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Abstract
Background Although the clinical signs of inflammatory breast cancer (IBC) resemble acute inflammation, the role 
played by infiltrating immune and stromal cells in this aggressive disease is uncharted. The tumor microenvironment 
(TME) presents molecular alterations, such as epimutations, prior to morphological abnormalities. These changes 
affect the distribution and the intricate communication between the TME components related to cancer prognosis 
and therapy response. Herein, we explored the global DNA methylation profile of IBC and surrounding tissues to 
estimate the microenvironment cellular composition and identify epigenetically dysregulated markers.

Methods We used the HiTIMED algorithm to deconvolve the bulk DNA methylation data of 24 IBC and six 
surrounding non-tumoral tissues (SNT) (GSE238092) and determine their cellular composition. The prognostic 
relevance of cell types infiltrating IBC and their relationship with clinicopathological variables were investigated. 
CD34 (endothelial cell marker) and CD68 (macrophage marker) immunofluorescence staining was evaluated in an 
independent set of 17 IBC and 16 non-IBC samples.

Results We found lower infiltration of endothelial, stromal, memory B, dendritic, and natural killer cells in IBC than 
in SNT samples. Higher endothelial cell (EC) and stromal cell content were related to better overall survival. EC 
proportions positively correlated with memory B and memory CD8+ T infiltration in IBC. Immune and EC markers 
exhibited distinct DNA methylation profiles between IBC and SNT samples, revealing hypermethylated regions 
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Background
Inflammatory breast cancer (IBC) is characterized by 
inflammatory signs such as erythema, skin thickening 
(peau d’orange appearance), breast heat and swelling, and 
tumor emboli that frequently invade dermal-lymphatic 
vessels [1, 2]. Although up to 75% of IBC cases exhibit 
tumor emboli, their detection is not pathognomonic 
or required for the diagnosis, which is primarily based 
on clinical presentation [1]. The international consen-
sus guidelines recommend a trimodal approach to treat 
most cases of IBC and inoperable non-metastatic locally 
advanced breast cancer, including systemic therapy, sur-
gery, and radiation therapy [2]. Neoadjuvant chemo-
therapy is based on anthracycline-taxane regimens and 
is followed by a modified radical mastectomy, post-mas-
tectomy radiation therapy, and adjuvant systemic therapy 
[3]. Despite improvements in multimodal therapy, IBC 
patients experience worse outcomes with low survival 
rates [4, 5].

Molecular signatures described in several tumor types 
have demonstrated their value for developing more effec-
tive and personalized treatments. Transcriptome analysis 
has revealed similar gene signatures between non-IBC 
and IBC cases [6–8]. Conversely, the stromal gene 
expression profile described in IBC differed from non-
IBC [9]. However, these studies were performed using 
microarray platforms, which are limited by the amount of 
generated data.

The tumor microenvironment (TME) is a dynamic 
interface with mutual interactions between tumor and 
normal stromal cells. Accumulating evidence suggests a 
unique composition of different cell types in IBC com-
pared to non-IBC. Using in vitro and in vivo (mice) 
pre-clinical experiments, Wolfe et al. (2016) showed a 
reciprocal interaction between mesenchymal stem cells 
and M2 macrophages to improve migration and high 
secretion of IL-6 in IBC cells [10]. Moreover, myeloid-
derived dendritic cells [11], T cell receptor-activated 
CD4+ and CD8+ T cells were detected in clinical assays 
of IBC samples [12, 13]. A higher PDL1 expression 
was described in IBC compared with non-IBC clini-
cal samples [12]. High PDL1 expression was associated 
with the degree of lymphocyte infiltrate, T-cell-specific, 
CD8 + T-cell-specific and B-cell-specific gene expression 
signatures, particularly cytotoxic T-cell response [12]. 

Increased CD4 + cell infiltration and its presence were 
correlated with better overall survival of IBC patients 
[13]. Interactions between IBC cells and the TME lead to 
a variety of pathway crosstalk (such as JAK-STAT, NF-κB, 
IL-6, TGFβ, and EGFR pathways) that can contribute to 
the IBC aggressiveness [4].

Immune checkpoint inhibitors are successful immuno-
therapy strategies targeting co-inhibitory immune check-
points such as PD1/PDL1 and CTLA4 and have been 
tested in several cancers [14]. PDL1 expression is higher 
in IBC than in non-IBC at mRNA and protein expres-
sion levels [15], and a positive correlation was found with 
complete pathological response to chemotherapy [12]. 
Exploration of additional actionable targets is essential, 
although the low number of cells has limited the charac-
terization of immune TME in IBC samples.

