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Abstract
Background With poor prognosis and high mortality, pancreatic ductal adenocarcinoma (PDAC) is one of the 
most lethal malignancies. Standard of care therapies for PDAC have included gemcitabine for the past three 
decades, although resistance often develops within weeks of chemotherapy initiation through an array of possible 
mechanisms.

Methods We reanalyzed publicly available RNA-seq gene expression profiles of 28 PDAC patient-derived xenograft 
(PDX) models before and after a 21-day gemcitabine treatment using our validated analysis pipeline to identify 
molecular markers of intrinsic and acquired resistance.

Results Using normalized RNA-seq quantification measurements, we first identified oxidative phosphorylation 
and interferon alpha pathways as the two most enriched cancer hallmark gene sets in the baseline gene expression 
profile associated with intrinsic gemcitabine resistance and sensitivity, respectively. Furthermore, we discovered 
strong correlations between drug-induced expression changes in glycolysis and oxidative phosphorylation genes 
and response to gemcitabine, which suggests that these pathways may be associated with acquired gemcitabine 
resistance mechanisms. Thus, we developed prediction models using baseline gene expression profiles in those 
pathways and validated them in another dataset of 12 PDAC models from Novartis. We also developed prediction 
models based on drug-induced expression changes in genes from the Molecular Signatures Database (MSigDB)’s 
curated 50 cancer hallmark gene sets. Finally, pathogenic TP53 mutations correlated with treatment resistance.

Conclusion Our results demonstrate that concurrent upregulation of both glycolysis and oxidative phosphorylation 
pathways occurs in vivo in PDAC PDXs following gemcitabine treatment and that pathogenic TP53 status had 
association with gemcitabine resistance in these models. Our findings may elucidate the molecular basis for 
gemcitabine resistance and provide insights for effective drug combination in PDAC chemotherapy.
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Introduction
Pancreatic cancer is a major public health concern as 
the third leading cause of cancer-related mortality in the 
United States and seventh worldwide [1]. There are two 
main subtypes of pancreatic cancer: pancreatic neuro-
endocrine tumor (PanNET) which accounts for < 5% of 
cases, and the more prevalent pancreatic ductal adeno-
carcinoma (PDAC) which accounts for ~ 90% of cases 
[2]. The disease is often diagnosed at an advanced stage 
so that prognosis for PDAC remains extremely poor with 
< 10% 5-year survival rate [3]. This is due, in part, to the 
fact that early symptoms are ambiguous and reliable 
early detection markers are lacking. Moreover, PDAC is 
believed to metastasize microscopically at an early stage 
[4]. Along with radiation and surgery, chemotherapy 
based on the pyrimidine antimetabolite gemcitabine 
(2’,2’-difluorodeoxycytidine) is the standard treatment for 
locally advanced and metastatic PDAC [5]. Gemcitabine 
causes apoptosis via multiple mechanisms, including 
the inhibition of DNA synthesis and deoxynucleotide 
metabolism, and the activation of pro-apoptotic caspase 
signaling [6]. However, in clinical practice, gemcitabine 
chemotherapy regimens confer modest survival benefits 
often accompanied by drug-associated adverse effects [7].

PDAC is notorious for chemoresistance to standard 
therapy, both intrinsic and acquired [4–6, 8]. Mecha-
nisms related to the transport and metabolism of gem-
citabine were first identified as causes of chemoresistance 
[6]. Moreover, PDAC tumors are most frequently driven 
by alterations in KRAS, TP53, CDKN2A, and SMAD4 
[9–12]. Furthermore, treatment promotes acquired 
resistance in as little as a few weeks [13]. The composi-
tion of the tumor microenvironment constitutes another 
barrier to drug efficacy due to stromal proliferation and 
reduced vascularization which prevent drug diffusion to 
the tumor, and immune suppression [4]. However, these 
processes cannot effectively be studied in vitro as cell line 
cancer models lack the immune components and stromal 
content needed to recapitulate tumor microenvironment. 
These shortcomings can be partly addressed by undertak-
ing in vivo experiments in mice bearing xenografts from 
established cancer cell lines or patient-derived tumors. 
Multiple studies have established that patient-derived 
xenografts (PDXs) have greater translational potential 
than xenografted cancer cell lines which tend to be more 
divergent from the original tumor due to extended pas-
saging in vitro [14–17]. Despite microenvironmental dif-
ferences (i.e., human stroma and extracellular matrix in 
the original tumor compared to mouse-derived compo-
nents in xenograft experiments), PDX models retain the 

three-dimensional architecture of the original tumor, as 
well as genetic characteristics and metastatic potential 
[17]. Therefore, the development of PDX models facili-
tates the implementation of drug response studies, and 
the potential identification of clinically relevant biomark-
ers of response and resistance [18–20].

