (DDR). These molecular pathways recognize 
DNA damage, delay the cell cycle and mediate DNA 
repair, thus maintaining genome integrity [30]. DNA 

damage repair includes: (1) DNA mismatch repair, (2) 
Base excision repair (BER), (3) Nucleotide excision repair, 
(4) DNA double-strand breaks (DSBs) repair, in which 
DNA DSBs repair is mediated by non-homologous end 
joining (NHEJ) and homologous recombination repair 
(HRR) pathways [31]. In the realm of DNA damage, the 
most severe forms of damage typically involve single-
strand or double-strand breaks [31]. Single-strand DNA 
damage repair primarily depends on PARP enzymes, 
of which there are 17 in the human body. Among these 
enzymes, PARP-1 assumes a predominant role, contrib-
uting to approximately 90% of DNA repair processes [32]. 
DNA double-strand repair encompasses two primary 
pathways: NHEJ repair and HRR [31]. It is broadly rec-
ognized that BRCA proteins play a key role in the HRR 
pathway, being responsible for responsible for double-
strand DNA repair. For normal cell DNA damage - sin-
gle strand breaks, the cell can rely on PARP proteins for 
repair through the BER pathway. PARPi refers to small 
molecule inhibitors capable of triggering cell death by 
blocking the activity of PARP during DNA damage repair 
processes [33]. When PARPi acts on normal cells, PARP 
protein cannot play a role, and the inhibition of BER 
leads to the shortening of replication forks and the for-
mation of double-strand breaks. At this time, BRCA1/2 
can initiate the HRR pathway for cell repair. If the cell 
has homologous HRD, the double strand break caused by 
PARPi will not be repaired, and the “synthetic lethality” 
effect of the two will eventually lead to cell death [34, 35]. 
Of course, HRR repair is a complex process, and many 
genes and protein components are involved, including 
MRE11, RAD50, NBS1, ATM, ATR, etc., and BRCA1/2 
are only some of the important components [36]. Muta-
tions or silencing of expression in any gene in the HRR 
repair pathway will cause defects in the HRR repair path-
way, and PARPi may exert anti-tumor activity through 
synthetic lethal effects. Its primary molecular mechanism 
involves competitive binding to the catalytic domain’s 
active site of the PARP enzyme using NAD + nicotin-
amide, which effectively inhibits the activity of the PARP 
enzyme. It cannot function by forming PAR polymers 
and recruiting DNA damage repair related proteins [37]. 
In this scenario, cells with impaired HRR mechanisms 
cannot effectively mend DNA damage via HRR. This 
gives rise to a synthetic lethal phenotype, ultimately caus-
ing the death of cancer cells. This phenomenon exempli-
fies the classic synthetic lethal mechanism [38] (Fig. 1).

Safety and tolerability of PARP inhibitors
The clinical application of PARPi is becoming increas-
ingly widespread, not only in the treatment of ovarian 
cancer but also in other BRCA1/2-related cancers. While 
their therapeutic effects are significant, their safety and 
tolerability are also a major concern. The most common 
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adverse events associated with PARPi include fatigue, 
nausea, and hematologic toxicity. Some patients also 
experience gastrointestinal, neurological, and respiratory 
toxicities [39], with serious side effects such as bone mar-
row suppression and secondary malignancies. Nearly all 
patients exposed to PARPi experience adverse events of 
any grade. Grade 1–2 toxicities are common in approxi-
mately two-thirds of patients, with similar incidence 
rates across all PARPi [40]. Grade 1–2 toxicities generally 
require monitoring while continuing treatment or paus-
ing treatment for up to 28 days, but Grade 3 or higher 
toxicities should be carefully considered, with dose 

reduction or discontinuation of treatment if necessary 
[41].

Application of PARP inhibitors in ovarian cancer
Building upon the understanding of the PARP mecha-
nism, a multitude of PARPi have been developed, primar-
ily with a focus on cancer patients who possess BRCA1/2 
mutations [42]. The prevalence of certain ovarian cancers 
is linked to mutations in the BRCA gene, which serves 
a critical function in DNA double-strand repair. Conse-
quently, PARPi have gained extensive utilization in the 
management of ovarian cancer [43].

