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Abstract 

Background  Myopia is one of the most common eye diseases in children and adolescents worldwide, and scleral 
remodeling plays a role in myopia progression. However, the identity of the initiating factors and signaling pathways 
that induce myopia-associated scleral remodeling is still unclear. This study aimed to identify biomarkers of scleral 
remodeling to elucidate the pathogenesis of myopia.

Methods  The gene expression omnibus (GEO) and comparative toxicogenomics database (CTD) mining were used 
to identify the miRNA-mRNA regulatory network related to scleral remodeling in myopia. Real-time quantitative 
PCR (RT-qPCR), Western blot, immunofluorescence, H&E staining, Masson staining, and flow cytometry were used 
to detect the changes in the FOXO signaling pathway, fibrosis, apoptosis, cell cycle, and other related factors in scleral 
remodeling.

Results  miR-15b-5p/miR-379-3p can regulate the FOXO signaling pathway. Confirmatory studies confirmed 
that the axial length of the eye was significantly increased, the scleral thickness was thinner, the levels of miR-
15b-5p, miR-379-3p, PTEN, p-PTEN, FOXO3a, cyclin-dependent kinase (CDK) inhibitor 1B (CDKN1B) were increased, 
and the levels of IGF1R were decreased in Len-induced myopia (LIM) group. CDK2, cyclin D1 (CCND1), and cell 
cycle block assessed by flow cytometry indicated G1/S cell cycle arrest in myopic sclera. The increase in BAX level 
and the decrease in BCL-2 level indicated enhanced apoptosis of the myopic sclera. In addition, we found that the lev-
els of transforming growth factor-β1 (TGF-β1), collagen type 1 (COL-1), and α-smooth muscle actin (α-SMA) were 
decreased, suggesting scleral remodeling occurred in myopia.

Conclusions  miR-15b-5p/miR-379-3p can regulate the scleral cell cycle and apoptosis through the IGF1R/PTEN/
FOXO signaling pathway, thereby promoting scleral remodeling in myopia progression.
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Graphical Abstract

Introduction
The number of people with myopia is increasing rap-
idly. One study predicts that by 2050, there will be 4758 
million people who will suffer from myopia [1]. When it 
develops into high myopia, myopia often leads to cata-
racts, retinal detachment holes, and other irreversible 
complications [2]. Therefore, to improve eye health in 
children and adolescents, it is urgent to identify the 
pathogenesis of myopia and explore precise treatment 
methods to reduce myopia-related complications and 
visual impairment.

In the human eye, the sclera experiences growth in 
infancy, and the scleral enlargement in myopia reflects 
active scleral extracellular matrix remodeling. A study 
has shown differences in microRNAs (miRNAs) in the 
sclera of infants and adults with normal vision in the 
GEO database [3]. It is reported that some myopia-
related mRNAs, including transforming growth factor β 

(TGF-β), tissue inhibitor of metalloproteinases (TIMP), 
and increased in matrix metalloproteinases (MMP), are 
associated with myopic scleral remodeling [4].

miRNAs are non-coding RNAs that regulate the 
expression of target genes by causing mRNA degrada-
tion, cleavage, or translation inhibition [5]. However, the 
role of miRNA-mRNA interactions in myopia has not yet 
been investigated. The pathogenesis of myopia is com-
plex, and the specific pathways and mechanisms involved 
in myopic scleral matrix remodeling are still unknown.

This study aimed to identify additional genes asso-
ciated with scleral remodeling in myopia. A compre-
hensive search was conducted in the GEO database to 
identify miRNAs related to scleral remodeling. Target 
mRNA prediction was performed using Targetscan. 
Additionally, myopia-related mRNAs were screened 
from the CTD database. Following a rigorous screening 
process, 10 hub mRNAs associated with myopic scleral 
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remodeling were identified. Our findings suggest that 
the FOXO signaling pathway may play a role in the pro-
cess of myopia. Subsequently, we conducted molecu-
lar experiments to validate these findings. The results 
showed that miR-15b-5p/miR-379-3p could disrupt 
the FOXO signaling pathway (IGF1R/PTEN/FOXO3a/
CDKN1B) in myopia. The FOXO signaling pathway is 
involved in regulating the cell cycle, apoptosis, and the 
reversal of the fibrotic process, participating in scle-
ral remodeling. miRNA-mRNA mining may contrib-
ute to identifying new molecular markers of myopia, 

providing a foundation for further investigation into 
the pathogenesis of myopia.