In a recent study, Yang et al. constructed 66 pancreatic 
cancer PDX mouse models [21]. The PDXs were treated 
with gemcitabine for 21 days and the drug responses 
were evaluated by tumor growth inhibition (TGI%). The 
PDX models displayed a range of TGI% at 21 days of 
treatment with gemcitabine and were classified into four 
groups: sensitive, partial sensitive, partial resistant, and 
resistant by TGI%. To uncover molecular characteristics 
of gemcitabine-resistant and -sensitive models, multi-
omics techniques were used to compare the molecular 
features of PDX tissues from the sensitive (n = 15) and 
resistant (n = 13) models [21]. The models classified as 
partial sensitive and partial resistant were not sequenced 
and were therefore not included in the multi-omics anal-
ysis by Yang et al. [21], nor in the present study.

The comparative transcriptional analysis described 
in the original study did not identify any significantly 
enriched pathways associated with gemcitabine sensi-
tive and resistant phenotypes before treatment, and three 
pathways were found to be enriched after gemcitabine 
treatment with adjusted p < 0.125 [21]. This is likely due 
to the use of TPM (transcripts per million) data as input 
for the DESeq2 package differential expression analy-
sis rather than raw read counts, which is improper as 
DESeq2 requires raw counts of sequencing reads or frag-
ments as input [22, 23]. Therefore, in the present study, 
we set out to reprocess and reanalyze the PDAC PDX 
gene expression data produced by Yang et al. (referred to 
as the Yang dataset hereafter) using our validated pipe-
line to identify markers of intrinsic and acquired resis-
tance to gemcitabine. The association between presence 
of pathogenic TP53 mutations and gemcitabine response 
was also examined.

Methods
Additional File 1: Figure S1 provides an overview of the 
steps of data collection and analyses included in this 
study.

Data acquisition and preprocessing
For the Yang dataset, RNA-seq data were obtained from 
the Genome Sequence Archive (CRA002096). Fifty-six 
FASTQ files for 28 PDAC PDX models with available 
RNA-seq data were downloaded including both baseline 
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and post gemcitabine treatment measurements. Then, 
FASTQ files were processed with the Frederick National 
Laboratory for Cancer Research’s Molecular Character-
ization Laboratory (i.e., MoCha) pipeline as described 
previously [24]. PDX mouse reads were removed from the 
raw FASTQ files using the bbsplit (bbtools v37.36) bioin-
formatic package (sourceforge.net/projects/bbmap/). The 
FASTQ files were mapped to the human transcriptome 
based on exon models from hg19 using Bowtie 2 (ver-
sion 2.2.6) [25]. The resulting SAM files were converted 
to BAM format using samtools [26], and the transcrip-
tomic coordinates from the BAM file were converted 
to the corresponding genomic (hg19) coordinates using 
RSEM (version 1.2.31) [27]. Gene level quantification was 
also performed with RSEM (version 1.2.31). The R pack-
age tximport was used to prepare gene level count data 
from RSEM output files, which provided a data matrix 
containing 28,109 genes.

To validate the initial findings based on baseline gene 
expression, an independent dataset of 12 PDAC PDX 
models generated by Novartis (Novartis Institutes for 
BioMedical Research PDX encyclopedia [NIBR PDXE]) 
[28] was extracted from the Bioconductor package Xeno-
graft Visualization & Analysis (Xeva) [29]. This dataset is 
referred to as the Novartis dataset hereafter.

Gemcitabine response
Of the 28 PDX models in the study by Yang et al. [21], 
15 were deemed sensitive to gemcitabine and 13 were 
deemed resistant according to percent tumor growth 
inhibition (TGI%) at the conclusion of 21 days of treat-
ment (Fig. 1a). Briefly, TGI% at 21 days was computed by 
Yang et al. using the following formula:
TGI% =

[
1− T21 − T0

C21 − C0

]
× 100, where T21 and C21 are 

the average tumor volume on the 21st treatment day in 
the gemcitabine group and control group, respectively. 
T0 and C0 were the average tumor volume on day 0 in 
the gemcitabine group and control group, respectively. 
The models with TGI% > 100 at 21 days were labeled as 
sensitive and the models with TGI% < 50 at 21 days were 
labeled as resistant. These phenotypic labels for gem-
citabine response were used for our differential expres-
sion analyses.

For the Novartis dataset, the standard treatment sched-
ule was also 21 days and the response to gemcitabine 
was assessed by modified Response Evaluation Crite-
ria in Solid Tumors (mRECIST) criteria as described by 
Gao et al. [28], that is by computing the change in tumor 
volume at 21 days compared to its baseline. Out of the 
12 models, four were complete responders (CR: best 
response < − 95%) to gemcitabine and eight had progres-
sive disease (PD: best response > 35%).

