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Abstract
Backgroud  Temporal lobe epilepsy (TLE) is associated with abnormal dynamic functional connectivity patterns, but 
the dynamic changes in brain activity at each time point remain unclear, as does the potential molecular mechanisms 
associated with the dynamic temporal characteristics of TLE.

Methods  Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired for 84 TLE patients and 35 
healthy controls (HCs). The data was then used to conduct HMM analysis on rs-fMRI data from TLE patients and an HC 
group in order to explore the intricate temporal dynamics of brain activity in TLE patients with cognitive impairment 
(TLE-CI). Additionally, we aim to examine the gene expression profiles associated with the dynamic modular 
characteristics in TLE patients using the Allen Human Brain Atlas (AHBA) database.

Results  Five HMM states were identified in this study. Compared with HCs, TLE and TLE-CI patients exhibited distinct 
changes in dynamics, including fractional occupancy, lifetimes, mean dwell time and switch rate. Furthermore, 
transition probability across HMM states were significantly different between TLE and TLE-CI patients (p < 0.05). The 
temporal reconfiguration of states in TLE and TLE-CI patients was associated with several brain networks (including 
the high-order default mode network (DMN), subcortical network (SCN), and cerebellum network (CN). Furthermore, 
a total of 1580 genes were revealed to be significantly associated with dynamic brain states of TLE, mainly enriched in 
neuronal signaling and synaptic function.

Conclusions  This study provides new insights into characterizing dynamic neural activity in TLE. The brain network 
dynamics defined by HMM analysis may deepen our understanding of the neurobiological underpinnings of TLE and 
TLE-CI, indicating a linkage between neural configuration and gene expression in TLE.
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Introduction
Temporal lobe epilepsy (TLE) is the most common type 
of focal epilepsy in adults, with approximately 40% of TLE 
being intractable [1]. TLE is a progressive disease and 
is associated with a decline in a wide range of cognitive 
abilities [2], although the majority of seizures can be con-
trolled with anti-epileptic drugs. However, TLE patients 
often exhibit varying degrees of cognitive impairment, 
such as memory disorders, naming difficulties, execu-
tive function impairment, and attention disturbances [3], 
which may continue to worsen as the epilepsy progresses. 
Up to 50-80% of TLE patients exhibit impairments in at 
least one cognitive domain, with memory being the most 
common [4, 5]. Nonetheless, cognitive impairments are 
easily overlooked. Typically, by the time a decline in cog-
nitive abilities is detected, significant brain damage has 
already spread due to a lack of timely treatment. These 
widespread damages can lead to a significant decline in 
the quality of life for TLE patients, sometimes even more 
debilitating than the epileptic seizures themselves [6]. 
Therefore, there is an urgent need for new objective tech-
niques to reveal the underlying neuropathological mech-
anisms of early cognitive impairments in TLE patients.

Resting-state functional magnetic resonance imaging 
(rs-fMRI) is a non-invasive method widely used to study 
potential changes in brain function related to TLE and 
other brain diseases [7]. Traditional static functional con-
nectivity (FC) analysis assesses the synchrony of fMRI 
signal fluctuations by calculating the correlation coeffi-
cients between time series of pre-defined brain regions 
[8]. Many rs-fMRI studies have identified disruptions in 
FC within and between brain networks in TLE patients, 
including the default mode network (DMN), frontopari-
etal network (FPN), and subcortical network (SCN) [9, 
10]. These alterations in FC within and between brain 
functional networks are associated with cognitive impair-
ments. However, FC studies rely on the assumption that 
resting-state FC is “stationary” during scanning [11]. 
This assumption overlooks the considerable variabil-
ity of FC during rs-fMRI and may be outdated. Increas-
ing evidence suggests that the human brain system is a 
complex dynamic system, and FC fluctuates over time 
during scanning [12]. Some studies have reported abnor-
mal dynamic functional connectivity features observed in 
TLE patients [13, 14] or patients with cognitive impair-
ments, highlighting the importance of this new direction 
in studying brain connectivity dynamics in the field of 
neuroimaging and its critical role in revealing mecha-
nisms related to cognitive impairments in TLE patients.

