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IRF8 deficiency-induced myeloid-derived 
suppressor cell promote immune evasion 
in lung adenocarcinoma
Zhen Gao1, Shang Liu1, Han Xiao1, Meng Li1, Wan‑gang Ren1, Lin Xu1* and Zhong‑min Peng1*   

Abstract 

Background Patients with lung adenocarcinoma (LUAD) have a low response rate to immune checkpoint blockade. 
It is highly important to explore the tumor immune escape mechanism of LUAD patients and expand the population 
of patients who may benefit from immunotherapy.

Methods Based on 954 bulk RNA‑seq data of LUAD patients and 15 single‑cell RNA‑seq data, the relationships 
between tumor immune dysfunction and exclusion (TIDE) scores and survival prognosis in each patient were cal‑
culated and evaluated, and the immune escape mechanism affecting the independent prognosis of LUAD patients 
was identified. Functional enrichment analysis explored the antitumour immune response and biological behav‑
ior of tumor cells among different LUAD groups. Single‑cell annotation and pseudotemporal analysis were used 
to explore the target molecules and immune escape mechanisms of LUAD.

Results Myeloid‑derived suppressor cells (MDSCs) and IRF8 were identified as risk and protective factors for the inde‑
pendent prognosis of LUAD patients, respectively. In the tumor microenvironment of patients with high infiltra‑
tion of MDSCs, the antitumor immune response is significantly suppressed, while tumor cell division, proliferation, 
and distant metastasis are significantly enhanced. Single‑cell RNA‑seq analysis revealed that IRF8 is an important 
regulator of MDSC differentiation in LUAD myeloid cells. In addition, IRF8 may regulate the differentiation of MDSCs 
through the IL6‑JAK‑STAT3 signalling pathway.

Conclusions IRF8 deficiency impairs the normal development of LUAD myeloid cells and induces their differentia‑
tion into MDSCs, thereby accelerating the immune escape of LUAD cells. IRF8‑targeted activation to inhibit the forma‑
tion of MDSCs may be a new target for immunotherapy in LUAD.
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Introduction
Lung cancer has the leading mortality rate and the sec-
ond leading incidence among all cancers [1], and adeno-
carcinoma is the most common subtype of lung cancer 
[2]. In the past decade, significant advances have been 
made in the treatment of lung adenocarcinoma, which 
has greatly improved survival rates [3]. In particular, in 
first-line or second-line treatment strategies, the develop-
ment of specific antibodies targeting programmed death 
1 (PD-1) and programmed death ligand 1 (PD-L1) has 
resulted in unprecedented prolongation of survival time 
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for some lung adenocarcinoma patients [4]. Although 
PD-1/PD-L1 blockade has achieved significant effects in 
clinical practice, the response rate in patients with nonse-
lective non-small cell lung cancer is approximately 20%, 
and the response rate in patients with lung adenocarci-
noma is even lower [5]. Therefore, it is highly important 
to explore the tumor immune mechanism of lung adeno-
carcinoma and expand the population of patients who 
benefit from immunotherapy.

Recent studies have revealed that there are two dif-
ferent immune mechanisms involved in tumor immune 
escape [6, 7]. Although there is high infiltration of cyto-
toxic T cells in the tumor microenvironment (TME) of 
some tumors, these T cells are often in a functionally 
exhausted state and lose their ability to kill tumors. In 
other tumors, the presence of immune suppressive cells, 
such as cancer-associated fibroblasts (CAFs), myeloid-
derived suppressor cells (MDSCs), and the M2 subtype 
of tumor-associated macrophages (M2), restricts T-cell 
infiltration into the TME. However, PD-1/PD-L1 block-
ade in the TME with T-cell exhaustion and/or T-cell 
dysfunction does not provide good tumor immune sup-
pression [8]. Hence, elucidating the main immune escape 
mechanism of lung adenocarcinoma can greatly reduce 
the risk of PD-1/PD-L1 blockade, identify new immune 
targets and broaden the therapeutic scope of immune 
checkpoint inhibitors. Based on the two main mecha-
nisms of tumor immune evasion, Peng, J. team con-
structed an algorithm framework for tumor immune 
dysfunction and exclusion (TIDE) based on the genomic 
characteristics of T-cell dysfunction and T-cell exclusion 
(CAFs, MDSCs, and M2) [8]. The TIDE framework can 
calculate T-cell dysfunction and T-cell exclusion scores 
as well as CAF, MDSC, and M2 infiltration levels in the 
TME. This study provides a feasible method and practi-
cal basis for exploring the immune escape mechanism of 
lung adenocarcinoma.