Materials and methods
Screening of miRNA‑mRNA associated with myopic scleral 
remodeling
The workflow chart for the bioinformatics analysis 
related to myopic scleral remodeling is shown in Fig.  1. 
The differentially expressed miRNAs in the sclera 
between fetal and adult groups were obtained from 
the Gene Expression Omnibus database (GSE46435: 
GPL10850, GPL16770. GEO, https://​www.​ncbi.​nlm.​nih.​

Fig. 1  An overview of the general experimental procedures and workflow steps. GO: Gene Ontology; miRNA: microRNA; mRNA: messenger RNA; 
PPI: protein–protein interaction

https://www.ncbi.nlm.nih.gov/gds/
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gov/​gds/). miRNA differentially expressed analysis was 
explored using GEO2R (P < 0.001, |log FC|> 4). Targets-
can [(http://​www.​mirdb.​org/) (cumulative weighted con-
text +  + score < −  0.3)] and miRDB [(http://​www.​mirdb.​
org/) (target score ≥ 80)] databases predicted the miRNA-
targeted mRNA.

The comparative toxic genomics database (CTD, http://​
ctdba​se.​org/) was used to obtain targets for myopia-
related diseases using “myopia” as a search term (infer-
ence score > 5). Then, the key myopia-related mRNAs are 
the common mRNAs between the target dataset of dif-
ferentially expressed miRNAs and the myopia dataset.

CytoHub was used to screen 10 hub mRNAs [6]. GO 
and KEGG pathway analyses of all target mRNAs, key 
mRNAs, and hub mRNAs were processed by Metascape 
(https://​metas​cape.​org/) (P < 0.05). Cytoscape was used 
to integrate hub mRNAs and miRNA information to con-
struct the miRNA-hub mRNA network.

Validation of animal experiments
Animals
The 2-week-old guinea pigs (Cavia porcellus, British 
Shorthair, tricolor strain) with an average weight between 
100 and 120 g (Zhenjiang, China) were used to perform 
the relevant experiments. Before enrollment, the guinea 
pigs with cataracts or corneal diseases were excluded. 
Then the guinea pigs were randomly divided into a nor-
mal control (NC) group (n = 16) and a lens-induced myo-
pia (LIM) group (n = 16). No intervention was performed 
in the NC group, while the right eyes of the animals in 
the LIM group were covered with −  6.0D glasses to 
induce myopia. After 4-week myopic induction, the ani-
mals were sacrificed, and 4 eyeballs in each group were 
paraffin-embedded for staining and immunofluorescence 
assay, meanwhile, another 6 scleral tissues from the eyes 
in each group were collected for flow cytometry. Finally, 6 
scleral tissues from each group were dissected for mRNA 
and protein expression analysis, respectively.

Biometric measurements
Ophthalmic type A ultrasonography (Cinescan, Quantel 
Medical, France) was used to measure the ocular axial 
length. The average of the 10 measurements is the final 
reading.

Determination of apoptosis and cell cycle arrest
After 4-week myopic induction, the scleral tissues 
were separated. Subsequently, the scleral tissues were 
digested using collagenase I for 30 min, followed by fil-
tration through a 70-mesh filter to obtain a single-cell 
suspension. Further, the cell suspensions were used 
to determine apoptosis and cell cycle arrest using a 
flow cytometer (Agilent NovoCyte D2040R). To assess 

apoptotic levels, the cells in each group were detected 
using Annexin V-EGFP/PI Apoptosis Detection 
(40303ES50, Yeasen Biotechnology, China). The cells 
were fixed with 70% ethanol (−  20  °C precooling) for 
more than 1 h, and the cell cycle was detected using the 
cell cycle analysis kit (C1052, Beyotime, China).

Histopathological assessment and Masson staining
Eyeballs were immersed in FAS eyeball fixative (Ser-
vicebio, Wuhan, China) (n = 3), then rinsed twice with 
cold PBS. Histopathological evaluation and Masson 
staining were performed as per the reports [7, 8]. Scle-
ral thickness was measured at 1000 μm above the optic 
nerve.