Fig. 1 Mechanism of PARP inhibitors. In cells with normal BRCA1/2 function, the homologous recombination repair (HRR) mechanism can repair DNA 
double-strand breaks (DSBs) and single-strand breaks (SSBs), preventing cell death. However, in patients with BRCA1/2 mutations, the HRR mechanism 
fails and cannot repair DNA DSBs. PARP inhibitors (PARPi) block PARP activity, further preventing the repair of SSBs and leading to the accumulation of 
DSBs. This induces synthetic lethality in patients with BRCA1/2 mutations and HRR deficiency, resulting in tumor cell death
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In 2009, PARPi’s first human clinical trial conducted a 
clinical evaluation of Olaparib, confirming for the first 
time the synthetic lethal interaction between PARPi 
and BRCA1/BRCA2 mutations [8, 44]. In the follow-
ing ten years, relevant clinical research has been carried 
out in breast cancer, ovarian cancer, prostate cancer, 
gastric cancer, pancreatic cancer and other cancers [45, 
46]. Olaparib, Rucaparib, and Niraparib have garnered 
approval from both the FDA and the EMA for their appli-
cation in treating epithelial ovarian cancer [16]. Olaparib 
holds the distinction of being the inaugural PARPi to 
undergo extensive research and remains the most thor-
oughly evaluated to date. In April 2014, the European 
Commission granted the marketing license for Olaparib 
as the first treatment drug for platinum sensitive recur-
rent BRCA mutations in advanced serous epithelial ovar-
ian cancer, fallopian tube cancer, or primary peritoneal 
cancer in adult patients with complete or partial response 
to platinum chemotherapy (AstraZeneca press release 18 
December 2014). Subsequently, Rucaparib was approved 
in 2016, followed by Niraparib in 2017 [47].

In 2018, the SOLO-1 trial, which investigated Olaparib 
as a first-line maintenance treatment for primary ovarian 
cancer, reached the significant milestone of completing 
its five-year follow-up. Building upon this development, 
the FDA has now granted approval for Olaparib as a first-
line maintenance treatment specifically for high-grade 
serous ovarian cancer (HGSC) with BRCA1/2 mutations 
in either embryonic or somatic cell lines [48]. In 2022, the 
SOLO-1 study’s seven-year follow-up data was unveiled, 
marking the most extended follow-up period to date for 
first-line maintenance therapy employing PARPi. This 
outcome reaffirms the long-term survival benefits asso-
ciated with Olaparib maintenance therapy for patients 
with BRCA mutations [49]. The PRIMA trial, Study 19 
trial, and PRIME trial (Table  1)have once more under-
scored the substantial effectiveness of single-agent PARPi 
in the maintenance treatment of ovarian cancer [9, 50]. 
In light of the aforementioned research findings, the use 
of specific PARPi is strongly recommended for first-line 
maintenance therapy in appropriate cases. Study 19 trial 
provided initial evidence suggesting that Olaparib could 
offer benefits to patients experiencing platinum-sensitive 
relapses [13]. The SOLO-2 study marked the inaugural 
confirmation that Olaparib maintenance treatment can 
significantly enhance OS in patients with gBRCA muta-
tion [51]. The OPINION study further substantiated 
the effectiveness of Olaparib in the maintenance treat-
ment of platinum-sensitive relapses in patients without 
gBRCA mutations [52]. The L-MOCA study demon-
strated that Olaparib maintenance treatment could bring 
significant benefits to Asian platinum-sensitive relapse 
patients, irrespective of their BRCA mutation status [12]. 
The OReO study and NORA study further validated the 

substantial effectiveness of PARPi monotherapy in sec-
ond-line maintenance therapy for ovarian cancer [11, 53]. 
Building on the research mentioned, PARPi have been 
established as the standard treatment for maintenance 
therapy in platinum-sensitive relapse cases. In real world 
studies, ovarian cancer patients newly diagnosed with the 
condition received PARPi maintenance therapy in natural 
clinical settings. These studies demonstrated significant 
PFS benefits when compared to patients who did not 
receive PARPi maintenance therapy [54, 55] (Table 1).

However, in 2022, due to the potential increased risk of 
death in the quality of Olaparib, Niraparib, and Rucapa-
rib [17, 18, 56], as a result of the FDA’s review, the indi-
cations for advanced treatment of ovarian cancer using 
these medications were revoked [57]. This has led to a 
rising clinical demand for the treatment of late-stage 
ovarian cancer.