Differential analysis, correlation analysis, and gene set 
enrichment analysis (GSEA)
Differential gene expression analysis was carried out 
using Bioconductor R package DESeq2 (version 1.36.0) 
[22] to identify molecular differences between gem-
citabine sensitive and resistant models at baseline (i.e., 
prior to treatment). Furthermore, differences in drug-
induced gene expression changes between sensitive and 
resistant models were also evaluated. For the latter analy-
sis, we used multi-factor paired design in DESeq2 with 
PDX model (paired pre- and post-treatment) and gem-
citabine response (sensitive and resistant) as the factors 
to identify genes for which gemcitabine treatment effects 
differed significantly between sensitive and resistant 
models while also controlling for model differences. Gene 
set enrichment analysis (GSEA) was performed with Bio-
conductor R package FGSEA (version 1.22.0) [30]. The 
DESeq2 differential expression results tables were sorted 
by test statistic and used as inputs for FGSEA along with 
the Molecular Signature Database (MSigDB)’s 50 cancer 
hallmark gene sets [31, 32]. Gene sets were considered 
significantly enriched if Normalized Enrichment Score 
|NES| > 1 and Benjamini-Hochberg false discovery rate 
(FDR) adjusted p < 0.10 [30]. To investigate the effects of 
gemcitabine treatment on gene expression, we also con-
ducted a Spearman-rank correlation analysis between the 
drug-induced changes in gene expression and the con-
tinuous drug response, represented as TGI% at 21 days. 
We used the resulting test statistics as input for a path-
way enrichment analysis using a software package devel-
oped in-house (available upon request). The analysis was 
performed on a curated set of 96 metabolic pathways that 
were previously defined in a study by Gaude and Frezza 
[33]. These pathways were used as the list of query gene 
sets. LS statistic was used to determine the significance 
of pathway enrichment [34, 35].

Prediction model development and validation
Compound Covariate Predictor (CCP), Diagonal Linear 
Discriminant Analysis (DLDA), Near Centroid (NC), 
and Support Vector Machine (SVM) models were used 
to predict drug response from baseline gene expression 
data of 64 OXPHOS and glycolysis genes with differen-
tial drug-induced changes significantly correlated with 
TGI% at 21 days (reference [36] and references therein). 
The performance of the prediction models was evaluated 
using Leave-One-Out Cross Validation (LOOCV). In 
each round of LOOCV, features (genes) were re-selected 
according to criteria that they must be significantly dif-
ferentially expressed between the sensitive and resistant 
classes at 0.05 significance level from t-test in order to 
be used for class prediction. The final prediction model 
using baseline data as input was validated on an indepen-
dent dataset (Novartis dataset) that included 12 PDAC 
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PDX models, their response to gemcitabine, and RNA-
seq gene expression data [28, 29]. R package ComBat was 
applied to the validation data (Novartis dataset) using 
the Yang dataset as a reference to correct the batch effect 
[37]. We also developed least absolute shrinkage and 
selection operator (LASSO) and least angle regression 
(LARS) models to predict gemcitabine response, mea-
sured as binary response and as a continuous outcome 

(TGI%), respectively, using Yang’s dataset. The predic-
tion utilized a treatment-induced expression matrix, 
with gene selection restricted to the 50 Cancer Hallmark 
pathways. By focusing on the perturbed gene expres-
sion within these pathways, our aim was to gain deeper 
insights into the mechanisms underlying resistance to 
gemcitabine. The use of continuous outcome data (TGI%) 
in the LARS model also provided an additional benefit of 

Fig. 1 Phenotypic characteristics of the PDAC PDXs and gemcitabine response dependent molecular and gene set features. (a) Heatmap of phenotypic 
features for the 28 PDAC PDX models from the Yang dataset. (b, c) Baseline expression b) and drug-induced log2 fold-change (log2FC) c) of seven genes 
with p < 0.001 both at baseline and in drug-induced changes. (d, e) Significantly enriched pathways from GSEA in sensitive compared to resistant models 
at baseline d) and 21 days after start of treatment e) in sensitive compared to resistant models identified using multi-factor paired design in DESeq2. 
Benjamini-Hochberg adjusted p < 0.10. The x-axis represents the Normalized Enrichment Score (NES). Darker bars denote lower enrichment adjusted p 
values. Solid black arrows indicate oxidative phosphorylation (OXPHOS), solid red arrows indicate glycolysis, and dashed black arrows denote fatty acid 
metabolism. (f, g) Top three differentially expressed genes in the most enriched pathways at baseline: the OXPHOS pathway enriched in resistant models 
f) and the IFN-alpha pathway enriched in sensitive models g). (h, i) Top three genes with greatest drug-induced change in expression from the OXPHOS 
pathway h) and the glycolysis pathway i). ***p < 0.001
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increased statistical power [38, 39]. The performance of 
these prediction models was also evaluated using Leave-
One-Out Cross Validation (LOOCV). All prediction 
models were built using BRB-ArrayTools v4.6.2 [36].

Annotation of TP53 and KRAS mutational status, and 
analysis of TP53 targets mediating its effects on glycolysis 
and OXPHOS
TP53 and KRAS mutational information in the pancre-
atic tumor samples was obtained from the supplemen-
tary data of Yang et al. [21]. Here and below, we use TP53 
for the gene name, and p53 for its protein product; fur-
thermore, we refer to a model as a combined represen-
tation of all tumor specimens (clinical and PDX-derived) 
which were derived from a single initial PDAC patient. 
The trend for observed associations between the TP53 
mutation status and response to gemcitabine was further 
interrogated using supplementary data of the Novartis 
dataset from Gao et al. [28]. In our analysis, we classi-
fied the TP53 mutation status of each model into three 
categories (pathogenic, non-pathogenic, and conflicting) 
based on the category most indicative of pathogenicity 
of all TP53 mutation variants reported for each model. 
Detailed information about TP53 variant classification in 
the Yang and Novartis datasets is provided in Additional 
File 2 and its accompanying legend. Briefly, information 
about functional effects of TP53 mutation variants was 
obtained from the OncoKB and compared to the infor-
mation from ClinVar, CiViC, and the Jackson Laboratory 
Clinical KnowledgeBase (JAX CKB) databases, and from 
biomedical publications. These additional data sources 
were in strong agreement with the OncoKB classifica-
tion of the TP53 variants analyzed in our study. Statistical 
association of the TP53 mutation status with gemcitabine 
response in PDX models was tested using a two-sided 
Fisher’s exact test. All models in the Yang dataset carried 
KRAS variants that were classified as oncogenic by the 
OncoKB, and their pathogenicity was confirmed by bio-
medical literature sources.

