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Introduction
The global burden of prostate cancer (PC) is substantial, 
ranking among the top five cancers for both incidence 
and mortality [1]. It is particularly common in developed 
Countries since, in addition to individual biological and 
genetic factors, environment and lifestyle impact the risk 
of developing the disease and surviving [2]. In the last 
20 years the incidence of metastatic PC, which still lacks 
effective treatment, has increased in the U.S. from 11.58 
cases per 100.000 men (4% of the total PC incidence) to 
17.30 cases per 100.000 men (6% of the total PC inci-
dence) [3], and an increase is expected due to the world-
wide population aging. Improving the effectiveness of 
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Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer 
death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, 
and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further 
increase is expected in the near future, due to the population ageing. Current treatment options, including state 
of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most 
significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug 
strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the 
most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex 
communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and 
the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ 
development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo 
dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the 
development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated 
fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior 
and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of 
current treatments and to improve precision medicine’s chances of success.
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the therapeutic landscape, including the newly approved 
immunotherapies, for long-lasting control of advanced 
PC is a major challenge in urological oncology.

The histopathological architecture of the prostate, in 
which the stroma is widely represented, and plays an 
active role in tumorigenesis, raises the question whether 
targeting or manipulating stromal components, among 
which fibroblasts and the extracellular matrix (ECM) 
proteins predominate, would lead to a full response to 
current and developing therapies, including the recently 
approved autologous T cell vaccination (Sipuleucel-T) for 
the treatment of asymptomatic, or minimally symptom-
atic, metastatic castration-resistant (mCR) PC [4].

The prostatic stroma is the supportive tissue framework 
surrounding the glandular epithelium, which facilitates 
its function by supplying oxygen and nutrients, via blood 
vessels, and which regulates smooth muscle contraction 
during ejaculation, via sympathetic and parasympathetic 
nerve fibers [5]. Its cellular composition consists of fibro-
blasts embedded in the collagen and elastin rich extracel-
lular matrix (ECM) they produce, which also contains 
smooth muscle cells, blood and lymphatic vessels, and 
nerves. The prostatic stroma harbors and regulates innate 
and adaptive immune cells, such as naive, tissue-resident 
memory and regulatory CD4+T cells, as well as cyto-
toxic and tissue-resident memory CD8+T-cells, CD16+ 
and CD16− NK cells, B cells, zinc transporter-expressing 
prostate-associated macrophages [6], mast cells and a 
paucity of immature, usually tolerogenic, dendritic cells 
[7]. All the stromal components are hormone sensitive 
and undergo substantial phenotypical and genotypical 
changes depending on aging, inflammation, and cancer, 
as discussed below.

Origin and functions of fibroblasts in the prostatic 
stroma

 	• Prostatic stroma fibroblasts originate from several 
sources.

During embryonic development, mesenchymal progeni-
tor cells migrate from the urogenital sinus mesenchyme 
(UGM) [8] to the developing prostate gland, and differ-
entiate into different cell types, including fibroblasts, 
smooth muscle cells, and endothelial cells. The peripros-
tatic mesenchyme surrounding the developing prostate 
also contributes to the pool of stromal fibroblasts. While 
the UGM induces prostatic epithelial development [9], 
signals from the developing glandular epithelium induce 
the mesenchymal cells of the surrounding tissue to differ-
entiate into fibroblasts [8]. These mesenchymal-epithelial 
interactions are essential for prostate development. In 
addition to androgens, which regulate both epithelial and 
fibroblast proliferation and differentiation, trasforming 

growth factor beta (TGFβ) is a key regulator of epithelial-
mesenchymal interactions during organogenesis. TGFβ 
signaling from the UGM regulates epithelial prolifera-
tion, differentiation, and apoptosis [10], and modulates 
androgen signaling, fine-tuning the response of epithelial 
cells to androgens.

In adult tissues, including the prostate gland, bone 
marrow-derived mesenchymal stem cells (MSCs) can 
migrate to sites of tissue injury or inflammation and dif-
ferentiate into fibroblasts, under appropriate microenvi-
ronmental conditions [11, 12]. Once established in the 
prostatic stroma, resident fibroblasts can undergo local 
proliferation and differentiation to replenish the fibro-
blast population. This process contributes to the main-
tenance of fibroblast density and function within the 
prostate stroma.

Overall, fibroblasts of the prostatic stroma arise from 
multiple sources, including the embryonic mesenchyme, 
the periprostatic mesenchyme, bone marrow-derived 
MSCs, and from the proliferation and differentiation 
of resident fibroblasts. Resting fibroblasts resident in 
the normal prostate stroma, positively stain for vimen-
tin and PDGFRα, and can be distinguished from other 
stromal cells by their surface expression of CD49a, 
CD49e, CD51/61, and CD30. They have been character-
ized into two phenotypically and functionally distinct 
subtypes, namely Sca-1+CD90+fibroblasts, which are 
located close to the epithelium and express growth fac-
tors and genes associated with developmental process 
and androgen-regulated epithelial cell survival, and Sca-
1+CD90−/lowmyofibroblast-like cells, which highly express 
genes associated with the extracellular matrix and cyto-
kine-mediated signaling pathways, indicating a role in 
tissue repair and immune responses [13].