The combination of PARPi and ICIs in ovarian 
cancer
ICIs treatment in ovarian cancer
The immune system plays a pivotal role in both restrain-
ing and facilitating cancer development by actively 
engaging in various phases of the body’s response to can-
cer [58]. Current immunotherapy for cancer is mainly 
divided into oncolytic virus therapy, cancer vaccines, 
cytokine therapy, adoptive cell, and ICIs [59]. Recent 
studies have confirmed that targeting immune check-
point pathways has significant clinical efficiency [60]. 
Over the past few decades, significant breakthroughs 
have been made in the exploration of the treatment of 
tumor ICIs. Interventions aimed at programmed cell 
death 1 (PD-1), programmed cell death ligand 1 (PD-
L1), and cytotoxic T lymphocyte-associated protein 4 
(CTLA-4) have achieved broad acceptance for treat-
ing solid tumors [61, 62] (Fig. 2). PD-1 is a co-inhibitory 
receptor that exhibits widespread expression on T cells, 
natural killer (NK) cells, and B cells [63–65]. Indeed, 
PD-1 has two ligands: PD-L1 and PD-L2 [66]. Interac-
tion between PD-1 and PD-L1 can suppress T cell pro-
liferation, dampen T cell activation, and contribute to 
the prevalence of a tumor microenvironment character-
ized by helper T cell 2 (Th2) cytokines, which tends to 
favor tumor growth and development. Hence, inhibiting 
the interaction between PD-L1 and PD-1 can rejuvenate 
cytotoxic T lymphocyte (CTL) function, which had been 
compromised, and reestablish the capacity to eliminate 
cancer cells [67]. CTLA-4 and PD-1 have distinct roles in 
modulating T cell immunity. CTLA-4, a member of the 
CD28 immunoglobulin subfamily, serves as an inhibitory 
receptor primarily expressed by T cells. Its ligands, CD80 
and CD86, are typically present on the surface of antigen-
presenting cells. These ligands can interact with CD28, 
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resulting in co-stimulation, or with CTLA-4, triggering 
co-inhibition reactions [68].

PD-L1 is present in approximately one-third of 
advanced ovarian cancer tumors, while the majority of 
tumor-infiltrating lymphocytes exhibit PD-1 expression 
[69]. Early studies have shown that PD-L1 expression in 
tumors is positively correlated with ovarian cancer sur-
vival [70]. This may also indicate that PD-1/PD-L1 plays 
a key role in the tumor immune response to ovarian 
cancer. Due to the lack of cytotoxic T lymphocytes and 
the immunosuppressive tumor microenvironment, ovar-
ian cancer is included in the cold tumor range [71]. Cold 
tumors are tumors that have low activity to suppress 
immune cells and respond to treatment with tumors that 
are lower than those in the heat-immune category. Other 
names with the same category include invasive exclusion, 
non-inflammatory, or non-immunoreactive tumors [72].

The clinical use of ICIs in ovarian cancer has dem-
onstrated limited efficacy, with clinical trial objective 
response rates typically ranging from approximately 6% 
to 15%. This outcome falls short of the substantial impact 
that immunotherapy has achieved in the treatment of 
metastatic and recurrent cervical cancer [73]. This may 

be related to low expression levels of PD-L1, low muta-
tion load, and weak immunogenicity in ovarian cancer 
[71, 74, 75]. In September 2021, the National Compre-
hensive Cancer Network (NCCN) in the United States 
endorsed the utilization of Pembrolizumab for recurrent 
ovarian cancer patients who exhibit high microsatel-
lite instability (MSI-H) or have deficient DNA mismatch 
repair (dMMR) and are either platinum-sensitive or 
platinum-resistant [76–78]. Currently, immunotherapy is 
often considered as a post-treatment option for ovarian 
cancer. This means that ICIs have emerged as a poten-
tial treatment choice for ovarian cancer. However, the 
outcomes have not been entirely satisfactory [79–82]. 
Finding new combinations to improve the efficacy of 
immunotherapy for ovarian cancer is a feasible approach.