RT‑qPCR
RNA was extracted with Trizol (Invitrogen, 15596026, 
CA, USA), and reverse transcription detection was 
performed using a reverse transcription kit (Sparkjade, 

Table 1  The primer sequence of the target genes

Gene Primer sequence

IGF1R F: 5ʹ-TGC​CCC​AAG​GTC​TGC​GAG​GAAG-3ʹ
R: 5ʹ-CCC​CCA​GGA​TCA​GGC​GAA​GGTT-3ʹ

PTEN F: 5ʹ-ACC​GCG​CCG​CTT​CGT​CTC​GTC​TTC​-3ʹ
R: 5′-5ʹ-CGC​CGC​CGC​CGC​CGT​GTT​-3ʹ

FOXO3a F: 5ʹ-CCG​CGC​CGC​TTC​GTC​TCG​TCT​TCT​-3ʹ
R: 5ʹ-CGC​CGC​CGC​CGC​CGT​GTT​-3ʹ

CDKN1B F: 5ʹ-CCG​CAG​GAG​AGC​CAG​GAT​GTCA-3ʹ
R: 5ʹ-CGC​TAA​CCC​CGT​CTG​GCT​GTCTG-3ʹ

CDK2 F: 5ʹ-CCG​CCT​GGA​CAC​TGA​GAC​TGAAG-3ʹ
R: 5ʹ-GGA​CCC​GAT​GAG​AAT​GGC​AAAAT-3ʹ

CCND1 F: 5ʹ-CCG​CAG​GAG​AGC​CAG​GAT​GTCA-3ʹ
R:5ʹ-TGC​AGG​CGG​CTC​TTC​TTC​AGG-3ʹ

TGF-beta1 F: 5ʹ-AAC​CGG​CCC​TTC​CTG​CTC​CTCAT-3ʹ
R: 5ʹ-CGC​CGG​GGT​TGT​GCT​GGT​TGTA-3ʹ

α-SMA F: 5ʹ-CCG​GCT​TTG​CTG​GGG​ACG​AT-3ʹ
R: 5ʹ-CCG​GTT​GGC​CTT​GGG​ATT​GAG-3ʹ

COL-1 F: 5ʹ-CCG​GTT​GGC​CTT​GGG​ATT​GAG-3ʹ
R: 5ʹ-CCG​GTT​GGC​CTT​GGG​ATT​GAG-3ʹ

miR-494-3p F: 5ʹ-CUA​GUU​AAC​AUC​CUC​CAC​UACC-3ʹ
R: 5ʹ-CCA​UCA​VVUCC​UAC​AAU​UGA​UC-3ʹ

miR-379-3p F: 5ʹ-CUA​UGU​AAC​AUG​GUC​CAC​UAAC-3ʹ
R: 5ʹ-CAA​UCA​VVUGG​UAC​AAU​GUA​UC-3ʹ

miR-411-3p F: 5ʹ-UAU​GUA​ACA​CGG​UCC​ACU​AA-3ʹ
R: 5ʹ-AAU​CAC​CUG​GCA​CAA​UGU​AU-3ʹ

miR-15b-5p F: 5ʹ-UAG​CAG​CAC​AUC​AUG​GUU​UACA-3ʹ
R: 5ʹ-ACA​UUU​GGU​ACU​ACA​CGA​CGAU-3ʹ

U6 F: 5′-CGC​TTC​ACG​AAT​TTG​CGT​GTCAT-3′
R: 5′-GCT​TCG​GCA​GCA​CAT​ATA​CTA​AAA​T-3′

GAPDH F: 5′-CTG​ACC​TGC​CGC​CTG​GAG​AAACC-3′
R: 5′-ATG​CCA​GCC​CCA​GCG​TCA​AAAGT-3′

https://www.ncbi.nlm.nih.gov/gds/
http://www.mirdb.org/
http://www.mirdb.org/
http://www.mirdb.org/
http://ctdbase.org/
http://ctdbase.org/
https://metascape.org/
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Jinan, China). Each gene was repeated using diluted 
cDNA. Primer sequences were listed in Table 1 and the 
gene level was analyzed by a 2−△△Ct method [9].

Western blotting
The sclera of guinea pigs in each group was supple-
mented with RIPA-buffered lysate containing PMSF 
(Sparkjade, Jinan, China). The tissue was ground on ice 
and then centrifuged at 5000 r/min for five minutes in a 
centrifuger (NEST Biotech., Wuxi, China), and the super-
natants were collected. The target proteins are electro-
phoresis and membrane transfer. Primary antibodies are 
listed in Table 2. Finally, images were captured using the 
FUSION-FX7 imaging (Vilber Lourmat, Marne-la-Vall é 
e, France).