Single-cell technologies allow the interrogation of 
heterogenous tumor samples to elucidate the contribu-
tion of different cell types. However, the high costs and 
protocol-specific bias leading to inaccurate representa-
tion of cell types are still limiting factors for these anal-
yses [16]. In this sense, exploring widely available bulk 
data to infer the TME repertoire is more cost-effective. 
Deconvolution analysis based on transcriptome data has 
been described for several tumor types, including IBC 
[17–20]. At least 20 deconvolution tools based on tran-
scriptomics data are available [21]. Zhang et al. (2023) 
performed deconvolution analysis in cDNA microarray 
data from 20 IBC, 20 non-IBC, and five normal breast tis-
sue samples using CIBERSORTx [20]. This study showed 
that memory B cells are enriched, while activated mast 
cells and eosinophils are diminished in IBC compared 
to normal samples. The results also indicated that acti-
vated mast cells and follicular helper T cells are reduced, 
while M2 macrophages are increased in IBC compared 
to non-IBC. Bertucci et al. (2021), applying CIBERSORT 
analysis based on gene expression profiles of 137 IBC 
compared to 252 non-IBC samples, found enriched M1 
macrophages, γδ T-cells, and memory B cells infiltra-
tion, higher expression of tertiary lymphoid structures 
and T cell-inflamed signature [18]. The authors also iden-
tified several actionable immune genes overexpressed 
(HAVCR2/TIM3, CD27, CD70, CTLA4, ICOS, IDO1, 
LAG3, PDCD1, TNFRSF9, PVRIG, CD274/PDL1, and 
TIGIT) in IBC. While the number of transcripts is highly 

mapped to six genes (CD40, CD34, EMCN, HLA-G, PDPN, and TEK). We identified significantly higher CD34 and CD68 
protein expression in IBC compared to non-IBC.

Conclusions Our findings underscored cell subsets that distinguished patients with better survival and dysregulated 
markers potentially actionable through combinations of immunotherapy and epigenetic drugs.
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variable and might not be proportional to the number of 
cells, differentially methylated regions are usually con-
stant across individuals within cell types [22]. Since each 
CG dinucleotide has only two possible states (methylated 
or not) and DNA methylation is consistent throughout 
cellular differentiation [23], methylome data is especially 
suited for deconvolution. To our knowledge, no previous 
study with IBC samples has explored DNA methylation 
data to identify the contribution of different cell types 
using deconvolution analysis.

Herein, we used the Hierarchical Tumor Immune 
Microenvironment Deconvolution (HiTIMED) tool 
based on DNA methylation [24], which allowed the 
analysis of 17 cell types (angiogenic, immune, and tumor 
components) of the IBC microenvironment. HiTIMED 
employs tumor-specific signatures derived from primary 
cancer cells and enhances cell projection accuracy by 
using a hierarchical model to deconvolve the TME. Based 
on this analysis, we identified epigenetically dysregulated 
markers associated with the tumor-infiltrating cell types.

Materials and methods
Samples and data acquisition
Genome-wide DNA methylation profiling was previously 
performed in 24 biopsies of inflammatory breast carci-
nomas (IBC) and six surrounding non-tumoral tissue 
(SNT) samples matched to the IBC samples (discovery 
cohort) using the Infinium MethylationEPIC BeadChip 
array (Illumina, San Diego, CA, USA). Data was depos-
ited in the Gene Expression Omnibus (GEO) database 
(GSE238092) [25]. More information about DNA meth-
ylation data generation and analysis is available in Addi-
tional file 1 (Supplementary Methods). Gene expression 
data (microarray) of 20 IBC and five normal breast tissue 
samples publicly available on GEO (GSE45581) was also 
explored [8]. The study was conducted according to the 
guidelines of the Declaration of Helsinki, approved by the 
Human Research Ethics Committee of Barretos Cancer 
Hospital (CEP# 37779220.5.1001.5437). Informed con-
sent was obtained from all subjects involved in the study.

The DNA methylation data analyzed in this study was 
generated using IBC specimens collected before the 
patients’ treatment. In six cases, we also collected SNT 
samples, which were histologically confirmed as not hav-
ing tumor cells. Among the IBC samples, ten were triple 
negative (TN), 11 were estrogen receptor (ER)/ proges-
terone receptor (PR)-positive, and three were human 
epidermal growth factor receptor type 2 (HER2)-positive 
(Table S1, Additional file 1). A set of 17 IBC and 16 non-
IBC formalin-fixed paraffin-embedded (FFPE) tissue 
samples (validation cohort) was evaluated by immuno-
fluorescence staining (Table S1, Additional file 1). These 
samples were paired according to clinical stage.

A flowchart summarizing the study design and the 
experimental methods and analyses applied to each 
cohort is depicted in Fig. S1 (Additional file 2).

Deconvolution of bulk tumor samples
To predict the relative fraction of cell types from the bulk 
tumor samples, we used the HiTIMED deconvolution 
method. The methylation beta matrix from the discovery 
cohort (24 IBC and six SNT) was used to estimate the 
proportions of 17 cell types with R software (v. 4.3.1) and 
HiTIMED algorithm [24]. HiTIMED contains six hierar-
chical layers that use reference libraries to estimate cell 
proportions in 20 tumor types, which allows the user to 
select tumor site and layer. The parameters tumor type 
“BRCA” (breast invasive carcinoma) and the layer of 
deconvolution “6” were selected for the analysis. Parti-
tioning around medoids (PAM) clustering was performed 
with cluster R package (v 2.1.4) to classify immune hot 
and immune cold tumors using the HiTIMED results.