Effects of PARPi on Immune Regulation
The effectiveness of ICIs relies on several factors, such as 
the level of PD-L1 expression, the quantity of tumor-infil-
trating lymphocytes, the neoantigen load, and the tumor 
mutation burden [83, 84]. In terms of their mechanism of 
action, PARPi work by impeding DNA repair processes, 
amplifying DNA damage, generating new antigens and 

Fig. 2 Mechanism of immune checkpoint inhibitors. PD-1/PD-L1 Pathway: Ovarian cancer cells express PD-L1 on their surface, which binds to PD-1 
receptors on T cells, thereby inhibiting T cell activity. Anti-PD-1 and anti-PD-L1 antibodies can block this interaction, restoring the cytotoxic activity of T 
cells. CTLA-4/B7 Pathway: Dendritic cells express B7 molecules on their surface, which bind to CTLA-4 on T cells, inhibiting T cell activity. Anti-CTLA-4 an-
tibodies can block this interaction, enhancing T cell activity. MHC/TCR Pathway: Dendritic cells present antigens via MHC class I molecules, which activate 
T cell receptors (TCR), further activating T cells
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cytoplasmic DNA, activating the interferon pathway and 
initiating anti-tumor immune responses. Next, let’s out-
line the rationale behind combining PARPi with ICIs.

PARPi upregulates PD-L1
Research has revealed that Niraparib has the capacity to 
increase the expression of PD-L1 on the outer surface of 
ovarian cancer cells. This leads to an augmentation in the 
quantity and effectiveness of CD8 + T cells while simul-
taneously exerting immunosuppressive effects within 
the tumor microenvironment [85]. Several studies have 
demonstrated that PARPi can elevate the expression 
of PD-L1 in breast cancer cell lines and animal models. 
PARPi weakens the anti-cancer immune response by 
upregulating PD-L1, while concurrently blocking PD-L1 
to enhance the sensitivity of cancer cells treated with 
PARPi to T cell-mediated killing. When compared to 
each drug administered individually, the combined treat-
ment of PARPi and anti-PD-L1 significantly enhances the 
therapeutic efficacy in vivo [86]. Furthermore, research 
has identified that in an advanced serous ovarian can-
cer mouse model, the administration of Olaparib leads 
to an increase in PD-L1 expression. The combination of 
Olaparib and PD-L1 exhibits a notable effect, whereas 
the efficacy of anti-PD-L1 treatment alone is minimal or 
unresponsive [87]. Shen et al. conducted a study using a 
different model than the previous one, which involved 
combining talazoparib with anti-PD-L1 under normal 
homologous recombination (HR) conditions. In this 
study, they once again observed an upregulation of PD-L1 
expression and a significant tumor response to the com-
bined treatment of PARPi and ICIs [25]. In a recent study 
conducted by Jiao et al., it was suggested that PARPi can 
induce the expression of PD-L1. Their research involved 
treating MDA-MB-231 and BT549 breast cancer cells 
with olaparib or talazoparib, and the results demon-
strated an increase in PD-L1 expression both in vitro and 
in vivo [86].

Research on the mechanism behind the upregulation 
of PD-L1 can generally be categorized into three main 
aspects. Firstly, studies have revealed that Niraparib trig-
gers the activation of the cyclic GMP-AMP synthase 
(cGAS) –stimulator of interferon genes (STING) path-
way, consequently leading to the upregulation of IFN-
β. This represents a direct mechanism responsible for 
the increased expression of PD-L1 [85]. Secondly, in a 
separate study, it was demonstrated that PARPi primar-
ily upregulates PD-L1 expression by deactivating glyco-
gen synthase kinase-3 (GSK3β) [86, 88]. At last, Another 
study suggests that an alternative pathway through 
which PARPi upregulates PD-L1 involves the ATM-ATR-
Checkpoint Kinase 1 (CHEK1) pathway, which functions 
as a kinase sensor for DSB. Upon activation of ATM, the 
signal kinase transitions from ATM to ATR. This switch 

from ATM to ATR activation subsequently triggers 
CHEK1 activation, further initiating the activation of the 
Janus kinase/signal transducer and transcriptional pro-
tein activator (JAK/STAT) signaling pathway, ultimately 
resulting in the upregulation of PD-L1 expression [89, 
90].

Furthermore, in experiments utilizing a BRCA1 defi-
cient ovarian cancer mouse model, it has been demon-
strated that PARPi enhances the therapeutic effectiveness 
of CTLA-4 blockade [91]. The above findings illustrate 
PARPi’s capability to augment the therapeutic impact of 
ICIs.