 	• Fibroblasts play key roles in the prostatic stroma.

1. Secretion of extracellular matrix (ECM) components 
such as collagen, elastin, and fibronectin, which form the 
framework providing structural support to the prostate 
tissue [14]. 2.  Maintenance of tissue homeostasis by 
regulating the balance of cell proliferation and cell death 
within the prostate tissue. In response to injury or inflam-
mation, fibroblasts become activated and convert into 
highly contractile myofibroblasts (MFBs), co-express-
ing vimentin and Alpha Smooth Muscle Actin (αSMA), 
which secrete ECM components, such as collagen type-I 
and type-III and are destined for apoptosis after promot-
ing would healing [15]. They proliferate, migrate to the 
site of injury, and produce ECM components to facilitate 
tissue repair and restoration of normal tissue architec-
ture. Fibroblasts and the ECM are key components of the 
stem cell niche and generate an interconnected network 
of signaling pathways, which allow epithelial stem cell 
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survival and regulate the balance between self-renewal 
and differentiation, in both normal condition and follow-
ing injury [16]. 3. Crosstalk with neighboring epithelial 
cells through the release of mediators that activate para-
crine signaling pathways, such as tumor necrosis factor-
alpha (TNFα), which exerts growth inhibitory effects on 
normal prostatic epithelia [17]. Prostatic stromal fibro-
blasts and epithelial cells engage in bidirectional com-
munication. Fibroblasts secrete growth factors, such as 
basic fibroblast growth factor (FGF)/FGF-2, transforming 
growth factor-beta (TGFβ), insulin-like growth factors 
(IGFs) and keratinocyte growth factor (KGF), which can 
regulate epithelial cell proliferation and differentiation, 
and the release of ECM components, such as collagen 
and elastin, which sustain epithelial cells and maintain 
the overall architecture of the prostate gland. Conversely, 
epithelial cells produce AR-modulated growth factors, 
including TGFβ, IGF, FGF-2 and epidermal growth fac-
tor (EGF) [18], and signaling molecules, such as Wnt 
and Hedgehog proteins (e.g., Sonic hedgehog), which 
can drive fibroblasts towards a myofibroblast phenotype 
and up-regulate the expression of ECM components [19, 
20]. Prostatic epithelia can also secrete enzymes, such as 
matrix metalloproteinases (MMPs) and tissue inhibitors 
of metalloproteinases (TIMPs), to balance ECM degra-
dation and remodeling. Stromal fibroblast-epithelial cell 
interactions are essential for the normal development, 
differentiation, and function of the glandular epithelium. 
4.  Immunomodulation and immune privilege mainte-
nance. Through the production and release of cytokines, 
such as Interleukin-6 (IL-6), TNFα, TGFβ, IL-1β, IL-33, 
and CXC and CC chemokines [21–25], prostatic fibro-
blasts regulate immune cell recruitment and activity to 
the site of inflammation or infection, and mainly estab-
lish an immunosuppressive environment. IL-6 signaling 
inhibits the expression of MHC-II, CD80/86, and IL‐12 
in dendritic cells (DCs) [26] and re‐programs the dif-
ferentiation into IL‐10‐producing regulatory DCs [27], 
promotes differentiation into M2 macrophages [28] and 
hinders T‐cell mediated antitumor responses [29]. TNFα 
has demonstrated ambivalent functions, mediating both 
proinflammatory and paradoxical anti-inflammatory 
and immunomodulatory effects, such as inactivation of 
TCR signaling [30] or induction of T cell exhaustion [31], 
CD8+T cell killing and reduction of autoreactive T cells 
[32]. TNFα may also stimulate myeloid-derived suppres-
sor cells (MDSCs) [33, 34] and may promote regulatory 
T cell (Treg) expansion and functions [35, 36]. IL-1β pro-
motes the recruitment of immunosuppressive neutro-
phils, inhibits macrophage activation and accumulation 
of effector T cells [37]. IL-33 has revealed immunosup-
pressive functions by promoting M1 to M2 transition and 
inhibition of T lymphocyte-mediated tumor cell killing 

[38]. It also promotes a Th2 immune environment and 
potentiates the suppressive activity of Tregs [39].