An increasing number of studies have shown that the 
genomic and transcriptome characteristics of tumors 
can help researchers explore and predict immune 
processes and antitumour immune responses in the 
TME. For example, a higher tumor mutation burden, 
high PD-L1 expression, and tumor antigen quality are 
associated with clinical benefits from immunotherapy 
[9–12]. Ideally, many tumor molecular profiles and 
patient clinical outcomes can be used to assess TME 
immune responses and levels of cellular infiltration. For 
instance, a recent analysis of TCGA and PRECOG data 
revealed that the level of tumor infiltration of differ-
ent immune cell types significantly impacts the overall 
survival rate of patients [13–15]. However, the above 
analysis can be difficult to perform using laboratory 
methods. At present, emerging single-cell RNA-seq 

technology can be used to characterize diseases at the 
cellular level. From the perspective of the cell atlas, it 
can identify the specificity of different cell types and 
differences between cells and explore the cell develop-
ment trajectory and synergistic molecules. Thus, based 
on the valuable resources of the public tumor molecular 
spectrum, we combined single-cell RNA-seq and bulk 
RNA-seq to explore the main immune escape mecha-
nisms and tumor immune-related molecular profiles of 
lung adenocarcinoma.

In this study, we integrated and modelled data from 
6 human lung adenocarcinomas, comprising a total of 
954 transcripts and 15 single-cell transcripts from 79078 
cells. Based on the TIDE framework, T-cell dysfunction 
and T-cell exclusion scores, as well as CAF, MDSC, and 
M2 infiltration levels, were evaluated in each patient to 
identify the main immune escape mechanisms affect-
ing the survival and prognosis of patients with lung 
adenocarcinoma. The synergistic molecules involved in 
tumor immune escape in lung adenocarcinoma patients 
were explored and identified through single-cell RNA 
sequencing. These findings may provide a new valuable 
idea for the immunotherapy of lung adenocarcinoma. 
These findings may provide a new valuable idea for the 
immunotherapy of lung adenocarcinoma.

Materials and methods
Patients
This study obtained transcriptomic sequencing data 
for lung adenocarcinoma from the GEO (GSE41271, 
GSE42127, GSE30219, and GSE14814) and TCGA 
(LUAD) databases. Among them, the GSE41271 and 
TCGA cohorts were the main study cohorts, and the 
GSE42127, GSE30219, and GSE14814 cohorts were the 
validation cohorts. This study obtained lung adenocar-
cinoma single-cell RNA sequencing data from the GEO 
(GSE164789) database. Based on the inclusion and exclu-
sion criteria detailed in Fig. 1, 954 patients were included 
in the study, including lung adenocarcinoma transcrip-
tome samples with complete clinical information from 
GSE41271 (180 patients), GSE42127 (132 patients), 
GSE30219 (85 patients), GSE14814 (71 patients), and 
TCGA-LUAD (486 patients), as well as 15 lung adeno-
carcinoma single-cell RNA sequencing samples. All 
transcriptome data were converted into transcripts per 
million reads (TPM) format, and log2 (TPM + 1) was 
transformed for subsequent data analysis. The clini-
cal information of the lung adenocarcinoma patients 
included age, sex, smoking history, pathological stage, 
overall survival time, and survival status. The GSE30219 
and GSE14814 cohorts are early-stage LUAD cohorts 
(pathological stages: I-II).
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Tumor immune dysfunction and exclusion (TIDE) analysis
There are two different immune escape mechanisms in 
tumors: on the one hand, some immunosuppressive fac-
tors can prevent the infiltration of T cells; on the other 
hand, some tumors have high cytotoxicity. T cells infil-
trate the level, but these T cells are in a functionally inac-
tive state. TIDE (http:// tide. dfci. harva rd. edu) predicts 
the immune escape ability of tumors by comprehensively 
evaluating the activity of these two mechanisms. Based 
on the TIDE framework, the T-cell exclusion score, 
MDSC infiltration score, M2 infiltration score, CAF infil-
tration score, and T-cell dysfunction score were calcu-
lated for each lung adenocarcinoma sample.