To investigate molecular effects of TP53 and its patho-
genic variants on gemcitabine resistance, we analyzed 
the expression of 14 genes (SLC2A1/GLUT1, SLC2A3/
GLUT3, SLC2A4/GLUT4, C12orf5/TIGAR, HK2, SCO2, 
AIFM1/AIF, GLS2, HIF1A, PGM1, SLC1A3, SLC7A3, 
BBC3/PUMA, and RRAD) whose products mediate TP53 
effects on glycolysis and OXPHOS [40–44]. We used uni-
variate Spearman-rank correlation analysis of DESeq2-
normalized expression count each of genes with TGI%, 
as well as linear regression modeling (lm) of TGI%, using 
TP53 mutation status and expression of each target gene 
as predictor variables.

Results
Transcriptional differences associated with gemcitabine 
resistance in PDAC xenografts tend to be acquired rather 
than intrinsic
The analysis steps of our study are schematized in Addi-
tional File 1: Figure S1. First, we sought to identify molec-
ular markers of intrinsic resistance to gemcitabine in 
PDAC. To this end, we carried out differential expression 
analysis comparing baseline expression of 28,109 genes 
in 13 gemcitabine-resistant xenograft models to 15 gem-
citabine-sensitive models using DESeq2. One hundred 
and nine genes were differentially expressed between 
gemcitabine sensitive and resistant models at baseline 
with unadjusted p < 0.001 (Additional File 3: Table S1). 
Out of these, 22 genes were significantly differentially 
expressed between the two gemcitabine response groups 
after FDR adjustment at 5%. Ten genes fulfilled both 
|log2FC| ≥ 1 and FDR adjusted p < 0.05 requirements; 
GCAT, HHIPL2, IL33, and KLF15 had higher baseline 
expression in resistant models, while DDX60, ESAM, 
IL12RB1, LOC100132077, MYBPC1, and STARD9 had 
higher baseline expression in sensitive models (Addi-
tional File 1: Figs. S2a and S2b; Additional File 3: Table 
S1).

Next, we examined differences in gene expression 
trajectories associated with treatment in gemcitabine-
sensitive and in gemcitabine-resistant models. This was 
achieved by using multi-factor paired design in DESeq2 
(Additional File 1: Fig. S2c). This approach specifically 
identified genes with different drug-induced effects 
between gemcitabine sensitive and resistant models. Out 
of 28,109 genes, we found 1,206 genes with significant 
differences between drug-induced changes in expres-
sion in sensitive and resistant models and unadjusted 
p < 0.001. We found 442 genes to have significantly higher 
drug-induced expression changes in gemcitabine-sen-
sitive models and 143 genes to have significantly lower 
drug-induced expression changes in gemcitabine-sen-
sitive models with |log2FC| ≥ 1 and adjusted p < 0.05 
(Additional File 3: Table S2). There was no overlap 
between significant hits identified at baseline and those 
differentially induced by drug treatment in sensitive and 
resistant models at 5% FDR, but seven genes were differ-
entially expressed both at baseline and in drug-induced 
data with unadjusted p < 0.001 (Fig. 1b and c). ARFGAP3, 
COX7A2, and NDUFA4 were more highly expressed in 
resistant models at baseline and drug-induced changes 
increased this effect; ZNF782 was more highly expressed 
in sensitive models at baseline and had drug-induced 
upregulation in sensitive models. In contrast, BHLHE40, 
HIF1A-AS2, and KCTD11 were more highly expressed in 
sensitive models at baseline and were significantly down-
regulated only in sensitive models with treatment (Fig. 1b 
and c).
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Taken together, these findings suggest that at the tran-
scriptional level, baseline gemcitabine-sensitive and resis-
tant xenograft models were more variable in their gene 
expression so that fewer genes reached significance when 
comparing these two groups at baseline. We observed a 
large number of differences in drug-induced transcrip-
tional changes between the two response groups, sug-
gesting distinct and consistent patterns of differential 
expression in gemcitabine-resistant and sensitive models 
with a 21-day treatment. Expression of these differen-
tially modulated genes may be associated with acquired 
gemcitabine resistance (Additional File 1: Fig. S2).