Immune markers selection
Using the DNA methylation dataset from the discovery 
cohort, we explored 73 markers and secreted factors 
related to the altered immune cell populations. Accord-
ing to the Illumina manifest, 1,549 probes are mapped to 
these genes (Table S2, Additional file 3).

We also investigated the DNA methylation levels of 50 
genes encoding co-stimulatory receptors, adhesion mol-
ecules, and chemokines expressed by endothelial cells 
(ECs), as previously reported [26, 27]. According to the 
Illumina manifest, 1,556 probes are mapped to these 
genes (Table S3, Additional file 3). To further character-
ize these EC markers, we calculated the differences in 
gene expression between IBC and normal breast tissue 
samples (data normalized using limma R/Bioconductor 
package - version 3.58.1) using external cDNA microar-
ray data (GSE45581). Gene expression was calculated as 
an average when multiple probes were mapped to the 
same gene.

CD34 and CD68 immunofluorescence
The FFPE tumor tissues (IBC and breast cancer other 
than IBC) obtained from the validation cohort were 
deparaffinized in xylene, hydrated through a graded 
ethanol series, and washed under tap water and phos-
phate-buffered saline (PBS). The antigenic recovery was 
performed using 0.1  M (pH 6.0) sodium citrate buffer 
at 95  °C for 30  min. Permeabilization was performed 
using 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, 
USA). The slides were incubated with a solution contain-
ing 0.3  M glycine (Sigma-Aldrich, St. Louis, MO, USA) 
and 5% bovine serum albumin (Sigma-Aldrich, St. Louis, 
MO, USA) for 1  h at room temperature to block non-
specific binding sites. The tissue sections were incubated 
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overnight, at 2–8 °C, with the monoclonal primary anti-
body mouse anti-CD34 (1:100, Cell Signaling Tech-
nology, Massachusetts, USA) or monoclonal primary 
antibody rabbit anti-CD68 (1:100, Sigma-Aldrich, Merck, 
USA). After primary antibody incubation, the slides were 
washed (3x in PBS for 5 min each) and incubated with the 
secondary antibody goat anti-mouse IgG Alexa Fluor 568 
(1:400, Thermo Fisher Scientific, Waltham, MA, USA) for 
1.5 h at room temperature. Next, the slides were washed 
(3x in PBS for 5 min each), and tissues were exposed to a 
0.002% 4,6’-diamidino-2-phenylindole (DAPI)/ PBS solu-
tion (Thermo Fisher Scientific) for 30  min to label the 
cell nuclei. The slides were washed (3x in PBS for 5 min) 
again and mounted with ProLong Gold Antifade Moun-
tant (Thermo Fisher Scientific). Coverslips were applied 
and sealed. The photomicrographs were obtained using 
an immunofluorescence microscope (Agilent BioTek 
Cytation, Santa Clara, CA, USA) with standardization of 
master gain and digital offset for analysis. The obtained 
images were analyzed using image software (Fiji Image 
J, National Institutes of Health, Washington, DC, USA). 
The fluorescent area was quantified by differentiating the 
fluorescent pixels related to red fluorescence (Alexa Fluor 
594) and the blue staining to identify cell nuclei marked 
with DAPI. Detection color thresholds were established 
and standardized across all quantifications. The obtained 
data was expressed as the fluorescent area by comparing 
the fluorescence intensity of the target marker with DAPI 
(100%).

Statistical analyses and data visualization
Statistical analyses were performed using GraphPad 
Prism (GraphPad Software, version 8.3.0, USA) and R 
software (version 4.3.1). The Mann–Whitney U-test 
was applied to compare cell proportions between IBC 
and SNT or triple-negative breast carcinoma (TN) and 
non-TN samples (non-parametric data). Kaplan–Meier 
method and the log-rank (Mantel-Cox) test were used 
for univariate survival analysis and curve comparisons, 
respectively. We considered overall survival (OS) as the 
interval between the date of IBC diagnosis and death 
from any cause. Patients were stratified into two groups 
(high and low cell proportion) by the median fractions 
estimated using HiTIMED. Multiple logistic regression 
analysis was performed using the ‘stats’ R package to 
determine the clinicopathological variables correlated 
with EC and stromal cell content (high versus low) in IBC 
samples. The heatmaps were generated using Morpheus 
web-based tool (https://software.broadinstitute.org/mor-
pheus/, last accessed on 29 October 2023) and finalized 
in Inkscape v1.0.2. Euclidean distance and complete link-
age were used for unsupervised hierarchical clustering. 
The plots depicting gene expression levels were gener-
ated using ggplot2 R package.

Results
The proportion of 17 cell types was estimated by 
HiTIMED for samples from the discovery cohort (Fig. 
S2, Additional file 4) and the content of tumor cells rep-
resented, on average, 65% of the IBC samples (Fig.  1A). 
ECs, stromal cells, memory B cells, dendritic cells (DC), 
and natural killer (NK) cells showed lower infiltration in 
IBC compared to SNT samples (Fig. 1B). The comparison 
between TN and non-TN samples revealed that ECs and 
memory CD8+ T cells infiltration is reduced, while neu-
trophils infiltration is enhanced in TN (Fig. 1C).