Capturing the temporal variability of complex func-
tional activities and connectivity patterns (i.e., spatial 
states) is crucial for understanding the dynamic orga-
nizational ways of the brain [15]. Temporal character-
istics associated with recurring spatial states can be 

characterized by fractional occupancy (FO), the propor-
tion of time spent in a specific functional activity or con-
nectivity state; lifetimes (LT), the amount of time spent in 
a specific state; mean dwell time (MDT), calculated as the 
average amount of time spent in a specific state; switch 
rate (SR), measuring the overall frequency of transitions 
between different functional states; and transition prob-
ability (TP), a core metric of the hidden Markov model 
(HMM), representing the probability of transitions 
between all pairs of HMM states [16]. These temporal-
spatial measures, known as spatiotemporal metrics, of 
specific brain connections’ dynamic patterns have been 
shown to be related to thought processing as well as 
specific cognitive and emotional states [17]. Moreover, 
changes in brain dynamics patterns are associated with 
Alzheimer’s disease [18], isolated syndrome [19] and 
schizophrenia [20].

The sliding window method is widely utilized to ana-
lyze fluctuations in brain dynamics [21]. Using the slid-
ing window method, abnormal connectivity in the DMN, 
sensory-motor network (SMN), and SCN has often been 
found in our previous rs-fMRI studies [22] and other 
studies involving TLE patients [23]. However, the slid-
ing window method has its limitations [24]. It relies on 
a fixed window size, with predetermined dimensions and 
step increments, which are critical parameters. Choosing 
an optimal window size is crucial, as too long a window 
will restrict the visualization of rapid dynamics, while 
too short a window will miss enough data to perform a 
reliable network estimation [25]. The HMM effectively 
addresses these challenges by characterizing brain activ-
ity as a sequence of distinct states inferred from resting 
data [26]. Previous research has shown that HMM is 
capable of capturing the dynamics of brain activity on the 
smallest time scales [27]. Furthermore, previous studies 
have confirmed that rapid changes in brain activity are 
far from random; therefore, HMM helps to provide a 
richer description of the dynamic nature of brain activity 
in central nervous system diseases in a short period [28].

Brain activity is regulated by genes, and brain gene 
expression profiles assist in linking brain activity with 
genes [29]. The Allen Human Brain Atlas (AHBA) data-
set is extensively utilized to investigate the relation-
ship between gene expression and brain patterns [30]. 
Transcriptomic neuroimaging association analysis can 
uncover the molecular foundation of disease-related 
alterations. For example, Amanda et al. described 
dynamic connectivity patterns in different forms of 
autism spectrum disorder (ASD), revealing different 
molecular signaling mechanisms in different ASD sub-
groups [31]. Analysis by Ling et al. combining neuroim-
aging and transcription data suggests that genes related 
to neurovascular unit integrity and synaptic plastic-
ity may drive changes in brain metabolism, thereby 
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mediating the genetic risk of TLE [32]. However, the 
underlying molecular mechanisms associated with the 
dynamic neural structure of TLE remain unclear.

The purpose of this study is to conduct HMM analysis 
on rs-fMRI data from TLE patients and an HC group in 
order to explore the intricate temporal dynamics of brain 
activity in TLE patients with cognitive impairment (TLE-
CI). Additionally, the study aims to examine the gene 
expression profiles associated with the dynamic modular 
characteristics in TLE patients using the AHBA database. 
The analysis focused on identifying specific patterns of 
cross-state transitions, inter-network brain connectivity, 
and gene mechanisms, aiming to provide new insights 
into TLE and TLE-CI.

Materials and methods
Participants
Participants diagnosed with TLE at the First Affiliated 
Hospital of Guangxi Medical University from Janu-
ary 2019 to December 2023 were included in the study. 
Adhering to the criteria of the International League 
Against Epilepsy (ILAE) delineated in 1981, 1989, and 
2017 [33], we ensured a meticulous diagnostic process. 
Eligible participants included those who (1) received 
a confirmed TLE diagnosis, (2) followed a stable anti-
epileptic drug regimen, and (3) were verified as right-
handed. Exclusion criteria encompassed individuals with 
(1) secondary epilepsy attributable to identifiable cranial 
structural anomalies such as trauma, tumors, or vascular 
irregularities, (2) a history of neurological or psychiatric 
conditions, or other severe physical illnesses, (3) previ-
ous substance or alcohol abuse, (4) contraindications 
for MRI procedures, or (5) insufficient adherence to the 
study protocol or subpar MRI data quality. It is important 
to note that hippocampal atrophy and sclerosis, common 
in TLE patients, were not grounds for exclusion in this 
study. We also included a control group of 35 neurologi-
cally and psychiatrically healthy individuals to provide 
a baseline for neuroimaging comparisons. This group 
was demographically matched to the patient cohort and 
had undergone a comprehensive health screening. The 
study’s protocols were sanctioned by the Ethics Commit-
tee of the First Affiliated Hospital of Guangxi Medical 
University, and informed consent was obtained from all 
participants.