Baseline and treatment-induced gemcitabine resistance is 
associated with enrichment of metabolic pathway genes
In the Yang dataset (Fig. 1a), gene set enrichment analy-
sis (GSEA) revealed that genes differentially expressed 
at baseline and differentially modulated with treatment 
in gemcitabine-resistant models compared to sensitive 
models were significantly enriched in multiple metab-
olism-related pathways such as OXPHOS, fatty acid 
metabolism, and glycolysis (Fig. 1d and e; Additional File 
3: Tables S3 and S4). More fatty acid metabolism and 
glycolysis genes were associated with gemcitabine resis-
tance in drug-induced differential expression data than 
at baseline, as evidenced by the higher magnitude NES 
and lower p values (Fig.  1d and e). Furthermore, genes 
with drug-induced upregulation in resistant models were 
significantly enriched in various additional pathways, 
including DNA repair, MYC targets, mTORC1 signal-
ing, and p53 pathway. In contrast, gemcitabine-sensitive 
models were found to be strongly associated with expres-
sion of interferon alpha and gamma response genes at 
baseline (Fig.  1d and Additional File 3: Table S3), and 
drug-induced upregulation of angiogenesis genes (Fig. 1e 
and Additional File 3: Table S4). These results indicate 
that gemcitabine treatment modulates many pathways in 
resistant models compared to sensitive models. The top 
three OXPHOS genes most highly expressed at baseline 
in resistant models compared to sensitive models were 
COX7A2, NDUFA4, and NDUFS1 (Fig.  1f ). Interest-
ingly, COX7A2 and NDUFA4 were further upregulated 
in resistant models with treatment as stated above and 
illustrated in Fig. 1c. The top three genes from the IFN-
alpha response pathway most highly expressed in sensi-
tive models compared to resistant models were DDX60, 
LAMP3, and TDRD7 (Fig. 1g). Moreover, COX5B, LDHA 
(also in the glycolysis pathway), and UQCR11 in the 
OXPHOS pathway; and ALDOA, EGLN3, and TPI1 in 
the glycolysis pathway were the genes with greatest drug-
induced expression changes in their respective pathways 
(Fig. 1h and i). Comprehensive lists of genes driving gene 
set enrichments can be found in the leadingEdge column 
of Additional File 3: Tables S3 and S4.

Drug-induced changes in glycolysis and OXPHOS genes 
correlate with tumor growth inhibition (TGI%) at 21 days of 
treatment
In addition to differential expression analysis with 
DESeq2 using categorical drug response outcome in 
the PDX models, Spearman-rank correlation analy-
ses were performed to examine associations between 
drug-induced gene expression changes and continuous 
outcome tumor growth inhibition (TGI% at 21 days) as 
defined in the paper by Yang et al. [21]. Our goal was 
to identify genes for which drug-induced expression 
changes in the sensitive models differed from those in 
the resistant models. Among 4253 genes in 50 MSigDB 
cancer hallmark pathways, 127 genes were significantly 
correlated with TGI% at 21 days (adjusted p value < 0.05, 
Additional File 3: Table S5). GSEA was also performed on 
a manually-curated set of 96 human metabolic pathways 
containing 1453 unique genes from a study by Gaude 
and Frezza [33]. The set of genes correlated with TGI% 
was mainly enriched in glycolysis and gluconeogenesis, 
as well as OXPHOS (Additional File 3: Table S6). In the 
glycolysis and gluconeogenesis pathway, TPI1, ENO1, 
LDHA, HK2, GAPDH, ALDOA, SLC2A1, ENO2, PGK1, 
PGAM1 were the genes significantly correlated with 
TGI% (adjusted p values < 0.05). In the OXPHOS path-
way, COX5B, ATP5C1, ATP5A1, and NDUFA8 were the 
genes significantly correlated with TGI% (adjusted p val-
ues < 0.05). These results are summarized as a heatmap in 
Fig. 2 and in Additional File 3: Table S7.

Baseline expression of OXPHOS and glycolysis genes 
differentially modulated with treatment can predict 
gemcitabine response
Through our analysis of drug-induced changes and tumor 
growth inhibition (TGI%) at 21 days, we noted the signif-
icant enrichment of glycolysis and OXPHOS metabolic 
pathways among genes with drug-induced upregulation 
in resistant models. We proposed to build prediction 
models of drug response using baseline expression levels 
and restricting the pool of predictive features (i.e., genes) 
to genes from these two pathways with drug-induced 
changes in expression significantly correlated with TGI% 
at 21 days. Our hypothesis was that genes whose expres-
sion levels change in response to a drug may have predic-
tive value even at baseline as they may be involved in the 
drug’s mechanism of action or may be part of a pathway 
or network that is affected by the drug. We started the 
modeling process by selecting the 22 genes from the gly-
colysis pathway and 42 genes from the OXPHOS pathway 
whose drug-induced change in expression showed sig-
nificant association with TGI% at 21 days at p < 0.05. We 
then developed prediction models including CCP, DLDA, 
NC, and SVM, based on the baseline expression profile 
of these 64 genes. The final models included nine genes, 
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all of which belong to the OXPHOS pathway, and their 
expression patterns in the Yang and Novartis datasets are 
detailed in Additional File 4 and illustrated in Fig. 3. We 
evaluated the models’ performance in the Yang dataset 

using LOOCV and presented the sensitivity and speci-
ficity, for all four models in Fig. 3a. Among them, DLDA 
and SVM exhibited the best performance, with a sensitiv-
ity of 0.80 and specificity of 0.77 in the training set (i.e., 