TUNEL assay
After 4-week myopic induction, the eyeballs (n = 4) were 
immediately isolated and rinsed in sterile saline in 6-well 
plates (NEST, Wuxi, China). Dehydration and section-
ing were then performed. The tissues were covered with 
a breaking-film working solution and incubated. After 
sectioning, the TUNEL assay kit (G1502, Servicebio, 
Wuhan, China) was used to perform the TUNEL assay, 
and after washing with PBS, DAPI dyeing was used to 
stain cell nuclei. Slides were closed with an anti-fluo-
rescence quenching sealer. Cell nuclei in tissues stained 
with FITC-stained positive apoptotic nuclei are green. To 
determine the number of apoptotic cells, two independ-
ent researchers calculated the proportion of positive cell 
numbers from more than five randomly selected micro-
scopic fields.

Immunofluorescence staining
After completion of antigen repair, the samples were 
rinsed with cold PBS and incubated with primary 

antibodies (Table  3). Slides were then rinsed with PBS 
and incubated with HRP-labeled secondary antibody 
(1:5000 dilution, Servicebio, Wuhan, China) for 50  min 
at room temperature. Subsequently, slides were washed 
with PBS and incubated with a DAPI dye solution. 
Finally, the slides were then sealed with an anti-fluores-
cence bursting agent.

Statistical analysis
Results were presented as the mean ± standard deviation 
(SD), and a statistical software package (SPSS 25.0, SPSS, 
Chicago, IL) was used to assess the outcome parameters. 
Student´s t-test for independent samples was used to 
analyze significant differences between the two groups, 
and a two-tailed P-value less than 0.05 was considered a 
significant difference.

Results
MiRNA‑mRNA network prediction and enrichment analysis
A total of 1818 miRNAs were harvested in GSE46435 
(GPL10850 and GPL16770 both selected for the top 909 
miRNAs ranked by P-value) for subsequent data analysis. 
Two miRNAs were upregulated in 12 fetal samples and 

Table 2  List of Western blotting primary antibody

Primary antibody Dilution Manufacturer

Insulin-like growth factor 1 receptor (IGF1R) 1:800 Bioss, China

Phosphatase, and tensin homolog deleted on chromosome ten (PTEN) 1:800 Bioss, China

Phosphorylation PTEN (p-PTEN) 1:1000 Proteintech, China

Forkhead box O3a (FOXO3a) 1:800 Bioss, China

Cyclin-dependent kinase (CDK) inhibitor 1B (CDKN1B) 1:800 Bioss, China

CDK2 1:1000 Bioss, China

Cyclin D1 (CCND1) 1:1000 Bioss, China

Transforming growth factor-β1(TGF-β1) 1:800 Bioss, China

α-smooth muscle actin (α-SMA) 1:2000 Proteintech, China

Collagen type 1(COL-1) 1:5000 Proteintech, China

β-actin 1:5000 Bioss, China

Table 3  List of Immunofluorescence staining primary antibody

Primary antibody Dilution Manufacturer

CDK2 1:800 Bioss, China

CCND1 1:800 Bioss, China

TGF-β1 1:800 Bioss, China

α-SMA 1:2000 Proteintech, China

COL-1 1:5000 Proteintech, China

BCL-2 1:500 Proteintech, China

BAX 1:500 Proteintech, China
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Fig. 2  miRNA-target mRNA network and target mRNA enrichment analysis. A Volcanic maps of differentially expressed miRNAs. B Differentially 
expressed miRNAs in the sclera between fetuses and adults. The higher the expression of miRNA, the deeper the red color. C Biological process; D 
molecular function; E cellular component. F KEGG pathway enrichment. GO: Gene Ontology; miRNA: microRNA; mRNA: messenger RNA
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30 in 8 adult samples based on GEO [(|log2 FC)|> 4 and 
P < 0.001, respectively (Fig. 2A, B).

A total of 1869 targeted mRNAs were obtained from 
the intersection of the TargetScan 7.2 and miRDB data-
bases. Subsequently, a miRNA-mRNA network diagram 
was constructed (Fig. S1).