Moreover, fibroblasts and stromal components may 
contribute to the immune privileged state of prostatic tis-
sue, which exhibits limited immune responses compared 
to other tissues, by regulating the local immune envi-
ronment and by suppressing excessive immune activa-
tion. In addition to creating a physical barrier that limit 
the infiltration of immune cells, stromal fibroblasts and 
smooth muscle cells can secrete immunosuppressive cyto-
kines such as TGFβ and IL-10, which dampen the local 
immune response. TGFβ promotes the differentiation 
of naïve CD4+ T cells into Tregs, which are critical for 
maintaining immune tolerance and preventing autoim-
mune responses, it inhibits the proliferation and cyto-
toxic activity of CD8+ T cells and downregulates the 
maturation and antigen-presenting capacity of DCs [40]. 
IL-10 suppresses the production of pro-inflammatory 
cytokines, it promotes the development and function 
of Tregs, inhibits the expression of MHC class II and 
co-stimulatory molecules (CD80, CD86) on DCs and 
macrophages, and inhibits the differentiation and pro-
liferation of T helper cells, particularly Th1 and Th17 
cells, which are involved in pro-inflammatory responses 
[41]. Fibroblasts also can express co-inhibitory receptor 
ligands and checkpoints of T cell functions. Proinflam-
matory cytokine-induced expression of FasL on fibro-
blasts [42] might confer immune privilege by inducing 
apoptosis in infiltrating immune cells, thus suppressing 
the inflammatory response, and preventing autoimmune 
reaction, while favoring immune evasion by cancer cells 
[43, 44]. In response to IFNγ, stromal fibroblasts may 
express inhibitory PD-1 ligands, such as PD-L1 [45–47], 
that engage with immune checkpoints, further inhibit-
ing immune activation [48], and can express Indoleamine 
2,3-Dioxygenase (IDO). This tryptophan-catabolizing 
enzyme contributes to an immunosuppressive environ-
ment, by inhibiting T cell proliferation and by promoting 
Treg development, which favors tumor immune evasion 
[49, 50]. 5. Support of blood vessels and nerves by con-
tributing to their maintenance and organization within 
the prostate stroma. Angiogenesis is crucial for wound 
healing and fibroblasts may produce angiogenic media-
tors such as VEGF, FGF-2, PDGF, TGFβ, and angiopoi-
etins, such as Ang-1 and Ang-2, which regulate blood 
vessel formation and maturation. Fibroblasts can also 
produce interleukins (e.g., IL-8) [51] and chemokines 
(e.g., CXCL12 and CXCL5) [52–54] that contribute to 
angiogenesis by recruiting and activating endothelial 
cells and other cell types involved in the process [55]. 
Stromal fibroblasts also provide trophic support to nerve 
fibers and may produce several neurotrophic factors 
including Nerve Growth Factor (NGF) [56–58], a neuro-
trophic factor that promotes the growth, differentiation, 
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and survival of nervous cells, including sensory neurons 
[59], glial cell line-derived neurotrophic factor (GDNF), 
which regulates the development and the maintenance 
of peripheral nerves, neurotrophin-3 (NT-3) and neu-
rotrophin-4/5 (NT-4/5), which can support the survival 
and function of different types of neurons [60], FGF-2, 
which exerts neuroprotective effects on peripheral nerves 
and promotes neuron survival during injury [61, 62], and 
TGFβ, which also regulates neuronal function and plas-
ticity [63]. 6. Interplay with the bacterial flora, also 
known as microbiota, which contributes to the extracel-
lular microenvironment. Increasing evidence suggests 
that changes in the healthy microbiota (i.e. microbial 
dysbiosis), including gut, urinary-tract and prostatic 
microbes, which are also age-related [64], play a role not 
only in triggering inflammation, but also in cancer devel-
opment, progression, and/or treatment outcome. Bac-
teria produce proteases, including collagenase, elastase, 
and hyaluronidase, which degrade the ECM [65] and 
induce inflammation, which sustains ECM remodeling 
and affects fibroblast functions, as well as the generation 
of oxygen radicals leading to DNA damage, compen-
satory epithelial cell proliferation and mutations that 
drive tumor onset and recurrence [66]. The gut micro-
biota affects both the stroma and prostatic epithelium 
through their metabolites [67]. It has been reported that 
the abundance of short-chain fatty acid (SCFA) produc-
ing intestinal bacteria, namely Rikenellaceae, Alistipes, 
and Lachnospira, is associated with a high-risk of devel-
oping PC, and that these bacterial populations are con-
siderably increased in men with high Gleason grade PC 
[68]. The prostatic microbial ecosystem, which has not 
been fully explored, also appears to be altered in the PC 
microenvironment, with reduced overall species diversity 
in malignant tissue samples compared to benign tissue 
samples. The Shewanella genera might be associated with 
malignant transformation, whereas decreased Vibrio 
parahaemolyticus counts have been associated with the 
development of treatment resistance, and the Microbac-
terium sp. appear to be related with advanced stage PC 
[69]. An increase in Propionibacterium acnes, Herpes-
viridae and Papillomaviridae families, and Mycoplasma 
genitalium, has been recently associated with PC devel-
opment, although the data needs validation in a larger 
cohort study [70, 71].

Overall, fibroblasts are crucial for maintaining the 
structural integrity, homeostasis, functions and immune 
privilege of the prostatic tissue and dysregulation of their 
function has been implicated in the pathogenesis of pros-
tatic diseases, including benign prostatic hypertrophy 
(BPH) and PC.

Prostatic stroma in ageing
With advancing age, the prostate undergoes changes, 
including stromal remodeling, which are implicated in 
the development of BPH [72] and PC [73]. A key fea-
ture of senescence in cells, including stromal fibroblasts, 
is a widespread change in epigenetic gene expression 
[74] leading to an increased production and secretion 
of proinflammatory cytokines, such as GM-CSF, TGFβ, 
IL-1β, IL-6, IL-8, IL-10, IL-33, and chemokines, such as 
CXCL12, CXCL1 and CXCL2, and growth factors, such 
as connective tissue growth factor (CTGF), and angio-
genic factors, such as insulin-like growth factor-binding 
protein 7 (IGFBP7), vascular endothelial growth factor 
(VEGF), MMPs, plasminogen activator inhibitors (PAIs), 
tissue-type plasminogen activator (tPA), as well as reac-
tive oxygen species (ROS) [75, 76], and other key signal-
ing proteins that have powerful paracrine effects on both 
the glandular epithelia [77], with proliferation-stimulat-
ing effects, and the surrounding stromal cells leading to 
fibrosis and chronic inflammation [78].