We investigated the relationships between the immune 
and angiogenic cells predicted in the microenvironment 
of 24 IBC samples by calculating the correlation based 
on the estimated cell fractions (Fig. 2A). Twenty-six out 
of 91 pairs of immune and angiogenic cell types showed 
significant correlations (Spearman’s rank correlation, 
p < 0.05). Stromal cells were positively correlated to DCs 
and NK cells (R = 0.43 and 0.63, respectively). ECs were 
positively correlated to stromal, memory B, and mem-
ory CD8+ T cells (R = 0.45, 0.46, and 0.55, respectively). 
Monocytes and neutrophils displayed inverse correla-
tions with ECs (R = − 0.42 and − 0.62).

Clinicopathological variables or estimated cell fractions 
were correlated with patients’ survival (Table  1). The 
clinical stage (p < 0.0001), distant metastasis (p = 0.003), 
M stage (p < 0.0001), and N stage (p = 0.0017) had a sig-
nificant impact on OS (univariate analysis). Interestingly, 
we observed that IBC cases with higher EC and stromal 
cell proportions presented increased OS (p = 0.0223 and 
p = 0.0283, respectively) (Fig. 2B; Table 1). We verified the 
distribution of EC and stromal cell clusters (high versus 
low) according to the presence of metastasis (M0 versus 
M1) and clinical stage (stages IIIB + IIIC versus stage IV) 
using Fisher’s exact test and did not find statistically sig-
nificant differences between non-metastatic and meta-
static patients or stages III and IV (Fig. S3, Additional 
file 5). Also, the tumor cell content does not affect the 
patients’ survival (p = 0.9756) (Fig. S4, Additional file 6). 
Among the six variables (clinical stage, distant metasta-
sis, M stage, N stage, EC, and stromal cell proportions) 
that significantly impacted IBC patients’ OS according 
to the Kaplan-Meier curves and log-rank test (Table  1), 
five were also significant according to the univariate Cox 
regression analysis: clinical stage, distant metastasis, M 
stage, EC, and stromal cell content (Table S4, Additional 
file 1). Our limited sample size precluded the multivariate 
analysis to determine the value of these factors as inde-
pendent survival predictors. Multiple logistic regression 
was performed to determine which variables correlated 
with EC and stromal cell content. Advanced N stage and 
distant metastasis were more frequently observed in 
EC- and stromal cell-low than in EC- and stromal cell-
high groups (Fig. 2C). Additionally, TN cases were more 

https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
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common in the EC-low group, while the proportion of 
ER-positive and PR-positive tumors was higher in the 
EC-high group.

We performed PAM clustering analysis (k = 2) on 
the estimated cellular fractions of IBC cases to define 
subgroups based on infiltration patterns. Two clusters 
(immune cold and immune hot) showed markedly dif-
ferent distributions of multiple cell types, most notably 
stromal cells, memory CD4+ T-, CD8+ T-, and B-lympho-
cytes, DC, NK cells, and neutrophils. Immune hot speci-
mens also presented a higher average score (the average 
score of 15 immune and angiogenic cell types calculated 
for each IBC sample) (Fig. 3A-B).

The DNA methylation dataset (GSE238092) comprised 
46,908 differentially methylated probes (DMPs) detected 
in 24 IBC compared to six SNT samples, including 4,369 
differentially methylated regions (DMRs) associated 
with 3,255 genes. We explored this set of probes focus-
ing on protein-coding genes relevant to the immune 
cell populations. Seventy-seven DMPs were mapped 
to 28 genes encoding immune markers or secreted fac-
tors: BST1, CCL11, CCR3, CCR7, CD163, CD1B, CD1C, 
CD40, CD44, CD8A, ENTPD1, FCER1A, FCER2, IDO1, 
IL13, IL2RA, IL5, IL5RA, IL7R, ITGA4, ITGAX, KLRG1, 
MME, MMP9, NCAM1, NRP1, PTPRC, and TIGIT. 
Unsupervised clustering analysis based on normalized 
DNA methylation levels of this set of DMPs revealed 
two clusters: one including almost exclusively immune 
cold samples and the other mainly SNT and immune hot 
samples (Fig. 4A). Three genes encoding immune mark-
ers were associated with hypermethylated DMRs (CD40 
promoter, and CD8A and MMP9 gene bodies), and three 
were associated with hypomethylated DMRs (CD1B gene 
body, FCER1A promoter, and TIGIT promoter/gene 
body) in IBC.