Furthermore, the targeted mRNAs were enriched for 
the top 10 significantly enriched GO terms (i.e., biological 
process (BP) (Fig. 2C), molecular function (MF) (Fig. 2D), 
cellular component (CC) (Fig.  2E), and enriched KEGG 
pathways (Fig. 2F) were mapped.

We identified 897 differentially expressed mRNAs 
based on the CTD database. Among these, 96 mRNAs 
were duplicated with 32 differentially expressed miRNA 
targets (from Targetscan and miRDB databases), defined 
as key mRNAs. To assess the functions of these key 
mRNAs, we used Medscape for KEGG analysis of the 96 
key mRNAs (Fig. 3A). Further, 75 mRNAs were screened 
from the 96 key mRNAs using the PPI network. (Hide 
disconnected nodes in the network, highest confidence: 
0.4) (Fig.  3B, C). 10 hub mRNAs (i.e., PTEN, SMAD2, 
FOS, RHOA, MAP2K1, IGF1R, CDKN1B, MAPK8, 
FGF2, MAP3K1) were analyzed by cytoHub (Fig. 3D).

We analyzed the 10 hub mRNAs enriched (Fig. 3E) and 
searched the PubMed database to confirm the relation-
ship between the 10 hub mRNAs and myopia (Table 4). 
Furthermore, we observed that the FOXO signaling path-
way was the enrichment result of miRNAs targeting 10 
hub mRNAs (Fig. 2F) and key mRNAs enrichment anno-
tation (Fig. 3A), following the KEGG pathway analysis.

The results demonstrated a network regulation rela-
tionship between 10 hub mRNAs related to sclera 
remodeling and 17 miRNAs involved in sclera remod-
eling (Fig.  4A). The results of the prediction in the 
Target database indicated that hsa-miR-15b-5p, hsa-miR-
379-3p, hsa-miR-411-3p, and hsa-miR-494-3p could reg-
ulate IGF1R (Fig.  4B). The protein interactions between 
hub mRNAs were mapped (Fig. 4C, D), and IGF1R plays 
a pivotal role in the FOXO signaling pathway. Con-
sequently, it was hypothesized that hsa-miR-15b-5p, 
hsa-miR-379-3p, hsa-miR-411-3p, and hsa-miR-494-3 
regulate the FOXO signaling pathway and myopic sclera 
remodeling. Thus, the follow-up experiment was con-
ducted to validate the findings.

Changes in axial length and scleral histopathology
After 4- and 6-week myopic induction, the axial length 
of the animals in the LIM group increased compared to 
that of the NC group (all P < 0.05) (Fig.  5A). The mean 
scleral thickness was significantly lower in the LIM group 
(all P < 0.05) (Fig. 5B, C). Furthermore, we found that the 
scleral layer cells of the NC group were neatly arranged 
and intact, whereas the scleral fibroblasts were disor-
dered and thinned in the arrangements of all layers in the 
LIM group (Fig. 5B, C).

miR‑15b‑5p/miR‑379‑3p regulates the FOXO signaling 
pathway and participates in myopia development
We verified the miRNA-mRNA results of data min-
ing based on experiments. After 4- and 6-week myopic 
induction, compared with the NC group, the levels of 
miR-15b-5p and miR-379-3p of the four miRNAs (miR-
15b-5p, miR-494-3p, miR-411-3p, and miR-379-3p) that 
regulate the FOXO signaling pathway were increased 
in the LIM group (all P < 0.05) (Fig. 5D–G), whereas the 
levels of hsa-miR-411-3p and hsa-miR-494-3 showed 
no significant change. The results of RT-qPCR and WB 
detection results demonstrated that the levels of PTEN, 
P-PTEN, FOXO3a, and CDKN1B were increased in the 
LIM group, whereas the level of IGF1R reduced in com-
parison to the NC group (all P < 0.05) (Fig. 5H–Q).

The FOXO signaling pathway regulates the scleral cell 
cycle, and apoptosis, and is associated with the fibrotic 
process
The Foxo signaling pathway affects cell cycle and apopto-
sis. After 4 and 6 weeks of myopic induction, the results 
of RT-qPCR, Western blotting, and immunofluorescence 
demonstrated that the levels of cytoplasmic cycle-related 
factors CDK2 and CCND1 in sclera tissues of the LIM 
group were decreased compared with that of the NC 
group (P < 0.05) (Fig. 6A–F). Furthermore, cell cycle tests 
revealed myopic scleral cells were arrested in the G1 
phase (Fig. 7A, B). Meanwhile, TUNEL and flow cytom-
etry analyses showed increased apoptosis of the LIM 
scleral cells after 4-week myopic induction. The levels of 
Bcl-2 decreased, whereas the Bax level increased in the 
LIM animals (Fig. 7C–F). These results indicate that the 
FOXO signaling pathway regulates G1 cell cycle arrest 
and apoptosis.