Proliferation of the prostatic epithelium has been 
shown to increase up to three times due to paracrine-
acting proteins, such as FGF-7, hepatocyte growth factor 
(HGF), and amphiregulin released by senescent fibro-
blasts, suggesting that aging-related changes in the pros-
tate microenvironment contribute to the development of 
PC [79, 80].

Age-associated stromal fibrosis results from the accu-
mulation of extracellular matrix proteins, primarily 
senescent collagen, endowed with a high content of the 
glycosaminoglycan hyaluronan (HA), which stimulate 
epithelial cell proliferation [81], and from the increased 
fibroblast release of the enzyme lysyl oxidase (Lox), 
which cross-links collagen fibers promoting collagen 
maturation, and contributes to extracellular matrix 
(ECM) remodeling, matrix stiffening and fibrosis [82].

Age-associated chronic inflammation has the hall-
marks of immunosuppression and immune evasion and 
is characterized by MDSCs and Treg cell infiltrates, and 
by a switch towards M2 and N2, alternatively activated 
macrophages [83] and neutrophils [84], both endowed 
with tumor-promoting activity.

As men age and testosterone levels decline, the balance 
between testosterone and estrogens may shift towards 
higher estrogen levels, which stimulate the proliferation 
of prostatic fibroblasts and their production of inflam-
matory cytokines, resulting in endothelial adhesion 
molecule expression and immune cell recruitment and 
activation, which, in turn, impact on endothelial func-
tions [85, 86]. Estrogens also promote prostatic fibro-
blast production of angiogenic factors, such as FGF-2, 
EGF, and IGF-1 [87], and collagen, both of which affect 
endothelial permeability, functions and vascular remod-
eling [88, 89]. Along with dihydrotestosterone derived 
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from testosterone as a consequence of an age-associated 
increase in 5-alpha reductase activity [90], estrogens have 
been implicated in the development of BPH and PC, in 
which activated and proliferating fibroblasts play a criti-
cal role [72, 91, 92].

Androgens can influence the transcriptional programs 
and inflammatory profile of fibroblasts, leading to an 
altered inflammatory environment which impacts the 
functional state of endothelia. Age-associated testoster-
one deficiency promotes pro-migratory cytokine release 
by fibroblasts [93] and contributes to chronic inflamma-
tion, induces endothelial dysfunction [94, 95], decreases 
vascularity [96], impairs arterial elasticity and microvas-
cular function [97], and reduces nitric oxide (NO) pro-
duction [98]. Reduced testosterone levels can contribute 
to the premature senescence of stromal fibroblasts [99]. 
Senescent fibroblasts secrete inflammatory and matrix-
degrading molecules and are characterized by increased 
production of reactive oxygen species (ROS) [100]. Fol-
lowing ROS production, the activities of several enzymes 
of the testosterone biosynthetic pathway are reduced, 
resulting in further decrease in testosterone synthesis 
and secretion [101]. Elevated ROS levels can cause oxi-
dative damage to endothelial cells, impairing their func-
tion. Endothelial dysfunction [102], defined as a reduced 
capacity for NO production and decreased NO sensitiv-
ity [94] which leads to lower peripheral vasodilation, is a 
hallmark of vascular ageing [103, 104]. Therefore, inflam-
mation and chronic oxidative stress are associated with 
vascular ageing [105] and testosterone deficiency [95, 
106].

Prostatic stroma in tumor onset and progression
Stromal reactivity in the early stages of prostate 
carcinogenesis
Alterations of the prostatic stroma, at the cellular and 
molecular level, are found during prostate carcinogen-
esis from the early stages. Chronic inflammation [107], 
hormonal changes [108], high concentrations of ROS 
[109–111], typically associated with ageing, along with 
the genetic background [112] promote, in the periph-
eral zone of the prostatic gland, the development of 
high-grade prostatic intraepithelial neoplasia (HG-PIN), 
the first step toward carcinogenesis. This premalignant 
lesion, consisting of multilayered atypical epithelial 
cells, endowed with prominent nucleoli, which prolif-
erate within the prostatic duct and acini, is surrounded 
by a phenotypically and genotypically subverted stroma. 
Soluble factors, such as serine protease kallikrein-related 
peptidase 4 (KLK4), which is produced by atypical epi-
thelial cells, promote stromal reactivity [113, 114], by 
favoring fibroblasts switch to myofibroblasts, which 
over-express procollagen I and tenascin C [115, 116], 
that regulate cell adhesion, migration, and signaling, 

leading to ECM remodeling. KLK4 activates IGF and 
TGFβ signaling pathways, and protease-activated recep-
tor 1, PAR1, expressed by stromal cells [117], which lead 
to increased production of pro-tumorigenic and pro-
angiogenic factors, such as FGF1 and VEGF [113]. In 
turn, vimentin+αSMA+myofibroblasts present within 
the reactive stroma, interact with atypical epithelial cells 
of the HG-PIN and regulate their behavior, through the 
release of growth factors and cytokines, such as EGF, 
VEGF and TGFβ. TGFβ contributes to the establishment 
of an immunosuppressive microenvironment by promot-
ing Treg cell development and differentiation, through 
inducing forkhead box p3 (Foxp3) expression [118, 119], 
and by inhibiting CD8+ T cell activity, thus sustaining 
immune-escape mechanisms [120].