Fig. 2 Heatmap of genes whose drug-induced expression changes are significantly correlated with TGI% of gemcitabine (p < 0.05) in the glycolysis 
and OXPHOS pathways. The heatmap displays expression changes using the Z-score of the log2FC between post-treatment expression and baseline 
expression
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Yang dataset). To further validate the model, we used the 
12 PDX PDAC models from Novartis that either had a 
complete response (CR) to gemcitabine (i.e., sensitive) or 
progressive disease (PD) (i.e., resistant) [28]. The valida-
tion set produced comparable results, with a sensitivity 
of 0.75 and specificity of 0.75 (Fig. 3b).

Prediction modeling of gemcitabine response using drug-
induced expression profile of cancer hallmark pathway 
genes
To further investigate drug resistant mechanisms, we 
developed a model to predict the binary outcome of drug 
response—i.e., sensitive or resistant to gemcitabine—
using LASSO regression on drug-induced changes of 
4,253 genes from the 50 MSigDB cancer hallmark gene 
sets [32]. The LOOCV demonstrated appreciable model 
performance with sensitivity at 0.93 and specificity at 1.0. 
Eighteen genes were selected by the LASSO in the full 
data set (Fig. 4): A2M, ALDOA, BGN, BHLHE40, CASP9, 
DGKH, FHL1, FOSB, HK2, IFI27, KRT19, MREG, 
MRPL15, NRCAM, POM121, PRDX1, TIMM13, UXT 
(Additional File 5).

We also developed a LARS model to predict continu-
ous TGI% at 21 days using the drug-induced change in 
expression of the same 4,253 MSigDB cancer hallmark 
genes (Additional File 1: Fig. S3 and Additional File 6). 
Eight genes appeared in both models based on either 
continuous outcome or binary outcome: BHLHE40, 
DGKH, FHL1, HK2, IFI27, MREG, NRCAM, POM121.

Presence of pathogenic TP53 variants is associated with 
gemcitabine resistance
Since TP53, the second most frequently mutated gene 
in PDAC, controls metabolic networks, cell death, and 
transcriptional regulation in normal pancreatic cells and 
the rewiring of these pathways in PDAC tumors [40, 45, 
46], we investigated whether pathogenic mutations in 
TP53 were associated with response to gemcitabine. 
Additional File 1 lists TP53 mutation categories and gem-
citabine response status of the PDX models in the Yang 
and Novartis datasets; the frequency of different catego-
ries of TP53 variants among PDX gemcitabine responder 
and non-responder samples in both datasets are pre-
sented in Additional File 3: Table S8. In the Yang dataset, 

Fig. 3 Validation of predictive 9-gene baseline expression signature for binary response to gemcitabine. (a, b) Heatmaps of expression of 9-gene signa-
ture in the prediction models of binary response using baseline expression in the Yang dataset a) and validated in the Novartis dataset b), and perfor-
mance in both datasets. CR: complete response to gemcitabine (i.e., sensitive); PD: progressive disease (i.e., resistant to gemcitabine)
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those samples that did not carry pathogenic TP53 vari-
ants were significantly more likely to be sensitive to gem-
citabine (p = 0.0067). In the Novartis dataset (Fig.  5a), 
there was a lower prevalence of pathogenic TP53 variants 
in complete responders (2 out of 4, or 50%) compared 
to patients with progressive disease (6 out of 8, or 75%), 
but the association did not reach statistical significance 
(p = 0.55). These data are presented in Fig. 5b and c.

p53 effects on glycolysis and mitochondrial respira-
tion are mediated by several molecular targets [47, 48]. 
We observed a strong negative association of TGI% at 
21 days with drug-induced expression changes of two 
such target genes, glucose transporter SCL2A1/GLUT1 
and hexokinase 2 HK2 (Spearman ρ = -0.69 and − 0.73, 
respectively, with FDR adjusted p < 0.05; Additional file 
3: Table S7) [42, 43]. We further employed linear regres-
sion analysis of TGI% at 21 days using both TP53 muta-
tion status and expression (or drug-induced change in 
expression) of each of the 14 p53 target genes mediating 
its effects on glycolysis and OXPHOS as predictor vari-
ables (Additional file 3: Table S9). This analysis revealed 
the significant association between TP53 mutation sta-
tus and TGI% at 21 days, even after adjusting for base-
line expression or drug-induced expression changes 
of the 14 target genes (FDR adjusted p < 0.05); and that 

gemcitabine-induced changes in expression of both 
SLC2A1 and HK2 were significantly associated with 
TGI% after adjusting for TP53 mutation status (FDR 
adjusted p = 0.004 for both genes). Drug-induced SCL2A1 
and HK2 expression changes were strikingly different 
between models with pathogenic vs. non-pathogenic 
TP53, with significant downregulation (p < 0.01) in non-
pathogenic models (Additional File 1: Figs. S4a and S4b).