Neuropsychological testing
All participants diagnosed with TLE underwent a com-
prehensive neuropsychological evaluation. Their cogni-
tive functions, including language, memory, attention, 
visual-spatial skills, and executive abilities, were assessed 
using the Montreal Cognitive Assessment (MoCA) [34]. 
Participants scoring below 26 were classified as TLE 
patients having cognitive impairment (TLE-CI), while 

a score greater than 26 was considered to have TLE 
patients with normal cognitive function (TLE-CN).

MRI data acquisition
MRI data were collected using a 3.0-Tesla scanner (Phil-
ips, Netherlands). Participants underwent a 450-second 
rs-fMRI session, resulting in the capture of 225 cerebral 
volumes. High-resolution sagittal T1-weighted images 
were obtained, followed by the acquisition of axial T2 
fluid-attenuated inversion recovery (FLAIR) sequences 
to identify and remove any subtle brain lesions that were 
not clinically apparent. Detailed methods for the collec-
tion of rs-fMRI data and T1-weighted structural images 
are provided in the supplementary materials.

Image preprocessing
The DPABI software, operating in the MATLAB R2018b 
environment, was utilized for the extraction and prepro-
cessing of rs-fMRI data. The process commenced with 
the conversion of DICOM imaging files to NIfTI format. 
Detailed preprocessing steps are available in the supple-
mentary materials.

Hidden Markov model
The HMM posits that fluctuations in brain region time 
series can be condensed into a finite set of latent states, 
each representing a transient state that may persist or 
transition to another. The model computes the probabil-
ity of being in a given state and the transition likelihood 
between states. Central to the HMM analysis was the seg-
mentation of each participant’s brain into 116 regions of 
interest (ROIs) using the Automated Anatomical Label-
ing (AAL) atlas, the averaging of time series data within 
ROIs to generate a composite time series, the standard-
ization of these series, and their amalgamation into a 
unified dataset. From this dataset, the HMM discerned 
distinct, recurrent states, each exhibiting unique statisti-
cal characteristics. To determine the optimal number of 
HMM states, we assessed the minimum free energy and 
the occupancy rate of the middle segment. Finally, we 
derived measures from the HMM states—including FO, 
LT, MDT, SR, and TP—to capture the temporal dynamics 
within subjects (supplementary materials).

Gene expression data preprocessing
The AHBA (http://human.brain-map.org) provides nor-
malized microarray expression data from six donated 
human brains (all without known neuropsychiatric or 
neuropathological history), including more than 20,000 
genes across 3,702 brain tissue samples. The gene 
expression data was preprocessed using the abagen 
toolbox(https://www.github.com/netneurolab/abagen). 
Detailed preprocessing steps are provided in the sup-
plementary materials. Finally, the expression values for 

http://human.brain-map.org
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each gene were also normalized across samples using the 
scaled robust sigmoid method. The resulting gene expres-
sion matrix (1,938 samples × 15,633 genes) was used for 
subsequent analyses.

Transcription-neuroimaging association analysis
Based on the AHBA gene expression data and mean acti-
vation of HMM states 3 with temporal characteristics, 
spatial associations between gene expression and the 
mean activation of HMM state 3 were investigated. The 
mean value of the voxels within a 6-mm radius sphere, 
centered on the coordinate of each tissue sample, was 
extracted from the mean activation of HMM state 3. Sub-
sequently, spatial correlations between gene expression 
and the mean activation of HMM state 3 in TLE were 
analyzed using Pearson’s correlation method. Multiple 
comparisons were adjusted by the Bonferroni method (P 
< 0.05/15633 = 3.20 × 10− 6). Based on previous research, 
we downloaded the TLE gene expression profile [35]. 
Finally, the genes identified after multiple comparison 
adjustments, which intersected with the TLE expression 
gene profile, were defined as genes associated with the 
dynamic state of TLE.

Enrichment analysis
The Gene Ontology (GO) enrichment analysis, which 
includes biological processes (BP), molecular functions 
(MF), and cellular components (CC), as well as the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis, was conducted using the DAVID data-
base (https://david.ncifcrf.gov/) for genes associated with 
dynamic states. The significance threshold was set at 
p < 0.05 (FDR corrected).