(See figure on next page.)
Fig. 3  Key mRNAs enrichment analysis, PPI analysis, and 10 hub mRNAs enrichment analysis. A KEGG pathway enrichment for 96 key mRNAs. 
miRNA, microRNA. B PPI network constructed by STRING database for the 75 mRNAs out of 96 key mRNAs. C Correlation heat map of 75 mRNAs 
from 96 key mRNAs. The darker the red, the stronger the correlation. D The subnetwork is reconstructed with the selected hub nodes and their first 
neighbor mRNA. Red-colored nodes represent 10 hub mRNAs. E 10 hub nodes with significant KEGG pathway enrichment. miRNA: microRNA; PPI: 
protein–protein interaction; mRNA: messenger RNA
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Fig. 3  (See legend on previous page.)
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Additionally, after 4- and 6-week myopic induction, 
collagen fibers (blue) and muscle fibers (red) in the 
LIM group reduced, and muscle fibers became sparse 
(Fig.  8A), and the expression of TGF-β1, α-SMA, and 
COL-1 at mRNA and protein levels in LIM sclera tissues 
was decreased (Fig. 8B–I) (all P < 0.05). These results indi-
cated decreased expression of fibrotic factors and scleral 
remodeling in myopia.

Discussion
In this study, we analyzed differentially expressed miR-
NAs during scleral growth in fetuses and obtained rel-
evant miRNAs associated with scleral remodeling. These 
miRNAs target mRNAs were intersected with myopia-
related mRNAs using CTD databases for enrichment 
analysis, and we obtained the relevant mRNAs associated 
with scleral remodeling in the process of myopia. Based 
on enrichment analysis, we also found that the FOXO 

Table 4  PubMed citations of 10 hub mRNAs

mRNA Associated with PMID

Myopia Scleral remodeling

PTEN No No NA

SMAD2 Yes Yes 35405674

FOS Yes No 17344603

RHOA Yes Yes 30029249

MAP2K1 No No NA

IGF1R Yes No 27044882

CDKN1B No No NA

MAPK8 No No NA

FGF2 Yes Yes 22695224, etc

MAP3K1 No No NA

Fig. 4  miRNA-mRNA network predicated biomarkers in Sclera remodeling. A miRNA-mRNA regulatory pairs from miRNAs and 10 hub mRNAs. B 
Schematic diagram of miR-15b-5p/miR-379-3p regulating IGF1R from TargetScan. C Correlation heat map of 10 hub mRNAs. The darker the red, 
the stronger the correlation. D The PPI network of 10 hub mRNAs. miRNA: microRNA; mRNA: messenger RNA; PPI: protein–protein interaction

(See figure on next page.)
Fig. 5  Axial length, scleral thickness analyses, and expression analysis of the FOXO signaling pathway-related molecules. A Measurement of axial 
length in NC and LIM groups (n = 16). B Measurement of scleral thickness by PAS staining in NC and LIM groups (n = 4). C PAS stained pathological 
section of the sclera. (n = 4) D–K RT-qPCR analysis. Measurement of miR-15b-5p, miR-379-3p, miR-411-3p, miR-494-3p, IGF1R, PTEN, FOXO3a, 
and CDKN1B expression at gene level in the sclera of guinea pigs in NC and LIM groups (n = 6). M SDS-PAGE electrophoresis. L, N–Q Measurement 
of PTEN, p-PTEN, FOXO3a, CDKN1B, and IGF1R expression at the protein level by Western blot in the sclera of guinea pigs in NC and LIM groups. 
(Western Blot cropped) (n = 6) (*P < 0.05 compared with the NC group). NC: normal control group; LIM: lens-induced myopia group
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Fig. 5  (See legend on previous page.)
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signaling pathway was related to myopic scleral remod-
eling, among which, IGF1R, PTEN, FOXO3a, CDKN1B, 
and other FOXO signaling pathway-related factors are 
key nodes. In addition, we confirmed that miR-15b-5p 
and miR-379-3p regulate IGF1R [10, 11]. Using experi-
mental verification, we found that cell cycle G1 activ-
ity and the expression of related factors CDK2 and 
CCND1 decreased, whereas the apoptotic rate increased; 
moreover, the levels of TGF-b1, COL1, and α-SMA also 
reduced, indicating that the FOXO signaling pathway 
participated in the sclera fibrosis process by regulating 
the cell cycle, thereby affecting sclera remodeling.