Since deconvolution analysis revealed that ECs were 
less represented in IBC compared to SNT samples, 
we investigated if the DNA methylation levels of EC 
markers would support this result. Eighty-one DMPs 
were mapped to 23 genes encoding EC surface pro-
teins or secreted factors: CD34, CD58, CDH5, EMCN, 
ENG, GLYCAM1, HLA-DMB, HLA-DOA, HLA-DPB1, 
HLA-DQA2, HLA-DQB2, HLA-G, ICOSLG, ITGB3, 
PDCD1LG2, PDPN, PECAM1, PODXL, SELE, SELP, 
TEK, VEGFA, and VWF. These DMPs distinguished two 
clusters comprising IBC and SNT samples (Fig. 4B). Also, 
most DMPs exhibited increased methylation levels in 
IBC compared to SNT. Among these genes, five (CD34, 
EMCN, HLA-G, PDPN, and TEK) showed hypermeth-
ylated DMRs mapped to promoter regions, and three 
exhibited hypomethylated DMRs (gene body/3` UTR of 
HLA-DOA, and gene bodies of HLA-DQA2 and ICOSLG) 
in IBC. Among the five genes with hypermethylated pro-
moters, only EMCN presented a trend of downregulation 

Fig. 1 Deconvolution of inflammatory breast cancer (IBC) based on DNA 
methylation data using HiTIMED. A) Structure of the HiTIMED layers of de-
convolution and distribution of cell composition in our dataset of 24 IBC 
samples. The violin plots depict the differences between (B) 24 IBCs and 
six surrounding non-tumoral tissues (SNT), and (C) ten triple-negative (TN) 
and 14 non-TN IBC samples for 16 detected cell types. Naïve B cells were 
not detected in any samples. The statistical difference was determined by 
the Mann–Whitney test (* p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001). The solid 
line represents the median, and the dashed lines represent the first and 
third quartiles in the violin plots. Bas: basophil; Bmem: memory B cell; CD-
4mem: memory CD4 + T cell; CD4nv: naïve CD4 + T cell; CD8mem: memory 
CD8 + T cell; CD8nv: naïve CD8 + T cell; DC: dendritic cell; Eos: eosinophil; 
Mono: monocyte; Neu: neutrophil; NK: natural killer cell; Treg: regulatory 
T cell
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in IBC (p = 0.07096) according to the external transcrip-
tomic dataset (GSE45581). Moreover, HLA-G expression 
levels were increased (p = 0.01536), and PDPN presented 
a trend to upregulation (p = 0.06015) in IBC (Fig. S5, 
Additional file 7).

The molecular phenotype analysis using immunofluo-
rescence assays showed a significant difference between 
IBC and non-IBC samples for CD34 (p < 0.05) and CD68 
(p < 0.01), EC and macrophage markers, respectively 
(Fig. 5). CD34 and CD68 exhibited higher protein expres-
sion in IBC compared to non-IBC samples from the 

Fig. 2 Estimated cell fractions (HiTIMED) and clinicopathological variables in inflammatory breast cancer (IBC). (A) Matrix showing the pairwise relation-
ship between immune and angiogenic cell fractions estimated by HiTIMED. The numerical values represent Spearman’s rank correlation coefficients, and 
they are color-coded according to the scale below the matrix. Statistically significant correlations are indicated in bold (p < 0.05). (B) Kaplan–Meier curves 
showing the impact of endothelial and stromal cells on the survival of 24 IBC patients (p-values from Log-rank Test). The cutoffs for survival analysis were 
determined using median values of the estimated cell fractions. (C) Forest plots showing clinicopathological variables correlated with endothelial and 
stromal cell content (high versus low) in IBC. The error bars represent a 95% confidence interval (CI) with the odds ratio (OR) result displayed as a plotted 
box. * p ≤ 0.05, ** p ≤ 0.01. Bas: basophil; Bmem: memory B cell; CD4mem: memory CD4 + T cell; CD4nv: naïve CD4 + T cell; CD8mem: memory CD8 + T cell; 
CD8nv: naïve CD8 + T cell; DC: dendritic cell; EC: endothelial cell; Eos: eosinophil; Mono: monocyte; Neu: neutrophil; NK: natural killer cell; Treg: regulatory 
T cell
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validation cohort (Fig. 5C-D). As demonstrated in Table 
S1 (Additional file 1), the comparison with the discovery 
set revealed that both cohorts are similar regarding most 
clinicopathological characteristics, including age, family 
history of cancer, clinical stage, histological grade, and 
presence of distant metastasis. These results support the 
coherence of evaluating the expression of cell-type-spe-
cific markers in the validation set to confirm the immune 
and EC content identified in the discovery set.

The survival analysis performed in the validation data-
set based on clinicopathological variables and CD34 and 
CD68 protein expression is detailed in Table S5 (Addi-
tional file 1). The validation cohort exhibited significant 
differences in OS according to clinical stage, histological 
grade, presence of distant metastasis, M stage, TN breast 
tumors, and ER status (p < 0.05). Neither CD34 nor CD68 
expression levels impacted OS.

Discussion
It is still poorly understood whether inflammation con-
tributes to tumorigenesis or disease aggressiveness, 
which is frequently described in IBC. Despite the clini-
cal signs, which resemble the presence of acute inflam-
mation, IBCs produce inflammatory cytokines (such as 
IFNG, TNF, IL1A, IL1B, and IL8) at similar levels to other 
breast cancer subtypes, while the host inflammatory cell 
infiltration is low in the IBC stroma [28, 29]. In this study, 
we explored differentially methylated probes and regions 
mapped to protein-coding genes relevant to immune and 
angiogenic cell populations from IBC microenvironment. 
DNA methylation plays a crucial role in the function of 
immune cells, including their maturation, polarization, 
and differentiation, and in tumor immune evasion [30]. 
In this scenario, epigenetic modifications emerge as indi-
cators of the TME immune status and potential targets to 
improve immunotherapy responsiveness.