The protein-protein interaction (PPI) network for the 
genes related to dynamic states was constructed using 
the STRING database (https://string-db.org/). The confi-
dence level was set to 0.9, while other parameters were 
left at their default values. Hub nodes in the PPI network 
were identified using Cytoscape. The degree centrality 
algorithm was used to identify five hub genes in the PPI 
network, which were considered the most crucial genes 
in biological functions.

Statistical analysis
The SPSS 25.0 software package (SPSS, Inc., Chicago, 
IL, USA) [36] and GRETNA [37]were used in this study. 
Continuous variables were presented as mean ± standard 
deviation (SD), while categorical variables were expressed 
as frequency counts. For continuous data, comparisons 
were made using independent sample t-tests or one way 
ANOVA, while chi-square tests were utilized to analyze 
categorical data.

To examine the FO, LT, MDT and SR of HMM states, 
two-tailed two-sample t-tests were used to compare TLE 

patients with HCs and TLE-CI against TLE-CN. A false 
discovery rate (FDR) correction was applied to account 
for multiple testing, with a significance threshold set at 
p < 0.05.

A nonparametric permutation test was used to examine 
the TP of HMM states between TLE patients and HCs, 
as well as between TLE-CI and TLE-CN. A total of 5,000 
permutations were conducted to establish a null distribu-
tion of dynamic global differences between the groups for 
each state, and p-values were calculated accordingly.

Spearman’s correlation analysis was used to evaluate 
the relationship between MoCA scores and changes in 
FO, LT, and MDT of HMM states in TLE-CI. A signifi-
cance threshold of p < 0.05 was applied, with adjustments 
made for confounding factors such as age, sex, and edu-
cation level.

Results
Demographic and clinical data
This study ultimately analyzed 84 TLE patients and 35 
HCs. Table 1 displays the demographic and clinical char-
acteristics of both TLE patients and HCs. There were no 
significant differences among the three groups in terms 
of age, gender, and education level. However, there were 
notable differences in MoCA scores between the TLE-CI, 
TLE-CN, and HCs.

Aberrant dynamics for each HMM state in TLE patients
Firstly, the rs-fMRI data of 119 subjects (including 84 
TLE subjects and 35 HCs) were used to estimate the 
HMM states. We observed that HMM state 5 exhib-
ited the minimum free energy and intermediate fraction 
occupancy. Consequently, based on these findings, this 
study ultimately estimated 5 HMM states (Fig. 1).

In the HMM, FO was utilized to investigate the tem-
poral characteristics of TLE. Compared to HCs, the FO 
of HMM state 3was significantly lower in TLE patients 
(p = 8.6*10− 7) (Fig.  2a). There were no significant differ-
ences in the FO of the remaining HMM states between 
TLE patients and HCs (Fig. 2a). The LT of HMM state 3 
was significantly shorter in TLE patients (p = 1.2*10− 4) 
(Fig.  2b), and MDT of HMM state 3 was also signifi-
cantly shorter for TLE patients (p = 1.2*10− 4) (Fig.  2c). 
However, the FO, LT, and MDT of HMM states showed 
no significant differences between TLE-CI and TLE-CN. 
(Fig. 2d-e).

Aberrant transition patterns between HMM
The SR of TLE patients was significantly higher than that 
of HCs (p = 0.010) (Fig.  3a), indicating distinct network 
dynamic patterns between TLE patients and HCs during 
the entire scan. Furthermore, permutation analysis (5000 
permutations) revealed significant group differences in 
the TP of HMM states between TLE patients and HCs. 

https://david.ncifcrf.gov/
https://string-db.org/
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Significant group differences in TP between HMM states 
are shown in Fig.  3b. Compared to HCs, patients with 
TLE exhibited significantly increased TP from HMM 
states 2, 4, and 5 to state 1, from states 1 and 2 to state 
2, from states 4 and 5 to state 3, from states 2, 3, 4, and 5 
to state 4, and from states 1, 2, 3, 4, and 5 to state 5 (state 
2 to 1: p = 0.0316; state 4 to 1: p = 0.0070; state 5 to 1: 
p = 0.0098; state 1 to 2: p = 0.0012; state 2 to 2: p = 0.0100; 
state 4 to 3: p = 0.0150; state 5 to 3: p = 0.0112; state 2 to 
4: p = 0.000; state 3 to 4: p = 0.0032; state 4 to 4: p = 0.000; 
state 5 to 4: p = 0.0110; state 1 to 5: p = 0.0386; state 2 to 5: 
p = 0.000; state 3 to 5: p = 0.0038; state 4 to 5: p = 0.0028; 
state 5 to 5: p = 0.0000). The TP from HMM states 1, 3 
to state 3 was significantly reduced in TLE patients (state 
1 to 3: p = 0.0000; state 3 to 3: p = 0.0042). These findings 
suggest significant abnormal transition patterns between 
HMM states in TLE patients.