MiR-15b-5p and miR-379 affect the processes of cell 
proliferation, migration, invasion, and apoptosis. When 
miR-15b-5p is overexpressed in neuroblastoma, cell pro-
liferation, migration, and invasion are weakened, whereas 
cell apoptosis is decreased [12]. MiR-379-5p is involved 
in the proliferation, migration, and invasion of breast 

cancer [13]. Nevertheless, the role of miR-15b-5p and 
miR-379-3p in myopia has not been addressed. In this 
study, we found that the level of miR-15b-5p was up-reg-
ulated in the scleral tissue growth stage through bioinfor-
matics analysis, and IGF1R is regulated by miR-15b-5p 
and miR-379 [10, 11]. So, we speculate that miR-15b-5p 
and miR-379-3p may play a role in myopic scleral remod-
eling by negatively regulating the IGF1R expression.

IGF-1 is involved in cell proliferation, differentiation, 
and apoptosis. One study suggests that IGF1 is associated 
with the development of myopia [14]. IGF1R inhibited 
the expression of PTEN [15]. PTEN has phosphatase-
dependent and -independent effects, and PTEN affects 
cell cycle, migration, and growth [16, 17]. PTEN affects 
scleral fibroblast proliferation, but its specific mecha-
nism has not been studied [18]. FOXO is a downstream 
factor of PTEN [19]. Activation of FOXO promotes the 
expression of genes related to cell cycle arrest [20, 21]. 

Fig. 6  Scleral cell cycle measurement and apoptotic analysis. A, B Measurement of CDK2 and CCND1 expression at the mRNA level in the sclera 
of the guinea pigs in NC and LIM groups (n = 4–6). C CDK2 and CCND1 immunoblots. D, E Measurement of CDK2 and CCND1 expression at protein 
level by Western blot in the sclera of the guinea pigs in NC and LIM groups (n = 6). F Measurement of CDK2 and CCND1 expression at protein level 
by immunofluorescence in the sclera of the guinea pigs in NC and LIM groups. (Western Blot cropped) (n = 6)
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Cyclin-dependent kinase (CDK) inhibitor 1B (CDKN1B) 
is a FOXO3a target gene [22], and CDKN1B binds and 
inhibits the cyclin E-or cyclin A-associated CDK2 and 
other CDKs and inhibits G1-G2 cell cycle progression 
[23]. In the molecular verification of this study, the level 

of IGF1R in the scleral tissue of myopic decreased, con-
sistent with the above results. In our study, expressions of 
miR-15b-5p, miR-379-3p, PTEN, p-PTEN, FOXO3a, and 
CDKN1B were increased, indicating that myopic scleral 
cell cycle arrest occurred. Our findings suggested that 

Fig. 7  A Determination of cell cycle G1 arrest by flow cytometry (n = 6) and B statistical analysis. C TUNEL assay of scleral tissues in NC and LIM 
groups. DAPI staining is shown in blue, and TUNEL staining is shown in green (n = 4). D, E Apoptosis measurements of scleral tissues in NC and LIM 
groups by flow cytometry. F The levels of BAX and BCL-2 proteins detected by immunofluorescence staining (n = 4). (*P < 0.05 vs. the NC group). NC: 
normal control group; LIM: lens-induced group
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Fig. 8  (See legend on previous page.)
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miR-15b-5p and miR-379-3p regulate the IGF1R/PTEN/
FOXO3a/CDKN1B signaling pathway and participate in 
scleral remodeling.