Discussion
PDAC is a highly aggressive malignancy with poor 
patient prognosis. PDAC tumors undergo extensive 
molecular reprogramming, resulting in increased glycol-
ysis and elevated mitochondrial function [49–52], among 
multiple other metabolic changes. In the present work, 
we have demonstrated not only a wide-ranging tran-
scriptional reprogramming with gemcitabine treatment 
(Additional File 1: Fig. S2 and Additional File 3: Table S2) 
that differed between sensitive and resistant models, but 
also differences in baseline expression of OXPHOS and 
inflammatory pathways associated with resistant and 
sensitive models, respectively (Fig.  1; Additional File 3: 
Tables S3 and S4). NDUFA4 and COX7A2 are both com-
ponents of the cytochrome c oxidase and were shown in 
multiple studies to control metabolic regulation between 

Fig. 4 LASSO model of binary response to gemcitabine using drug-induced transcriptional differences between sensitive and resistant models in cancer 
hallmark genes. Heatmap of 18 genes from MSigDB’s cancer hallmark gene sets in a LASSO model predicting binary outcome based on drug-induced 
changes. Asterisks (*) denote genes also appearing in the LARS model predicting continuous outcome TGI% for gemcitabine
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OXPHOS and glycolysis depending on oxygen availabil-
ity [53–55]. In line with these findings, we observed the 
baseline overexpression and drug-induced upregulation 
of NDUFA4 and COX7A2 in resistant PDXs (Fig. 1b and 
c).

Glycolysis and OXPHOS occur on a tight balance to 
provide cells with energy in the form of adenosine tri-
phosphate (ATP) [44]. In normal cells, the availability of 
oxygen makes OXPHOS the more efficient option [44, 
56]. The transcriptional analysis in the original study by 
Yang et al. had not identified any significantly enriched 
pathways associated with intrinsic resistance to gem-
citabine [21]. In our pathway analysis of the PDAC PDXs, 
resistant models were mainly enriched in OXPHOS 

genes at baseline and with treatment (as indicated by the 
negative NES; Fig.  1d and e). These results suggest that 
OXPHOS may play a role in intrinsic resistance to gem-
citabine. While few existing studies link OXPHOS to 
gemcitabine resistance, dependency on mitochondrial 
OXPHOS has been linked to the presence of pancreatic 
cancer stem cells (CSCs) and dormant, therapy-evading 
tumor cells [57, 58]. CSCs represent a small but tumor-
igenic subset of cells in some tumors [59, 60]. A recent 
study revealed that pancreatic tumors could be strati-
fied according to their OXPHOS activity and expression 
of mitochondrial respiratory complex I [49]. Further-
more, targeting OXPHOS with phenformin, an inhibi-
tor of mitochondrial respiratory complex I, potentiated 

Fig. 5 Significance of TP53 variants in two pancreatic cancer patient-derived xenograft datasets. (a) Heatmap of phenotypic features for the 12 PDAC 
PDX models from the Novartis dataset. TP53 mutational information is from the supplementary data of Yang et al.; TP53 status of each model was clas-
sified as non-pathogenic, pathogenic, or having conflicting evidence based on annotations from OncoKB, ClinVar, CIViC, and/or the Jackson Laboratory 
Clinical KnowledgeBase (JAX CKB). (b) Yang dataset (graphical view of TP53 mutation data is shown in Fig. 1a); 13 models were resistant to gemcitabine 
and 15 models were sensitive as determined by the evaluation of percentage tumor growth inhibition (TGI%). Fisher’s exact test for proportion of non-
pathogenic and pathogenic TP53 categories between gemcitabine resistant and sensitive models, **p = 0.0067. (c) Novartis dataset; eight models were 
resistant to gemcitabine and four models were sensitive as determined by the modified RECIST criteria defined in the paper by Gao et al. Fisher’s exact 
test for proportion of non-pathogenic and pathogenic TP53 categories between gemcitabine resistant and sensitive models, p = 0.55
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the activity of gemcitabine in pancreatic cancer in vitro 
and in vivo [49], providing further support for potential 
importance of OXPHOS in gemcitabine resistance.

Consistent with our findings implicating glycolytic 
metabolism in acquired gemcitabine resistance, glycoly-
sis has been widely implicated with chemoresistance in 
the literature [61]. Unrestricted PDAC tumor growth 
promotes hypoxia, which in turn, activates glycolysis 
via the induction of the transcription factor hypoxia-
inducible factor 1 (HIF1) [62–64]. Xu et al. demonstrated 
glycolysis-associated gemcitabine resistance in BxPC-3 
pancreatic cancer cell lines and derived xenografts via the 
upregulation of HIF1A by HIF1A-AS1 [65]. HIF1-AS2, 
another antisense RNA of HIF1A, is a hypoxia-induced 
oncogene [66, 67], which under hypoxic conditions 
upregulates HIF1A, promotes cisplatin and gemcitabine 
resistance, and suppresses p53 activity [66, 68, 69]. In our 
analysis, HIF1A-AS2 was strongly and significantly down-
regulated in sensitive models after treatment (Fig. 1c).