PARPi activate the cGAS-STING signaling pathway
The immune pathway primarily comprises several signal-
ing pathways, including the Toll-like receptors (TLRs) 
signaling pathway, C-type lectin receptors (CLR) sig-
naling pathway, RIG-I-like receptor signaling pathway, 
and the cyclic cGAS-STING signaling pathway [92–95]. 
PARPi has the capability to activate the cGAS-STING 
innate immune pathway, which ultimately results in the 
production of type I interferons (IFN). This activation 
leads to a range of immunogenic effects and associated 
immune responses [96–98]. As a crucial innate immune 
sensor, the cGAS-STING pathway plays a pivotal role in 
regulating tumor growth and progression by facilitating 
the recruitment, initiation, and activation of anti-tumor 
immune cells [99, 100]. As mentioned previously, Nirapa-
rib triggers the activation of the cGAS-STING pathway, 
resulting in the upregulation of IFN-β and the eleva-
tion of PD-L1 expression. Conversely, when DNA binds 
to cGAS, it initiates the recruitment and activation of 
STING, which in turn facilitates the significant expres-
sion of CCL5 and CXCL10 via the involvement of TRAF 
family member-associated NF-kappa-B activator (TANK) 
binding kinase 1 and interferon regulatory factor 3. This 
process results in the recruitment of T cells and enhances 
the function of lymphocytes within ovarian cancer [85, 
101, 102]. Olaparib’s inhibition of PARP elicits robust 
local and systemic anti-tumor immunity, encompassing 
both adaptive and innate immune responses, primarily 
via STING-dependent mechanisms in mice with BRCA1-
deficient ovarian cancer. Furthermore, when combined 
with a PD-1 inhibitor, this effect is further intensified 
[87]. Additionally, certain studies have discovered that 
the treatment of ovarian cancer cells with talazoparib 
leads to a notable increase in the phosphorylation of two 
pivotal components within the STING pathway, namely 
IRF3 and TBK1 [25]. The sustained release of IFN-I from 
PARPi within the tumor microenvironment (TME) plays 
a vital role in promoting various immune functions. This 
includes the activation of dendritic cells, the preserva-
tion of cross-presentation of tumor-derived antigens 
to T cells, the support of NK cell-mediated anti-tumor 
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immunity, and synergistic activation with Toll-like recep-
tor 4 (TLR4) ligands like HMGB1 to stimulate M1 anti-
tumor macrophages [103, 104].

PARPi increases genomic instability
Because of HRD and BRCA mutations, cancer cells 
exhibit heightened genomic instability, rendering them 
more immunogenic. Following PARPi administration, the 
induction of severe DNA damage leads to the accumula-
tion of DNA fragments within the cytoplasm. As a conse-
quence, this process generates a greater number of novel 
antigens and exposes them on the cell surface, resulting 
in heightened activation of the immune response. This, 
in turn, leads to an increase in tumor mutational burden 
(TMB) and elevated immunogenicity [105, 106]. Espe-
cially in cells with HRD, it becomes feasible to reestab-
lish a productive Th1 immune response and reset the 
tumor microenvironment. Moreover, PARPi induces 
sustained DNA damage, resulting in epigenetic altera-
tions within tumor cells. These changes render tumor 
cells more receptive to the influence of T cells and NK 
cells, ultimately culminating in an enhanced intrinsic 
immunogenicity of the tumor cells [107]. Conversely, 
ICIs can rescue the tumor microenvironment from the 

consequences of inadequate immune cell infiltration and 
facilitate the recognition of newly formed antigens result-
ing from chronic DNA damage induced by PARPi [27].

In summary, PARPi exert their effects through several 
key mechanisms. Firstly, they can activate the cGAS-
STING pathway, leading to the activation of GSK3β. 
Concurrently, through the ATM-ATR-CHEK1 pathway, 
they upregulate PD-L1 expression. Secondly, PARPi 
activate the immune pathway, resulting in the release of 
IFN-I and the promotion of the expression of chemo-
kines CCL5 and CXCL10. Finally, PARPi can increase 
genetic instability, resulting in a higher TMB and height-
ened immune responsiveness (Fig. 3).