The SR was not significantly different between TLE-CI 
and TLE-CN (p = 0.098) (Fig.  3c), indicating similar sta-
ble network dynamic patterns in both groups. However, 
significant group differences in TP between HMM states 
are shown in Fig. 4d. Compared to TLE-CN, the TP from 
HMM states 3,4 and 5 to state 4, from state 2 to state 
2, and from state 2 to state 3 increased significantly for 
TLE-CI (state 3 to 4: p = 0.0424; state 4 to 4: p = 0.0458; 
state 5 to 4: p = 0.0468; state 2 to 2: p = 0.0104; state 2 to 
3: p = 0.0482). These results suggest significant aberrant 
transition patterns between HMM states in TLE-CI.

Brain activation maps of states
In patients with TLE, spatial activation maps reveal that 
the predominant state of the large-scale global brain 
network is State 3 (Fig.  4a). This state is characterized 
by enhanced activity primarily within the DMN region 

Table 1  Demographic characteristics and clinical features of patients with TLE and HCs
Variables TLE whole sample

(n = 84)
TLE-CI(n = 30) TLE-CN(n = 54) HCs(n = 35) P-value

Demographic characteristics
Age(years) 31.76 ± 9.53 33.47 ± 11.72 30.81 ± 8.03 28.71 ± 7.55 0.108b

Gender (M/F) 30/54 10/20 20/34 13/22 0.934a

Education(years)(range) 12.97 ± 4.03 11.93 ± 3.18 13.56 ± 4.36 13.63 ± 3.06 0.116b

Clinical characteristics
Onset of epilepsy, (years) 16.18 ± 13.33 15.50 ± 7.26 16.56 ± 15.78 NA 0.730c

Duration of epilepsy, (years) 10.73 ± 7.04 10.83 ± 7.45 10.15 ± 6.70 NA 0.668c

AEDs (mono-/polytherapy) 27/57 5/25 22/32 NA 0.024a*

MoCA total score 26.21 ± 2.79 23.23 ± 2.32 27.87 ± 1.21 28.63 ± 1.57 0.000b*

HC, healthy control; TLE-CI, TLE patients with cognitive impairment; TLE-CN, TLE patients with cognitive normal; AEDs, antiepileptic drugs; NA, not available; MoCA, 
Montreal Cognitive Assessment; M, male; F, female; M ± SD, mean ± standard deviation; The results of comparing P values among TLE-CI, TLE-CN, and HCs. *, post-hoc 
comparison revealed a significant difference between TLE-CI, TLE-CN and HCs
aP was calculated using the chi-square test
bP was calculated using an ANOVA
cP was calculated using two independent sample t-tests

Fig. 1  5 HMM states. HMM, hidden Markov model
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(including the frontal lobe, parietal lobe, and cingulate 
gyrus). Conversely, reductions in activity are observed in 
the occipital lobe, subcortical regions, and cerebellum. 
The spatial activation map of the large-scale global brain 
network state in TLE-CI is primarily dominated by state 
2 (Fig. 4b). HMM state 2 exhibits increased activation in 
the parietal lobe and cerebellum, while decreased activa-
tion in the temporal lobe and subcortical area.

Correlation analysis
There was no significant correlation between the 
dynamic indicators of each HMM state and the MoCA 
scores for patients with TLE (p > 0.05). Similarly, for TLE-
CI, there was also no significant correlation between 
the dynamic indicators of each HMM status and MoCA 
scores (p > 0.05).

HMM States-related genes in TLE
Pearson’s correlation analysis was conducted to deter-
mine the relationships between the mean activation 
of HMM states with dynamic temporal characteristics 
(state 3) and gene expressions. After conducting multiple 
comparisons and corrections, we identified 3,815 genes. 
Ultimately, by intersecting the gene expression profile of 
TLE genes discovered in previous studies with the genes 
obtained through multiple comparisons and corrections, 

a total of 1,580 genes were identified and defined as TLE 
dynamic state-related genes.