Phenotypic and genotypic differences between prostatic 
stroma and prostate cancer stroma
The stroma of PC exhibits cellular and molecular differ-
ences compared to normal prostatic stroma, reflecting 
the altered microenvironment and interactions with can-
cer cells [92, 121, 122]. Some of the key distinctions are 
the following.

a. Cellular composition. PC stroma exhibits a loss of 
well-differentiated smooth muscle cells and increased 
numbers of mostly activated fibroblasts, namely cancer-
associated fibroblasts (CAFs) [123], immune cells, and 
endothelial cells. Unlike “resting” fibroblasts harboring 
the normal stroma, CAFs which share co-expression of 
vimentin and αSMA with MFBs, remain in the “prolif-
erative phase” of the wound healing response by releasing 
a range of growth factors and cytokines, such as TGFβ, 
FGFs, HGF, IL-6 [123], which foster tumor growth [124]. 
Compared to fibroblasts, CAFs overexpress fibroblast 
activation protein (FAP) (Fig. 1), PDGFRβ, fibroblast spe-
cific protein 1 (FSP-1) and αSMA [125] and can be dis-
tinguished into functionally distinct subsets of cells with 
dysregulated expression of genes associated with ECM 
remodeling, inflammation, angiogenesis, and immune 
modulation [126, 127]. Epigenetic alterations, including 
DNA methylation, histone modifications, and non-cod-
ing RNA dysregulation, contribute to the reprogram-
ming of stromal cells towards a tumor-promoting and 
immunosuppressive phenotype. Promoter hypermethyl-
ation and silencing of the Ras GTPase-activating protein, 
RASAL3, which is further promoted by androgen depri-
vation therapy (ADT), result into Ras signaling activation 
in CAFs driving macropinocytosis-mediated glutamine 
synthesis, that provides the PC epithelia with abundant 
glutamine, which fuels its proliferation and neuroendo-
crine differentiation [128, 129] The epigenetic silencing 
of telomerases, due to inhibition of TGFβ signaling via 
TGFBR2 promoter methylation, leads to the increase 
in histone methyltransferase, SUV39H1 (which in turn 
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affects histone methylation levels at the telomeric ends), 
and consequent telomere shortening in stromal CAFs, 
which is associated with PC progression and mortality 
[130, 131]. Accumulating evidence shows that noncod-
ing RNAs (ncRNAs) play a critical role in the crosstalk 
between CAFs and tumor cells. MicroRNAs, which are 
small, noncoding RNAs, are pivotal regulatory factors 
for the formation and activation of CAFs and their meta-
bolic reprogramming by tumor cells, whereas exosomal 
miRNAs, derived from CAFs, affect tumor cell prolif-
eration, metabolism, angiogenesis, metastasis and che-
moresistance, ultimately regulating tumor progression 
[132–134].

Research into the various subtypes of CAFs in PC is 
still ongoing, but several distinct populations have been 
identified based on their molecular and functional char-
acteristics. 1. Myofibroblastic CD90highCAFs, character-
ized by the expression of αSMA, which are involved in 
ECM remodeling, enhanced matrix stiffness and secre-
tion of growth factors stimulating cancer cell prolifera-
tion [135].  2. Inflammatory CAFs, characterized by the 
secretion of CCL2, CXCL12, IL-6 and leukocyte inhibit-
ing factor (LIF). They contribute to chronic inflamma-
tion within the tumor microenvironment (TME) and 
facilitate tumor progression by promoting angiogen-
esis, immune suppression, and epithelial-to-mesenchy-
mal transition (EMT) [135].  3.  Senescent CAFs, which 
express high levels of αSMA, senescence-associated 
beta-galactosidase (SA-β-gal) and p16. They undergo cell 
cycle arrest and reveal a senescence-associated secretory 
phenotype (SASP), which includes factors that promote 
tumor cell proliferation, migration, and survival. Senes-
cent CAFs can also induce therapy resistance in PC [136, 
137].  4.  Neuroendocrine CD90lowCD105+CAFs, which 

promote PC progression and are associated with aggres-
sive PC phenotypes, including resistance to ADT and 
neuroendocrine transdifferentiation [128, 138].  5. Meta-
bolic CAFs, which undergo metabolic reprogramming to 
support tumor growth and survival by promoting aero-
bic glycolysis (the Warburg effect), fatty acid metabo-
lism, and amino acid metabolism. They supply energy 
substrates (lactate) and biosynthetic precursors to can-
cer cells, contributing to tumor progression and therapy 
resistance. The hallmark of this metabolic switch con-
sists in high expression levels of lactic dehydrogenase 
(LDHA), pyruvate kinase M2 (PKM2) and monocarbox-
ylate transporter 4 (MCT4) [139].  6.  Immunomodula-
tory CAFs, which inhibit anti-tumor immune responses, 
promote immune evasion, and contribute to immuno-
therapy resistance in PC. Immunomodulatory CAFs 
are represented by CCL2-secreting CAFs, which mainly 
recruit monocytes/macrophages and Tregs, and inhibit 
CD8+ T cell effector functions [140–142], and CXCL12-
secreting CAFs, which in addition to contributing to 
tumor cell survival, angiogenesis, desmoplasia and che-
moresistance [143], promote the recruitment of MDSCs, 
M2-phenotype macrophages, and Tregs [144, 145]. These 
subtypes of CAFs coexist in the PC stroma and exhibit 
phenotypic plasticity in response to stimuli from the 
TME [146, 147].