Our study confirmed that apoptosis and G1 phase cell 
cycle arrest are important mediators in myopic scleral 
remodeling. Bax, a pro-apoptotic member of the Bcl-2 
protein family, plays an essential role in initiating pro-
grammed cell death and stress-induced apoptosis [24, 
25]. A study has shown that apoptosis in scleral fibro-
blasts promotes myopia progression [26], meanwhile, 
promoting fibroblast apoptosis can also reduce pulmo-
nary fibrosis [27]. CDK2 and CCND1 are G1 phase cell 
cycle markers that drive cell cycle progression [28, 29], 
and down-regulation of CDK-2 and CCND1 leads to 
G1 cell cycle arrest [30]. Fibroblasts exhibit reversible 

plasticity in phenotype and cell fate by easily re-enter-
ing the cell cycle. When these characteristics are abnor-
mally activated, they will drive human fibrotic diseases 
[31]. Lidocaine is a drug used to treat tendon injuries, 
promotes the expression of CDKN1B, and significantly 
inhibits the expression of cyclin A, CDK2, and type I col-
lagen, thus decreasing cell proliferation and G1/S trans-
formation, thereby reducing the production of ECM [32]. 
These studies suggest that apoptosis and G1 phase arrest 
are important reasons for reversing fibrosis. In this study, 
apoptosis and G1 cycle arrest occurred in the sclera in 
myopia. Therefore, we believe that apoptosis and G1 cell 
cycle arrest lead to the development of myopic sclera in 
the direction of reverse fibrosis, which is an important 
reason for myopic sclera remodeling.

Fig. 8  Analysis of factors associated with scleral fibrosis. A Masson’s staining. Collagen fibers were stained with blue, and muscle fibers were stained 
with red (n = 4). B–D Measurements of TGF-β1, α-SMA, and COL-1 expression at the mRNA level in the sclera of the guinea pigs in the NC and LIM 
groups (n = 6). E TGF-β1, α-SMA, and COL-1 immunoblots. F–H Measurement of TGF-β1, α-SMA, and COL-1 expression at protein level by Western 
blot in the sclera of the guinea pigs in NC and LIM groups (Western Blot cropped) (n = 6). I Measurement of TGF-β1, α-SMA, and COL-1 expression 
at the protein level by immunofluorescence in the sclera of the guinea pigs in NC and LIM groups (n = 4) (*P < 0.05 vs. the NC group). NC: normal 
control group; LIM: lens-induced group

(See figure on next page.)

Fig. 9  In myopia, miR-15b-5p and miR-379-3p can negatively regulate the IGF1R expression, influence the cell cycle and apoptosis of the sclera 
through the miR-15b-5p/miR-379-3p-IGF1R/PTEN/FOXO/CDKN1B axis, and thus regulate the fibrosis process and scleral remodeling, thereby 
promoting the elongation of the ocular axis and leading to myopia. (Created with BioRender.com)
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We further examined the fibrosis levels only in the 
sclera. It is known that TGF-β1, COL-1, and α-SMA 
are typical biomarkers of fibrosis. In this study, TGF-β1, 
COL-1, and α-SMA expression decreased in the sclera. 
TGF-β1 regulates the expression of COL-1, the main 
component of ECM, and their expressions are down-reg-
ulated in experimental myopic scleral tissues induced by 
form deprivation [33, 34]. Changes in collagen state are 
crucial for myopia progression, and scleral type I collagen 
is significantly reduced in myopic models [35]. A previ-
ous study found that α-SMA expression was increased in 
the myopic retina, accompanied by fibrosis [36], and this 
result is consistent with the findings of our study, indi-
cating that the process of reverse fibrosis is an important 
factor in scleral remodeling. Overall, these findings pro-
vide a new basis for the pathogenesis of myopia and pre-
cise treatment of myopia.

We constructed a miRNA-mRNA network based 
on bioinformatics analysis and validated the bioinfor-
matics findings by animal experiments. We found that 
miR-15b-5p and miR-379-3p can negatively regulate 
the IGF1R expression via the miR-15b-5p/miR-379-3p-
IGF1R/PTEN/FOXO/CDKN1B axis, and thus influence 
the cell cycle and apoptosis of the sclera, fibrosis process, 
and scleral remodeling, thereby aggravating the ocular 
axis elongation and leading to myopia (Fig. 9).

Conclusions
The miR-15b-5p/miR-379-3p/IGF1R/PTEN/FOXO/
CDKN1B axis can block the G1 cell cycle, promote apop-
tosis, and influence the sclera fibrosis process, thereby 
aggravating the development of myopia. Our findings 
provide a solid basis for further understanding of the 
pathogenesis of myopia, facilitating the precise treatment 
of myopia in clinical practice.
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