Enrichment analysis
Using the DAVID database, we compared GO pathways 
with the genes related to TLE dynamic states. The results 
of the GO enrichment analysis are illustrated in Fig. 5a, 
highlighting significantly enriched categories in BP, 
CC, and MF. Key BP includes “signal transduction”, “cell 
adhesion”, and “axon guidance”. Enriched CC involves 
“cytosol”, “cytoplasm”, “presynaptic” and “postsynaptic 
membranes”. For MF, categories such as “ion channel 
activity”, “protein binding”, and “calcium ion binding” 
show notable enrichment. The KEGG enrichment analy-
sis of significant genes reveals notable pathways includ-
ing “circadian entrainment”, “morphine addiction”, and 
“calcium signaling pathway” (Fig. 5b).

PPI network analysis
Based on 1,580 TLE dynamic states-related genes, we 
performed the PPI network analysis. We constructed a 
network consisting of 669 edges, which is significantly 
higher than the expected 540 edges. We found that the 
proteins coded by PIK3CA, PIK3CB, PIK3CD, CTNNB1 
and ITGB1 were the top five hub genes in the PPI net-
work (Fig. 6).

Fig. 2  Differences in dynamic indicators. (a-c) Significant differences in FO, LT and MDT of each HMM state between TLE patients and HCs. (d-f) Significant 
difference in FO, LT and MDT of each HMM state between TLE-CI and TLE-CN. All temporal properties were evaluated using a two-tailed, two-sample t-
test. *Significant group differences (p < 0.05). TLE, temporal lobe epilepsy; HCs, healthy controls; TLE-CI, temporal lobe epilepsy with cognitive impairment; 
TLE-CN, temporal lobe epilepsy with normal cognitive; FO, fractional occupancy; LT, Lifetimes; MDT, Mean dwell time
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Discussion
In this study, we conducted HMM analysis on rs-fMRI 
data from TLE patients and an HC group to explore the 
intricate temporal dynamics of brain activity in TLE-CI. 
Additionally, we examined the gene expression profiles 
associated with the dynamic modular characteristics in 
TLE patients using the AHBA database. We identified 
five unique spatial states characterized by functional con-
nectivity and mean functional activity across our study 
sample. Dynamic measurements showed that compared 
to HCs, TLE patients had shorter LT, MDT, and lower 
FO in state 3, which was characterized by higher activ-
ity in the DMN, SMN, and SCN. There was no significant 

difference in dynamic measures between TLE-CI and 
TLE-CN. Additionally, we found significant differences 
in SR and TP between TLE patients and HCs. No signifi-
cant differences in SR were found between TLE-CI and 
TLE-CN, but TP differed significantly. Our findings sug-
gest that under rs-fMRI, TLE-CI patients demonstrate 
cerebellar network reorganization, potentially reflecting 
compensatory changes in the brain in response to disease 
impact. However, we did not find a correlation between 
dynamic network abnormalities and neurocognitive per-
formance. Additionally, a total of 1580 genes associated 
with TLE HMM states activation were identified. The 
enrichment analysis indicated that these genes, related to 

Fig. 3  Alterations in SR and TP. (a) Alterations in SR between TLE patients and HCs. (c) The significant alterations in TP between TLE patients and HCs. * 
represents a significant increase in TLE patients compared with HCs. Red represents a significant increase in TLE patients compared with HCs, and blue 
represents a significant decrease in TLE patients compared with HCs. (b) Alterations in SR between TLE-CI and TLE-CN. (d) The significant alterations in TP 
between TLE-CI and TLE-CN. Red represents a significant increase in TLE-CI compared with TLE-CN, and blue represents a significant decrease in TLE-CI 
compared with TLE-CN. Significant group differences were evaluated using a permutation test with 5000 permutations. *p < 0.05. TLE, temporal lobe epi-
lepsy; HCs, healthy controls; TLE-CI, temporal lobe epilepsy with cognitive impairment; TLE-CN, temporal lobe epilepsy with normal cognitive; SR, switch 
rate; TP, transition probability
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the dynamic states of TLE, were ontologically enriched 
for several terms pertinent to TLE, such as presynaptic/
postsynaptic embranes, ion channel activity, and pro-
tein binding. These findings unveiled the dynamic neural 
configuration of TLE based on rs-fMRI data, aiding in 

the comprehension of specific TLE mechanisms from an 
integrative perspective.