ECM remodeling. During PC development, the ECM 
undergoes significant changes in composition, organiza-
tion, and function, which contribute to tumor growth, 
invasion, metastasis, and therapy resistance.

In the normal prostate tissue, the ECM primarily con-
sists of proteins such as collagen, laminins, fibronectin, 
and proteoglycans, which provide structural support 
and regulate cellular functions. In PC, the ECM becomes 

Fig. 1  Immunostaining with anti-FAP antibody (#AF3715; R&D Systems, Minneapolis, MN, USA) highlights the absence of CAFs in the stroma of normal 
prostate tissue (a) and its presence around prostate cancer foci (b). Magnification: X200
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disorganized and heterogeneous (Fig.  2) and shows an 
increase in the deposition of collagen, particularly colla-
gen type I, III, IV and V, and of proteoglycans, such as 
versican, decorin, and perlecan, by CAFs, and alterations 
in collagen fibers alignment and density, that contribute 
to stromal stiffness and altered biomechanical properties 
[148]. Enhanced matrix stiffness promotes M2 phenotype 
polarization in macrophages, which in turn favor ECM 
deposition [149]. Higher collagen density has been asso-
ciated with higher Gleason score suggesting its involve-
ment in PC aggressiveness [115]. Proteomic signature of 
CAFs versus normal prostate fibroblasts revealed their 
prominent synthesis of multiple collagens, including the 
fibrillar types COL1A1/2 and COL5A1; increased activity 
and/or expression of the receptor tyrosine kinase discoi-
din domain-containing receptor 2 (DDR2), a receptor for 
fibrillar collagens; and lysyl oxidase-like 2 (LOXL2), an 
enzyme that promotes collagen crosslinking [150]. Addi-
tionally, there may be aberrant expression of ECM-modi-
fying enzymes, such as MMPs, including upregulation of 
MMP-2, -7, -9, membrane-type (MT)1-MMP [151]; and 
downregulation of TIMPs, such as TIMP-1 [152], leading 
to a substantial ECM remodeling.

In the normal prostate tissue, the interactions between 
epithelial cells, stromal cells, and the ECM are tightly reg-
ulated and contribute to tissue homeostasis. In PC, neo-
plastic cells may exhibit enhanced adhesion to specific 
ECM proteins, allowing them to migrate and invade sur-
rounding tissues. CAFs also subvert androgen biosynthe-
sis in PC cells by secreting glucosamine that specifically 
upregulate epithelial 3β-Hydroxysteroid dehydroge-
nase-1 (3βHSD1) expression, and induce androgen syn-
thesis, which leads to androgen receptor activation, 
development of CRPC and antiandrogen resistance [153]. 

The type II transmembrane FAP, which is enriched on the 
surface of CAFs in the PC stroma, has recently proven to 
be a useful biomarker for diagnosis, through 68Ga-FAP-
targeted PET-CT254 imaging [154, 155], and a target for 
therapy, since FAP-directed ligands carrying therapeutic 
payloads have shown promising results in cancer patient 
trials [156, 157]. Increased stromal content of collagen, 
fibronectin, laminin, abundant expression of secreted 
protein acidic and rich in cysteine (SPARC/osteonectin) 
and tenascin C, in association with a downregulation of 
angiogenesis inhibitors, such as thrombospondin (TSP)-1 
and TSP-2 [158–160] are all involved in ECM remodel-
ing, endothelial cell recruitment and angiogenesis [161] 
and in the development of resistance to therapy [155].

b. Differences between fibrosis and desmoplasia. The 
term desmoplasia (from the Greek word desmos, to fetter 
or restrain; and plasis, formation) is used by pathologists 
to describe the formation of excessive connective tissue 
around invasive carcinoma [162]. It is characterized by 
alterations of the tumor stroma that can range from an 
abundance of cellular elements, such as fibroblasts, vas-
cular cells, and immune cells with little ECM, to the pres-
ence of an abundant collagen-rich ECM with a minimum 
of cells, mainly fibroblasts and myofibroblasts [163]. It 
is considered as a response to the presence of invasive 
tumor cells, but the possibility that desmoplasia may 
precede the presence of malignant cells cannot be ruled 
out [164]. Fibrosis and desmoplasia are both terms used 
to describe the abnormal growth of fibrous tissue, how-
ever they have distinct characteristics and occur in dif-
ferent contexts. Fibrosis is a pathological process that 
can occur in response to various insults or injuries, such 
as inflammation resulting from ageing (IL-8, CXCL5, 
CXCL1, CXCL6, and CXCL12 secretion by senescent 