Cancer cells, their immediate environment, and sur-
roundings were investigated employing the novel decon-
volution algorithm HiTIMED, which can resolve 17 cell 
types in the TME using DNA methylation data [24]. 
HiTIMED includes cell types, such as DCs, that are 
prominent in shaping IBC microenvironment behav-
ior [4]. Another advantage of HiTIMED compared with 
other deconvolution tools is that the algorithm uses 
tumor-specific signatures derived from primary breast 
cancer cells.

We observed that memory B, endothelial, stromal, 
NK cells, and DCs are diminished in IBC compared to 
SNT samples. Two previous studies reported a memory 
B cell enrichment in IBC using transcriptome-based 
deconvolution; one of them compared IBC to non-IBC 
samples [18, 20]. In our study, we deconvolved DNA 
methylation data and used non-tumoral samples as con-
trols. Recently, Hannon et al. (2024) failed to detect a 

Table 1 Kaplan-Meier survival analysis based on 
clinicopathological variables and estimated cell fractions 
(HiTIMED)
Variable Number of 

cases
Median 
survival
(months)

p-value
(log-
rank 
test)

Age (years)
 ≤ 55 14 19.23 0.2669
 > 55 10 51.21
Clinical stage
 IIIB + IIIC 15 70.03 < 0.0001
 IV 9 14.66
SBR grade
 1 + 2 16 31.26 0.3027
 3 8 25.48
Distant metastasis
 Presence 15 21.80 0.003
 Absence 9 103.48
M stage
 M0 15 70.03 < 0.0001
 M1 9 14.66
N stage
 N0 + N1 9 103.48 0.0017
 N2 + N3 15 17.51
TP53 mutation*
 Positive 10 15.69 0.2074
 Negative 14 51.21
HRR genes mutation*
 Positive 7 29.15 0.4183
 Negative 17 29.15
Triple negative
 Yes 10 19.23 0.1114
 No 14 51.21
ER
 Positive 11 70.03 0.1642
 Negative 13 17.51
PR
 Positive 8 51.21 0.8518
 Negative 16 25.36
HER2
 Positive 3 17.51 0.9236
 Negative 21 29.15
EC cluster
 Low 12 17.08 0.0223
 High 12 70.03
Stromal cluster
 Low 12 23.21 0.0283
 High 12 76.31
SBR: Scarff-Bloom-Richardson grading system; HRR: homologous 
recombination repair; ER: estrogen receptor; PR: progesterone receptor; HER2: 
human epidermal growth factor receptor type 2; EC: endothelial cell; in bold: p-
value < 0.05. *Only pathogenic and likely pathogenic variants were considered
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Fig. 3 Classification of inflammatory breast cancer (IBC) samples into immune hot and cold. (A) Partitioning around medoids (PAM) clustering using the 
HiTIMED estimated cellular fractions revealed two clusters with different immune and angiogenic cell type distributions. The average score was calculated 
for each IBC sample considering the estimated fraction of 15 cell types. Rows were clustered based on the Euclidean distance of the estimated fractions. 
(B) Boxplots of cell types based on the two clusters (hot and cold) derived from IBC samples. The estimated fraction of each cell type in hot versus cold 
tumors was represented only for significant differences (p < 0.05, Mann-Whitney test). *p ≤ 0.05, ***p ≤ 0.001, ****p ≤ 0.0001
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significant correlation between the memory B cell esti-
mates obtained with DNA methylation- and transcrip-
tome-based deconvolution, while the results from both 
analyses were consistent for most cell types [31]. There-
fore, the cell proportion estimates derived from different 
types of data are not necessarily similar due to differences 
in the nature of the nucleic acids, the assay platforms, the 
data analysis pipelines, as well as other variables.

Our findings regarding the ECs are consistent with 
those of Aran et al. (2017) study, which showed that these 
cells are usually depleted in tumors compared to nor-
mal adjacent tissues [32]. The authors also reported that 
stromal cells are augmented in normal adjacent tissues, 
coinciding with wound response pathways enrichment. 
Normal adjacent tissue undergoes extracellular matrix 
remodeling, wound healing-like processes, fibrosis, and 
an epithelial-to-mesenchymal transition [33]. The expla-
nation for these findings might depend on field canceriza-
tion and microenvironment effects. Field cancerization 
refers to pro-tumorigenic genetic mutations or epimuta-
tions that accumulate in cells within the pre-malignant 

field [34]. These cells are primed for cancer development 
and may not exhibit morphological changes. The micro-
environment theory suggests that each cellular compo-
nent of the tumor microenvironment (tumor, immune, 
and stromal cells) can communicate through direct inter-
action or secreted mediators, promoting aberrant signal-
ing and enabling cancer initiation and progression [35]. 
In breast cancer, several studies have drawn attention to 
the fact that surrounding normal tissues, although histo-
logically normal, are enriched with molecularly altered 
cells, which create an environment favorable to cancer 
progression [36].