Brain network dynamics in TLE
We revealed the neural dynamics in TLE and those with 
cognitive impairment using HMM. Compared to HCs, 

Fig. 4  Brain activation maps of states. (a) Mean activation distribution of state 3 predominantly induced by TLE. (b) Mean activation distributions of state 
2 predominantly induced by TLE-CI
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the brain dynamics of TLE patients have changed. We 
identified five unique brain activity states, indicating that 
FC in patients with TLE fluctuates over time instead of 
remaining static. We then evaluated the temporal dis-
tribution of these states. The results showed significant 
differences in the overall distribution of brain states 
between TLE patients and HCs, particularly in terms of 
FO, LT, and MDT, consistent with previous research find-
ings [38, 39]. Similar observations were also observed in 
rs-fMRI studies of TLE animal models [40]. These differ-
ences suggest that the neural network dynamics in TLE 
patients are characterized by reductions in LT and MDT, 
as well as diminished FO. These findings may reflect a 
decrease in the stability of network configurations and 
a weakening of inter-regional connectivity. Further-
more, although TLE-CI showed a trend toward increased 
state occupancy rate and reduced duration compared to 
TLE-CN, these differences were not statistically signifi-
cant, suggesting that TLE-CI patients may have similar 
changes in dynamic functional connectivity as TLE-CN. 
However, we were unable to establish a direct correlation 
between these dynamic network anomalies and neuro-
cognitive performance, considering the compensatory 
effect of the TLE-CI [41].

The complex dynamic system of the human brain 
underpins cognitive functions through consistent and 
fluid state transitions. Comprehending these transi-
tions is pivotal for understanding functional plasticity in 
TLE-affected brains with cognitive deficits. We analyzed 
SR for all five HMM states, indicating the frequency of 
transitions between states [42]. The results showed that 
the SR and TP of brain states between TLE patients and 
HC were significantly different, with TLE patients having 
higher SR than HC, indicating that TLE patients exhibit 
an unstable pattern of transitions [43]. More specifically, 
HMM analysis can capture most of the information con-
tained in the data.

Brain network dynamics in TLE-CI
Furthermore, dynamic distortions were observed in TLE-
CI. There was no significant difference in SR between 
TLE-CI and TLE-CN, indicating similar patterns of tran-
sitions in brain connectivity. However, there were sig-
nificant group differences in TP, suggesting that TLE-CI 
have undergone significant changes in their brain state 
transition patterns. This inflexibility in state transitions 
may be related to the pathophysiology of TLE-CI [44].

Based on spatial activation maps of large-scale whole-
brain network states induced by TLE, our results show 
high activation in the DMN, SCN, and SMN, with low 
activation in the visual network (VN) and CN. For large-
scale whole-brain network states induced by TLE-CI, our 
results indicate low activation in the SMN and high acti-
vation in the CN. These findings are consistent with pre-
vious evidence that TLE patients exhibit abnormal static 
and dynamic network interactions in the DMN, VN, 
SMN, and CN [45, 46]. The DMN, VN, and SMN net-
works, which are widely studied in TLE patients, exhibit 
abnormal connectivity across a broad range of TLE 
pathophysiology [47, 48]. Notably, we observed high CN 
activation in TLE-CI, which aligns with the results from a 
previous study [49]. Although classically thought of as a 
motor circuit, the cerebellum is now understood to con-
tribute to a wide variety of cognitive functions through 
its dense interconnections with the neocortex, the center 
of brain cognition [50]. Some studies have shown that 
the structural and functional changes in the cerebellum 
of TLE patients are associated with cognitive impair-
ment [51, 52]. In summary, these findings suggest that 
the CN is also important in TLE and may be a promising 
biomarker for studying TLE-CI. Reduced FNC reflects 
network functional impairment, while increased FNC is 
attributed to compensatory mechanisms or reorganiza-
tion following microstructural damage in the brain.

Fig. 5  Results derived from GO and KEGG enrichment analysis. The size of the circle represents the number of genes involved in an ontology term and 
the color of each circle represents the significance level. GO, GeneOntology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, Biological processes; 
MF, Molecular functions; CC, Cellular components
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Link between neural configuration and gene expression
We linked the activation of HMM states with dynamic 
temporal characteristics in TLE to gene expression lev-
els. TLE is a complex disorder influenced by elements 
such as synaptic connectivity, receptor functions, and 
ion channel abnormalities, which have been shown to 
predispose individuals to TLE [53]. Recent advances in 
human imaging genetics provide insights into explor-
ing genes associated with brain functional or structural 
measurements. By using Pearson’s correlation analysis, 
we identified 1,580 genes related to the dynamic state of 