Clinical study of PARPi combined with ICIs in ovarian 
cancer
In recent years, ICIs including anti-PD-1 antibodies and 
anti-PD-L1 antibodies, have demonstrated notable effi-
cacy in various types of tumors [108]. The combination 
of ICIs with PARPi appears to be a viable approach. Pre-
clinical data suggests that this combination therapy of 
ICIs and PARPi may yield synergistic effects, particularly 
benefiting ovarian cancer patients who may not be suit-
able candidates for platinum-based retreatment [25, 50]. 

Fig. 3 The interaction between PARP inhibitors and immune checkpoint inhibitors. PARP inhibitors enhance tumor immunogenicity and the presen-
tation of neoantigens in the tumor microenvironment (TME) by increasing antigen presentation and upregulating PD-L1 expression. Dendritic cells, 
through the cGAS/STING pathway, activate and present these neoantigens, promoting the recruitment and activation of T cells. Immune checkpoint in-
hibitors restore the cytotoxic activity of T cells by blocking the PD-1/PD-L1 and CTLA-4/B7 pathways, further enhancing the anti-tumor immune response. 
The combined use of PARP inhibitors and immune checkpoint inhibitors not only increases antigen presentation and T cell activity but also upregulates 
PD-L1 expression. Additionally, this combination promotes the secretion of IFN-β through the JAK-STAT and GSK3β pathways, further enhancing the im-
mune system’s attack on tumor cells
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This could potentially offer novel treatment alternatives 
for a subset of advanced ovarian cancer patients who cur-
rently lack effective therapeutic options. In summary, it 
is a feasible approach to improve the efficacy of ICIs by 
using PARPi to influence the immune system and tumor 
microenvironment. And this combination has been car-
ried out in many clinical trials.

The MEDIOLA trial is a multicenter, open-label, 
phase 1/2 clinical trial conducted to assess the treat-
ment of solid tumors using Duvalizumab and Olapa-
rib. In this trial, the objective response rate (ORR) for 
the combination of Duvalizumab and Olaparib reached 
an impressive 71.9% in patients with platinum-sensi-
tive recurrent ovarian cancer who had gBRCA muta-
tions [109]. The early results of the Phase II study of 
MEDIOLA (NCT02734004) showed good efficacy and 
safety in the combination of olapanib and Duvalizumab 
in platinum sensitive recurrent ovarian cancer with 
germline BRCA1 and/or BRCA2 mutations (gBRCAm). 
In gBRCAm patients, the ORR of Olapanib combined 
with Duvalizumab was 92.2%, and over 40% of patients 
had CR [110]. The findings from this study suggest that 
the combination of Olaparib and Duvalizumab demon-
strates encouraging anti-tumor activity and safety in the 
context of recurrent ovarian cancer.

Based on the preliminary research results of the 
MEDIOLA trial, a Phase III DUO-O trial was conducted, 
The DUO-O study is a randomized, double-blind, pla-
cebo-controlled multicenter phase III study aimed at 
exploring the efficacy of Bevacizumab + Olaparib + Duval-
izumab in first-line maintenance therapy for BRCA wild-
type newly diagnosed ovarian cancer. The results showed 
that patients receiving triple maintenance therapy had 
significantly higher PFS than those receiving bevaci-
zumab monotherapy, at 24.2 months and 19.3 months, 
respectively [111]. TOPACIO/KEYNOTE-162 is a Single-
Arm, Phases 1/2 trial. The study is designed to evaluate 
the efficacy of Niraparib in combination with pembroli-
zumab in patients with relapsing platinum resistance. In 
the population with ovarian cancer, the ORR was 18% 
and the disease control rate was 65%. Among them, 3 
(5%) confirmed complete remission, 8 (13%) confirmed 
partial remission, 28 (47%) were stable, and 20 (33%) 
were progressing [112]. This study demonstrates that the 
combination of Niraparib and Pembrolizumab therapy 
exhibits promising anti-tumor activity in ovarian cancer 
patients and is worthy of further research.

The MOONSTONE study is an open-label, single-arm 
Phase 2 trial. It aims to assess the effectiveness and safety 
of combining Niraparib and Dostarlimab. This study 
includes participants with advanced, relapsed high-grade 
ovarian, fallopian tube, endometrioid, clear cell ovar-
ian, or primary peritoneal cancer. These participants do 
not possess a known breast cancer susceptibility gene 

(BRCA) mutation. They also have platinum-resistant dis-
ease and have previously undergone treatment with Bev-
acizumab. However, the results of this study did not meet 
the desired level of satisfaction [113] (Table 2).