The IBC and SNT composition comparison revealed 
that ECs exhibited the most significant divergence among 
the deconvolved cell types. ECs can modulate tissue 
and lymph node inflammation by interacting with and 
recruiting innate and adaptive immune cells [26]. They 
also function as non-hematopoietic antigen-presenting 
cells (APCs) since they can express class I and II major 
histocompatibility complex (MHC) proteins constitu-
tively and at enhanced levels in response to inflammatory 

Fig. 4 DNA methylation profile of immune and endothelial cell (EC) markers in inflammatory breast cancer (IBC). Heatmaps depicting the differentially 
methylated probes (DMPs) mapped to genes encoding (A) immune and (B) EC markers and secreted factors in samples from the discovery cohort (IBC 
in pink and SNT in blue). Rows and columns were clustered based on the Euclidean distance of the normalized DNA methylation levels. The purple bar 
indicates DMPs associated with differentially methylated regions (DMRs). Bas: basophil; Bmem: memory B cell; CD8mem: memory CD8 + T cell; CD8nv: 
naïve CD8 + T cell; DC: dendritic cell; EC: endothelial cell; Eos: eosinophil; Mono: monocyte; Neu: neutrophil; NK: natural killer cell; SNT: surrounding non-
tumoral tissue; Treg: regulatory T cell
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cytokines [37]. Although ECs lack the expression of 
co-stimulators CD80 and CD86, which are critical for 
activating naïve lymphocytes, they can mediate antigen-
specific stimulation of effector and memory CD4+ and 
CD8+ T-lymphocytes [37].

We identified several EC surface proteins and media-
tors associated with hypermethylated CpGs by compar-
ing IBC versus SNT. Cancer cells often undergo DNA 
demethylation globally, while hypermethylation occurs 
in promoters and enhancers in a cancer cell-specific 
manner, leading to transcriptional silencing [38]. The 
hypermethylated pattern identified in the promot-
ers of EC markers CD34, EMCN, and TEK suggests a 

downregulated expression in tumor tissues. Still, accord-
ing to the external cDNA microarray data, only EMCN 
exhibited a trend of downregulation in IBC compared 
to normal samples. It would be ideal to integrate gene 
expression and DNA methylation data generated with the 
same cohort of cases to confirm the correlation between 
promoter methylation and gene silencing for these 
markers.

CD34 and EMCN are expressed by ECs on high endo-
thelial venules (HEVs) and encode sialomucin proteins, 
which can bind adhesion molecule L-selectin and pro-
mote leukocyte rolling and transendothelial migration 
across HEVs [39, 40]. In non-lymphoid tissues, HEV-like 
blood vessels specialize in recruiting T- and B-lympho-
cytes during chronic inflammation and cancer [41]. A 
high density of HEVs within tumor stroma is associated 
with higher infiltration of B- and T-cells, including acti-
vated effector, naïve, and central memory T-cells, besides 
predicting longer survival rates in breast cancer [42]. 
These findings can explain the better survival observed 
in IBC patients with high proportion of ECs. Addition-
ally, EC estimated proportions were positively correlated 
with memory B and memory CD8+ T infiltration in IBC. 
A recent study based on a CIBERSORT analysis of IBC 
versus non-IBC samples emphasized the IBC microen-
vironment heterogeneity, marked by M1 macrophages, 
γδ T-cells, and memory B cells [18]. The subpopulation 
of tissue-resident memory T cells knowingly exerts a 
peripheral immunosurveillance role and has been impli-
cated in increased response to immune checkpoint inhib-
itors [43]. These interactions demonstrate the crucial 
role of chronic inflammation in IBC progression and the 
potential of targeting inflammatory pathways as a thera-
peutic strategy.

In the validation cohort, we demonstrated a signifi-
cantly higher expression of CD34 in IBC compared to 
non-IBC samples. Accordingly, a previous immunohis-
tochemistry study demonstrated that the number of ECs 
in IBC was at least eight times greater than in non-IBC 
specimens [44]. CD34+ ECs are described to migrate to 
lymph nodes and contralateral nascent breast cancer 
lesions to constitute new vessels, fueling angiogenesis, 
tumor progression, and metastases [45]. The angiogenic 
process is amplified by hypoxia-inducible factors, which 
trigger the release of proinflammatory mediators and the 
accumulation of stromal cells in breast cancer [46]. Also, 
the immunofluorescence results revealed significantly 
higher expression of CD68 in IBC than in the non-IBC 
samples, which reinforces the concept that macrophages 
release pro-angiogenic factors to drive breast cancer pro-
gression in a feedback loop [47]. Earlier evidence showed 
that macrophages enhance migration via RhoC-GTPase 
signaling in IBC, suggesting these cells are active play-
ers in the TME [48]. Additionally, the crosstalk between 