TLE. Enrichment analysis revealed that these genes were 
enriched in several ontological terms, including cyto-
plasm, presynaptic and postsynaptic membranes, ion 
channel activity, protein binding, and calcium ion bind-
ing. Changes in the structure and function of synaptic 
connections in the brain have also been confirmed in 
TLE patients and animal models [54]. Epilepsy is caused 
by abnormal electrical currents passing through the 
membranes of neuronal cells, facilitated by numerous 
ion channels. The dysfunction of these ion channels is 
the basis for the excessive excitation of neurons leading 

Fig. 6  PPI network constructed by the TLE dynamic states-related genes. The size and color of the circles indicate the magnitude of degree centrality. TLE, 
temporal lobe epilepsy; PPI, Protein-protein interaction
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to epilepsy [55]. Therefore, it is not surprising that ion 
channel-related terms appear in the ontological terms. 
Notably, KEGG pathway analysis identified critical path-
ways such as circadian entrainment, morphine addic-
tion, and the calcium signaling pathway, which have been 
implicated in epilepsy and neurological disorders in prior 
studies [56]. Seizures exhibit sleep-wake and circadian 
patterns in various epilepsies and, in turn, disrupt sleep 
and circadian rhythms. The resulting sleep deprivation 
may lead to disease progression and even epilepsy-related 
deaths [57]. Although there is not enough evidence to 
suggest “TLE-specific” genes, our study provides a poten-
tial perspective for understanding TLE from multiple 
scales. Our research findings expand the landscape of 
emerging molecular pathways in TLE and suggest that 
genes related to the dynamic state of TLE warrant further 
investigation.

PPI network
Additionally, enrichment analysis revealed that TLE 
dynamic states-related genes were mainly enriched in 
presynaptic/postsynaptic embranes, ion channel activ-
ity, and protein binding, indicating that multiple path-
ways were contributed to brain dynamics in TLE. PPI 
network analysis revealed a network with 669 edges, sig-
nificantly surpassing the expected 540 edges, indicating a 
highly interconnected landscape of protein interactions. 
Notably, the hub genes PIK3CA, PIK3CB, and PIK3CD 
are subtypes of type I PI3K, which encode different cata-
lytic subunits. PI3K (phosphatidylinositol-3-kinase) is 
an important intracellular signaling enzyme that plays a 
crucial role in various cellular functions, including cell 
growth, proliferation, differentiation, survival, and motil-
ity. PI3K activates downstream signaling molecules such 
as AKT (protein kinase B) and mTOR (mammalian target 
of rapamycin) pathways by generating phosphatidylino-
sitol (3,4,5)-triphosphate (PIP3) during signal transduc-
tion, thereby regulating many cellular processes [58]. The 
PI3K/AKT signaling pathway is one of the pathways in 
epilepsy and plays an important role in the pathogenesis 
of epilepsy [59]. Additionally, CTNNB1 and ITGB1 as top 
hub genes suggest a more pronounced role for Wnt sig-
naling and integrin-mediated pathways in TLE than pre-
viously recognized, providing novel insights that could 
inform future therapeutic strategies [60]. Future studies 
also need to explore causal effects of these genes in TLE.

This study has several limitations. The sample sizes 
of TLE-CI and TLE-CN groups were unequal. Future 
research should aim to increase the sample size and 
incorporate longitudinal measures to explore group dif-
ferences related to dynamic characteristics. Patients 
received various types, doses, and durations of antiepi-
leptic drug treatment, which could affect the results of 
the current study. The functional MRI scans for each 

participant were relatively short in duration. To miti-
gate this limitation, we concatenated the time series 
data from all participants and applied the HMM model 
to the resulting extended dataset. This approach enabled 
us to capture sufficient temporal information to address 
the issue of short scan durations. Furthermore, although 
we linked the activation of TLE dynamic states to tran-
scriptional data to advance our understanding of the 
relationship between molecular mechanisms and neural 
dynamics in TLE, the transcription-neuroimaging associ-
ations study could not provide any evidence of causation, 
as it is based solely on correlation.

Conclusions
This study provides new insights into characteriz-
ing dynamic neural activity in TLE. The brain network 
dynamics defined by HMM analysis may deepen our 
understanding of the neurobiological underpinnings of 
TLE and TLE-CI, indicating a linkage between neural 
configuration and gene expression in TLE.
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