Both preclinical and clinical data suggest that mono-
therapy with PARPi and ICIs have limitations in the 
management of ovarian cancer [114]. The clinical stud-
ies mentioned above have been completed, but it’s worth 
noting that there are numerous ongoing or actively 
recruiting clinical trials that are exploring the combi-
nation of PARPi and ICIs. These trials hold significant 
promise and merit our attention.

Discussion
Recent clinical studies have demonstrated that the treat-
ment combination of PARPi and ICIs holds practical 
clinical significance, particularly for advanced ovarian 
cancer patients with limited treatment options. Notably, 
both the MEDIOLA study and the TOPACIO study have 
highlighted that the synergy between PARPi and ICIs can 
be harnessed effectively in the context of ovarian cancer 
treatment.

Immunotherapy has transformed cancer treatment, 
but it’s important to note that the effectiveness of ICIs, 
whether used as standalone treatments or in combination 
with chemotherapy is not yet satisfactory. Hence, there is 
a need to investigate alternative combination approaches 
and novel immunotherapy techniques for targeted medi-
cations. The triple combination of ICIs, PARPi, and anti-
angiogenic drugs appears to yield promising outcomes 
in the treatment of recurrent ovarian cancer. The results 
from the MEDIOLA trial demonstrate that the response 
rate to the triple therapy is significantly higher compared 
to the dual therapy of PARPi and ICIs. This presents 
a novel clinical treatment approach for consideration. 
Furthermore, the quest for novel biomarkers can aid in 
the identification of patients with a higher likelihood of 
responding favorably to combination therapy protocols. 
Moreover, it is imperative to uncover distinct resistance 
mechanisms to PARPi and ICIs, thereby establishing a 
fresh theoretical framework for the integration of these 
strategies. There is an urgent need to explore novel bio-
markers for the precise screening of individuals suitable 
for this combination approach. The toxic attributes of 
PARPi, primarily associated with bone marrow suppres-
sion, result in adverse events for some patients undergo-
ing monotherapy. These toxicities also impose limitations 
on the application of PARPi within certain otherwise 
viable combination strategies, such as in conjunction 
with chemotherapy [115]. However, it’s worth noting that 
immunosuppressants typically do not exhibit a signifi-
cant bone marrow suppression effect. Consequently, the 
combination regimen can mitigate the overlap of drug 
side effects, thereby enhancing the safety profile of this 
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combination approach. During the execution of clinical 
trials, it is imperative to take into account the potential 
adverse reactions associated with combination therapy. 
This entails a thorough investigation of the optimal dos-
age and timing of administration, with the ultimate goal 
of ensuring patient tolerance and safety. To steer clinical 
trials toward a sensible combination of treatments.

PARPi currently face several issues in clinical use, such 
as acquired resistance in a significant portion of patients 
after initial treatment [116]. The restoration of HRR is a 
primary cause of PARPi resistance. Other factors, includ-
ing reversion mutations, replication fork protection, epi-
genetic modifications, restoration of ADP-ribosylation 
(PARylation), and pharmacological changes, also con-
tribute to PARPi resistance [117, 118]. HRR restoration 
includes secondary mutations in BRCA1/2 genes and 
regulation of other proteins in the HRR pathway. Recent 
studies have revealed that PARPi can activate STING-
dependent intrinsic immunity in tumor cells [97, 119]. 
This immune activation has inspired the combination 
of ICIs with PARPi, as suggested by clinical trial results, 
which seem to indicate that ICIs can reverse PARPi resis-
tance. Additionally, PARPi primarily target BRCA1/2 
gene mutations or HRD. However, in high-grade serous 
ovarian cancer, only 25% of patients with BRCA muta-
tions are more sensitive to platinum-based chemother-
apy and PARPi, while the remaining 75% are BRCAwt 
patients [120]. Clinical exploration for the benefits of 
PARPi in BRCAwt patients is ongoing. The NORA study 
showed that in the BRCAwt subgroup, the niraparib 
group had a significantly extended PFS compared to the 
placebo group (11.1 vs. 3.9 months) [53]. Results from 
the 2022 SGO Annual Meeting showed that niraparib 
monotherapy maintenance extended the median PFS for 
the “BRCA and HRD double-negative” population to 14 
months, compared to 5.5 months for the placebo group. 
This demonstrates the efficacy of PARPi in BRCAwt 
populations, but more clinical trials are needed to verify 
this. Moreover, long-term use of PARPi can lead to severe 
bone marrow suppression and other adverse effects. To 
address these issues, combining PARPi with other drugs 
such as ICIs can overcome resistance. Additionally, 
developing PARPi with higher selectivity and potency but 
fewer side effects is essential.