Fig. 5 Molecular phenotyping for CD34 and CD68 in inflammatory breast 
cancer (IBC) and non-IBC samples. Immunofluorescence staining for (A) 
endothelial marker CD34 and (B) macrophage marker CD68. The scale bar 
represents 100 μm (Magnification 200 ×). The quantification of the per-
centage of fluorescence intensity showed significantly higher (C) CD34 
and (D) CD68 protein expression in IBC (red dots) compared to non-IBC 
(blue dots) samples. Green dots: triple-negative tumors. The values are ex-
pressed as the means ± SD. Data were analyzed by the Mann-Whitney test. 
Statistical significance was set at * p < 0.05, ** p < 0.01
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mesenchymal stem cells and macrophages, especially 
the M2 subtype, in the TME promotes IBC invasion and 
self-renewal [10]. As HiTIMED quantitatively assesses 
cell proportions but lacks spatial information, the immu-
nofluorescence assays complemented its findings by 
providing spatial context by targeting cell-type-specific 
markers. Furthermore, HiTIMED does not have enough 
resolution to distinguish monocyte-lineage cells and 
their states, such as M1 and M2 phenotypes, which could 
help better elucidate the contribution of macrophages to 
the IBC microenvironment.

We analyzed a set of immune markers related to other 
cell types resolved by HiTIMED and potentially sub-
jected to epigenetic silencing in IBC. Among them, CD40 
holds great promise for cancer immunotherapy. CD40 
is a member of the tumor necrosis factor (TNF) recep-
tor superfamily expressed on APCs, including DCs and 
non-immune cells, such as platelets and ECs, and plays 
a role in adaptive immunity induction [49]. The interac-
tion between CD40 on DCs and its ligand on CD4+ T 
cells promotes increased surface expression of MHC 
and costimulatory molecules, production of proinflam-
matory cytokines, and enhanced T-cell triggering by 
activated DCs [49]. Earlier evidence showed that CD40 
gene expression is significantly reduced in IBC com-
pared with non-IBC samples, but we could not validate 
CD40 decreased expression at the protein level due to the 
scarcity of IBC samples [50]. According to our results, 
the promoter hypermethylation of CD40 can lead to its 
reduced expression. DNA methylation levels were higher 
in IBC samples classified as immune cold, while immune 
hot samples presented intermediate methylation levels 
compared to SNT. The immune cold cluster was marked 
by reduced proportions of stromal cells, memory CD4+ 
T, CD8+ T and B-lymphocytes, DC, and NK cells. We 
also detected lower memory CD8+ T cell content in TN 
versus non-TN IBC. A recent preclinical study demon-
strated that combining cytotoxic agents with CTLA4 
inhibition and CD40 agonists may be more effective than 
targeting multiple checkpoints on T cells, especially in 
cold lesions as most TN breast tumors [51, 52]. CD40 
agonism can produce tumoricidal myeloid cells in the 
absence of CD8+ T cell responses [49]. Therefore, modu-
lating CD40 expression with epigenetic drugs and target-
ing the gene product with CD40 agonists could improve 
therapeutic response even in tumors with poor CD8+ T 
cell infiltration.

Several agonistic anti-CD40 monoclonal antibodies 
(mAbs) have been developed and entered clinical trials, 
including CDX-1140, a human immunoglobulin G2 [53]. 
Two ongoing trials are evaluating the potential com-
bination of CDX-1140 with other approaches to treat 
breast cancer (ClinicalTrials.gov IDs: NCT05029999 and 
NCT04616248). Although CD40 mAbs have not achieved 

substantial single-agent anti-tumor activity, except for 
melanoma, combination with chemotherapy, radiother-
apy, or immunotherapy has resulted in tumor regression 
in different cancer types [54]. Epigenetic alterations are 
not restricted to cancer cells but also contribute to DC 
dysfunction in the TME. This is a limiting feature for 
anti-tumor immunity not addressed by immune check-
point inhibitors. Targeting epimutations that affect dif-
ferent immune cell subsets should be considered as an 
option to enhance immunotherapy efficacy in IBC.

Conclusion
DNA methylation-based deconvolution enabled us to 
characterize the IBC microenvironment and guided the 
search for dysregulated markers affected by underlying 
epigenetic changes. The complex interaction between 
the TME cellular components extends to the tumor 
surroundings, presenting higher immune and stromal 
infiltration than the tumor tissue. The EC component is 
notably reduced within the tumor stroma compared to 
its surroundings but seems to have anti-tumor properties 
in patients with higher EC infiltration. This is suggested 
by its favorable impact on IBC patients’ survival and 
positive correlation with immune cells, which are cru-
cial for fighting back tumors. Additionally, previous evi-
dence supports ECs contribution to innate and adaptive 
immune cell recruitment and antigen presentation [26]. 
The DC activity also seems deficient within TME since 
the methylation pattern of CD40 promoter indicates 
that the CD40 surface molecule, fundamental for induc-
ing adaptive immunity, is epigenetically silenced in IBC, 
especially in cold tumors. Therefore, insights gleaned 
from bulk DNA methylation data supported by pre-
clinical and clinical evidence across various tumor types 
indicate that combining immunotherapy and epigenetic 
drugs is a viable alternative for treating inflammatory 
breast cancer.
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