Fig. 2  Masson’s trichrome stain (#04-010802; Bio-Optica, Milan, Italy) highlights a regular and well-organized stromal component surrounding the nor-
mal prostate glands (a), while the stroma near the neoplastic glands appears more disorganized and dense (b). Magnification: X200

 



Page 8 of 15Di Carlo and Sorrentino Journal of Translational Medicine          (2024) 22:825 

fibroblasts and epithelial cells), infection, or inflamma-
tion-associated metabolic diseases (for example, type 2 
diabetes mellitus), and is characterized by the excessive 
accumulation of fibrous connective tissue, primarily col-
lagen, in the stroma. Fibrosis is associated with the loss 
of normal tissue architecture and can contribute to lower 
urinary tract dysfunction and BPH [165]. Desmopla-
sia specifically refers to the growth of dense, fibrous tis-
sue in response to cancer development and involves the 
deposition of collagen I and fibronectin, and other ECM 
components, such as proteoglycan syndecan-1, hyal-
uronic acid and tenascin-C around the tumor. TGFβ sig-
naling from CAFs plays a key role in the structural and 
mechanical changes that lead to desmoplasia in PC. Des-
moplasia and TGFβ induced translocation of SMAD2/3 
to the nucleus of PC cells, amplifies their expression of 
mesenchymal markers, leading to EMT and favoring PC 
progression [166]. Desmoplasia creates a dense stroma 
that may help contain the tumor, but that can also create 
barriers that limit drug delivery and contribute to treat-
ment resistance [167, 168], which ultimately depends on 
the delicate balance between the different microenviron-
mental components [169].

c. Immune cell context. In the normal healthy prostate, 
the immune cell atlas delineates a range of innate and 
adaptive immune cells, with several CD4+ and CD8+ T 
cell subsets, including naïve, tissue-resident memory, and 
regulatory CD4+ T cells, which help maintain immune 
tolerance and prevent autoimmune reactions, as well 
as cytotoxic and tissue-resident memory CD8+ T-cell 
clusters, two subsets of NK cells (CD16+ and CD16−), B 
cells, mostly mature non-naïve responsible for antibody 
production, CD1 and CD2 conventional DCs [170], mast 
cells, which can release histamine and other mediators 
regulating the local immune environment, monocytes 
and a prostate-specific metallothionein-expressing mac-
rophage subset (MAC-MT), which regulates prostate 
zinc and plays homeostatic role that contribute to organ 
physiology and function [6, 171].

Stromal cells, mostly the CAF subsets, substantially 
contribute to the immune perturbation that character-
ize PC development, and exhibit increased expression 
of genes coding for cytokines, chemokines, and immune 
cell recruitment factors [172]. Expression of CXCL12 
by CAFs, CCL2 by pericytes, along with CCL3,4, and 5 
by cancer cells lead to CD16high monocyte and CD14high 
inflammatory macrophage recruitment [173]. Antigen 
presenting macrophages with a high “antigen process-
ing and presentation gene signature”, as well as M2-mac-
rophages with a high “M2-gene signature” have been 
found in the PC stroma and have been shown to sup-
press the anti-tumor immune response, as observed 
across a broad range of tumors [173]. High infiltration of 

M2-macrophages in PC tissue has been linked to tumor 
recurrence and metastasis [174].

Signals from both the stromal and the epithelial com-
ponents of PC shape the immunosuppressive TME 
leading to T cell exhaustion, Treg cell recruitment, accu-
mulation of monocytic (Mo)-MDSCs, endowed with 
iNOS activity and NO production [175] and granulocytic 
polymorphonuclear (PMN)-MDSCs that typically pro-
duce IL-1β and IL-23, and suppress T cell functions by 
NADPH-oxidase and ARG1 activities [176]. Expression 
of programmed death ligand-1/2 PD-L1 and PD-L2, by 
FAPhigh CAF subset has been recently described, in dif-
ferent tumor types, as well as PD-L1 induction on tumor 
cells by CXCL5 released by CAFs [177]. Based on its 
substantial content in CAFs, analogous mechanisms of 
anti-tumor T cell inhibition may take place in PC and 
contribute to its immunosuppressive microenvironment 
[178].

Prognostic value of the prostate cancer stroma
The PC stroma has emerged as a significant factor in 
predicting disease progression, treatment response, and 
overall patient outcomes [179]. Stromal cells and ECM 
components interact closely with cancer cells and influ-
ence tumor behavior promoting tumor growth, invasion, 
and metastasis through various mechanisms, includ-
ing cytokine signaling, ECM remodeling, and angiogen-
esis. Deep learning methodologies in combination with 
mathematical modelling are currently being developed 
to quantify stromal stains and to allow digital multiplex 
analyses of cancer stroma components [180]. The key 
points regarding the prognostic value of the PC stroma 
are represented by, a.  Elevated levels of stromal mark-
ers, such as αSMA, fibroblast-specific protein 1 (FSP1), 
and FAP, which have been associated with aggressive 
disease, metastasis, and poor prognosis in PC patients 
[181–183]; b.  Increased stromal density, and alterations 
in stromal morphology and architecture, as assesses by 
histopathological methods [115], which have been associ-
ated with higher Gleason scores, advanced stage disease, 
and poorer prognosis; c. Copy number alterations and 
mutations of genes encoding ECM proteins and proteins 
modulating the ECM structure or function are frequent in 
cancer [184] and involve the PC stroma with an impact 
on tumor behavior and clinical outcome. Amplification 
of COL1A1, COL4A2, and COL6A1 genes and protein 
overexpression, have been observed in PC and are associ-
ated with tumor aggressiveness and metastasis. Aberrant 
expression of laminins, such as laminin-332, as well as 
dysregulation of integrins, including αvβ3 and αvβ6, and 
overexpression of MMPs, particularly MMP-2 and MMP-
9, have been implicated in PC progression and metastasis 
[185]. Overexpression of versican, decorin, and periostin 
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has been reported in PC and is associated with tumor 
aggressiveness.