It is noteworthy that in recent years, RAS has played 
a crucial role in the development and progression of 
ovarian cancer. RAS is an important signaling protein 
belonging to the small GTPase family, including three 
main proteins: KRAS, NRAS, and HRAS [121]. In ovar-
ian cancer, the mutation status of RAS, especially KRAS 
at codons 12, 13, and 61, accounts for 6% to 65%. KRAS 
mutations are also considered biomarkers of poor out-
comes and resistance to various drugs in ovarian can-
cer [122]. RAS is also a determinant for several small 

molecule therapies, such as MEK inhibitors [123]. Inter-
estingly, studies have found that KRAS mutant tumor 
models exhibit resistance to PARPi, anti-PD-L1, and the 
combination of PARPi and PD-L1 inhibitors. MEK inhib-
itors can trigger and amplify PARPi-induced DNA dam-
age, cytoplasmic dsDNA accumulation, STING pathway 
activation, and CD8 + T cell recruitment. Additionally, 
MEKi reduces myeloid-derived suppressor cell (MDSC) 
infiltration, at least partially by decreasing IL-6 and GM-
CSF. The results of this study demonstrated significant 
efficacy of the triple therapy of PARPi, MEKi, and anti-
PD-L1 blockade in KRAS mutant tumor models [124]. 
This suggests that RAS and possibly other proteins play 
significant roles in resistance to ovarian cancer treat-
ments. Utilizing drugs targeting these proteins in com-
bination with PARPi and ICIs might yield better results. 
This area warrants further research and clinical trials, 
and we look forward to better therapeutic combinations 
in the future.

It is well-known that glutamine metabolism plays a 
central role in altered metabolism in cancer cells [125]. 
As mentioned earlier, KRas itself is considered undrug-
gable. Some studies have utilized the late G1 glutamine 
(Gln)-dependent cell cycle checkpoint bypass in cancer 
cells with KRAS mutations [126]. Upon Gln deprivation, 
KRas-driven cancer cells enter the S phase and stall due 
to insufficient nucleotide biosynthesis [127]. Cells stalled 
in the S phase are more susceptible to cytotoxic drugs, 
resulting in better cancer cell killing effects. For example, 
in ovarian cancer, platinum-resistant tumor cells show 
increased glutamine metabolism, and glutaminase (GLS) 
inhibitors BPTES and 968 can sensitize chemotherapy-
resistant ovarian cancer cells to platinum-based chemo-
therapeutic agents [128]. Recent studies have found that 
treatment with the GLS inhibitor CB-839 makes cells 
susceptible to Olaparib and extends survival in tumor-
bearing mice, suggesting that combined treatment with 
GLS inhibitors and PARPi can effectively treat chemo-
therapy-resistant ovarian cancer [129]. Therefore, could 
the combination of GLS inhibitors, PARPi, and ICIs 
achieve better efficacy in ovarian cancer? This could be a 
future direction for exploration.

Conclusion
PARPi and ICIs are both effective treatments for ovar-
ian cancer. PARPi have become a standard element in 
the treatment of ovarian cancer, while immunotherapy 
with ICIs is well-suited for addressing non-resectable or 
metastatic microsatellite instability or mismatch repair 
deficiency solid tumors. PARPi can regulate the immune 
microenvironment by upregulating PD-L1, activating 
immune pathways, increasing genomic instability, and 
promoting tumor response to ICIs. Current conver-
sion and preclinical data provide strong evidence for 
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the synergistic potential of combining PARPi with ICIs. 
However, additional investigation is necessary to delve 
deeper into the clinical trial results. In summary, the syn-
ergistic combination of PARPi and ICIs holds promise for 
improving outcomes in patients with advanced ovarian 
cancer.
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