Our observation that both glycolysis and OXPHOS 
were strongly enriched in gemcitabine resistant PDAC 
PDX models after treatment (Fig.  1) is in line with 
accounts of hybrid OXPHOS/glycolysis phenotype asso-
ciated with metabolic plasticity, chemoresistance, and 
metastasis [49, 70]. This could also be explained by the 
presence of heterogeneous cell subpopulations with dis-
tinct metabolic priorities [57]. Fujiwara-Tani et al. estab-
lished a gemcitabine-resistant pancreatic cancer cell line 
derived from MIA-PaCa-2 and demonstrated that in the 
absence of gemcitabine the resistant cell line relied on 
OXPHOS for ATP generation [71]. However, upon expo-
sure to gemcitabine, OXPHOS was suppressed in favor of 
glycolysis, and mitochondrial-associated reactive oxygen 
species (ROS) were decreased [71]. In the present study, 
the enrichment of OXPHOS and glycolysis at baseline 
and in drug-induced changes in resistant PDAC models 
was highly significant (p < 0.001), however these pathways 
were not identified in the original transcriptional analysis 
of the Yang dataset [21]. This can likely be explained by 
the fact that the authors used TPM normalized data as 
input for DESeq2 analysis rather than the required raw 
counts, which has been shown by our group and others 
to be improper [22–24]. DESeq2 has been designed for 
the use of raw RNA-seq read counts [22, 23]. DESeq2 
assumes a negative binomial distribution for RNA-seq 
count data. TPM normalized data does not follow a nega-
tive binomial distribution and therefore is not appropri-
ate to be used as input for DESeq2 normalization and 
downstream analyses such as differential expression 
analysis. Our group established recently in the first com-
parative study of RNA-seq data quantification measures 
conducted on PDX models that normalized count data 
are the preferred quantification measure for between-
sample analysis of RNA-seq data generated from tumors 

grown in PDX models. We also demonstrated that fur-
ther data transformations or normalizations on TPM-
level data are not able to resolve potential issues inherent 
in TPM quantification [24].

For translational purposes, that is to be able to predict 
patient response prior to treatment administration, accu-
rate prediction models on baseline expression data would 
be useful. We used knowledge of drug-induced pathway 
enrichment results to build well-performing CCP, DLDA, 
NC, and SVM prediction models on baseline expression 
data by restricting the pool of selectable features to 64 
glycolysis and OXPHOS genes (Additional File 4). We 
recognize that using genes identified from differential 
drug-induced expression changes to build baseline pre-
diction models could introduce information leakage due 
to potential correlations between drug-induced changes 
and baseline data. To further validate the model in an 
unbiased approach, we applied the established model to 
an independent dataset from Novartis and demonstrated 
appreciable performance in this validation set (Fig. 3).

KRAS and TP53 are the most frequently mutated 
PDAC genes [45, 72]. All models in the Yang dataset had 
oncogenic KRAS mutations (Fig.  1a). Pathogenic TP53 
status had significant association with gemcitabine resis-
tance in Yang’s data and a similar trend in the Novartis 
dataset (Fig. 5b and c; Additional File 3: Table S8), albeit 
not significant, possibly due to the small size of the 
Novartis dataset (n = 12). We also observed a trend for 
TP53 deletion in resistant Novartis models (Fig. 5a), con-
sistent with TP53 loss through both pathogenic mutation 
and deletion. Yang’s data did not contain copy number 
information. Our findings confirm associations of TP53 
loss with worse human patient PDAC outcomes and 
with increased tumor growth and gemcitabine resistance 
in mouse models [73–76], although one clinical trial of 
PDAC patients reported an opposite effect on adjuvant 
gemcitabine efficacy [76].

Wild type p53 regulates metabolism by inhibiting gly-
colysis, promoting the TCA cycle and OXPHOS, limit-
ing flux through the pentose phosphate pathway (PPP), 
inhibiting de novo serine biosynthesis, promoting fatty 
acid oxidation and transport, regulating amino acid 
metabolism, and helping cells survive under nutrient 
starvation [40–42]. The majority of its pathogenic vari-
ants result in the loss of p53 function, leading to activa-
tion of glycolysis, impaired OXPHOS, increase in ROS, 
inhibition of autophagy, and increased hypoxia [40–42, 
72, 75]. SLC2A1 and HK2, promote glycolysis, are inhib-
ited by the wild type p53, and are upregulated in cancer 
cells with pathogenic TP53 [42–44]. Association of their 
upregulation with TGI% is consistent with the upregula-
tion of glycolysis in gemcitabine resistant models (Addi-
tional File 1: Fig. S4; Additional File 3: Table S7), as well 
as with higher prevalence of pathogenic TP53 variants 
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and upregulation of several other metabolic pathways in 
gemcitabine resistant PDX PDAC models observed in 
our study, although metabolic changes in PDAC could 
be influenced by multiple factors and may not be driven 
solely by the loss of TP53.

Conclusion
In conclusion, we provide important cross-validated find-
ings that may inform the development of gemcitabine-
based combination therapies. Further studies are needed 
to ascertain whether our results obtained from PDX 
RNA-seq data would be confirmed in patient data.
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