Advanced imaging modalities, including magnetic 
resonance imaging (MRI) and multiparametric MRI 
(mpMRI), can provide insights into the stromal composi-
tion and its spatial distribution within the prostate gland 
and may complement traditional clinical staging meth-
ods. Integrating stromal features into prognostic models 
and nomograms can improve risk stratification and pre-
diction of disease outcomes in PC patients. Multimodal 
approaches that incorporate both epithelial and stromal 
factors may enhance accuracy of prognostic assessments 
and guide personalized treatment decision-making.

Tumor stroma targeting strategies
As an essential component of the TME, the stroma is 
highly dynamic, heterogeneous and tumor-type spe-
cific. All of its components, which include ECM, CAFs, 
endothelial cells, pericytes and other mesenchymal cells, 
interact with each other in a coordinated fashion and 
collectively promote tumor onset, progression and ther-
apeutic resistance [186, 187]. Clinical trials testing treat-
ments targeting, specifically, the fibroblastic and matrix 
components of the PC stroma are currently lacking, 
whilst a study (NCT02452008) testing TGFβ pathway 
inhibition specifically in mCRPC is ongoing. However, 
several trials, aimed at subverting the tumor stroma com-
ponents for anti-cancer purposes, are currently under-
way [188].

Active trials designed to target CAFs are the following.
•Fibroblast activation protein (FAP) is one of the most 

studied molecules in trials testing therapies aimed at tar-
geting the tumor stroma, specifically CAFs. The clinical 
trials NCT05723640, NCT0541082 and NCT05963386 
are currently testing the safety and tolerability of two 
novel FAP-targeted radiopharmaceuticals, 177Lu-
LNC1004 and 177Lu-DOTA-EB-FAPI, in various solid 
tumors, whereas the LuMIERE study (NCT04939610) is 
evaluating the efficacy of 177Lu-FAP-2286 as a monother-
apy in patients with pancreatic ductal adenocarcinoma, 
non-small cell lung cancer, and breast cancer [189].

•The NCT05626829 study is evaluating the safety and 
effectiveness of using Tranilast, an anti-allergic drug, as 
a radiotherapy sensitizer in nasopharyngeal carcinoma, 
since it was recently discovered, through in vivo and in 
vitro experiments, that it can inhibit the activity of CAFs 
and reduce their radiotherapy resistance [190–192].

•Similarly, the NCT06142318 trial is testing the effi-
cacy of Pirfenidone, a drug approved for the treatment 
of idiopathic pulmonary fibrosis, as a radiosensitizer 
in head and neck squamous cell carcinoma, since it can 
enhance the radiosensitivity of CAFs, in vitro and in vivo 
[193–195].

Active trials designed to target the TGFβ pathway are 
the following.

•The NCT02452008 study is currently testing the effi-
cacy of Galunisertib (an oral inhibitor of the TGFβ1 type 
I receptor kinase) in patients with mCRPC. This agent 
has provided evidence of significant antitumor activity in 
xenograft models of breast and hepatocellular carcinoma 
[196–198] and it has been demonstrated to reverse the 
TGFβ-mediated suppression of NK cell function [199].

•Similarly, the NCT05588648 study, is testing the 
antitumor activity of Vactosertib (a recently discovered 
TGFβ1 type I receptor kinase inhibitor) in patients with 
progressive osteosarcoma. Vactosertib is also being stud-
ied in two other trials, NCT05436990 and NCT03143985, 
which are evaluating its antitumor activity in patients 
with melanoma or multiple myeloma, respectively.

•Lastly, the NCT05821595 trial is evaluating the effi-
cacy of JYB1907 (a humanized monoclonal antibody 
directed against the TGFβ activator Glycoprotein A 
Repetitions Predominant - GARP) in patients with solid 
tumors. The anti-GARP monoclonal antibody selectively 
targets and binds to GARP. This specifically blocks the 
GARP-mediated release of the cytokine TGFβ, thereby 
reversing the immunosuppressive nature of the tumor 
microenvironment [200].

A wide range of approaches aimed at targeting the can-
cer stroma to disrupt its supportive role in tumor growth 
and metastasis are being studied. Combinations of 
stroma-targeted therapies with conventional treatments 
such as chemotherapy, radiation therapy, or immuno-
therapy can synergistically disrupt stromal support and 
inhibit tumor progression improving patient outcome.
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