Survival analysis
K‒M survival curves were used to show the changes in 
survival rates among different groups, and log-rank tests 
were used to assess the significance of differences in 
survival rates between groups. Univariate Cox regres-
sion was used for correlation analysis and comparison to 
explore the influencing factors of overall survival (OS). 
Multivariate Cox regression was used to explore whether 
a factor was an independent influencing factor of OS.

Identification of differentially expressed genes
Using the "limma" package for differential analysis of the 
data, genes with an adj-P value < 0.05 and a |log2-fold 

change|(FC)|> 1 were selected as differentially expressed 
genes. Among these genes, those with log2FC > 1 
were considered upregulated genes, while genes with 
log2FC < -1 were considered downregulated genes. The 
differentially expressed genes were visualized using vol-
cano plots. A Venn diagram was used to visualize the 
intersection of DEGs among the cohorts.

Functional enrichment analysis
The genes were mapped to the background gene set, and 
gene ontology (GO) annotation was performed on the 
genes. The minimum gene set was set as 5, the maxi-
mum gene set was 5000, and 1000 resamplings were 
performed.

Gene set variation analysis (GSVA) is a specialized 
type of gene set enrichment method that transforms the 
expression matrix of genes across different samples into 
an expression matrix of gene sets across samples. This 
allows the assessment of whether different pathways are 
enriched across different samples. The GSVA R pack-
age (version 1.32.0) with default parameters was applied 
to evaluate the gene set enrichment scores of the two 
groups of samples [16]. The Wilcoxon rank-sum test was 
performed on the enrichment scores between the two 
groups to calculate the differential activity of gene sets 
between different groups.

Single sample gene set enrichment analysis (ssGSEA) 
ranked and normalized the gene expression values of 

Fig. 1 Flow diagram: the patient selection and exclusion criteria

http://tide.dfci.harvard.edu


Page 4 of 17Gao et al. Journal of Translational Medicine          (2024) 22:678 

a given sample and then calculated enrichment scores 
using the empirical cumulative distribution function 
of the genes in the signature and the remaining genes. 
Referring to the immune cell signature gene sets pro-
posed by the team led by Charoentong, P., the GSVA 
package was utilized to quantitatively study the infiltra-
tion levels of 28 different immune cell types in the tumor 
microenvironment (TME) for each sample. The relative 
infiltration levels of each immune cell type are repre-
sented by enrichment scores from ssGSEA and were nor-
malized to a uniform distribution ranging from 0 to 1.

The samples were divided into two groups by gene set 
enrichment analysis (GSEA). First, the differential fold 
values of all genes were ranked from large to small to 
represent the trend of gene expression between the two 
groups. After sorting, the top of the gene list can be seen 
as upregulated DEGs, while the bottom represents down-
regulated DEGs. Therefore, if the top of the target gene 
set is enriched, it can be said that overall, this gene set 
shows an upregulated trend. Conversely, if the enrich-
ment is at the bottom, it indicates a decreasing trend. We 
obtained GSEA software (version 3.0) from the GSEA 
website (http:// softw are. broad insti tute. org/ gsea/ index. 
jsp). The gene expression levels of the samples in the 
high- and low-expression groups were downloaded from 
the hallmark gene set to evaluate the relevant pathways 
and molecular mechanisms. Based on the gene expres-
sion profile and phenotype grouping, the minimum gene 
set was set as 5, the maximum gene set was set as 5000, 
and 1000 resamplings were used to select P < 0.05 and 
FDR < 0.05 as significantly enriched gene sets.

scRNA‑seq analysis of lung adenocarcinoma tissue
The GSE164789 cohort included 10X single-cell RNA 
sequencing data and contained a total of 79078 cells from 
15 invasive lung adenocarcinoma samples. The Seurat 
4.0 R package was used to extract mitochondrial-related 
genes from the 10X single-cell RNA sequencing data, 
filter out low-quality cells, and normalize the data. Prin-
cipal component analysis (PCA) was performed on the 
hypervariable genes to reduce the dimensionality of the 
data. Finally, cell cycle analysis and normalization were 
performed, and the cell cycle fraction of each cell was 
calculated to exclude the influence of cell cycle-related 
genes.

The Harmony R package was used to remove batch 
effects from single-cell RNA sequencing data, and the 
DBSCAN method was applied to perform cell clustering. 
The three filtering criteria were as follows: a. cell clus-
ters with fewer than 10 cells were removed, and cluster-
ing was performed again; b. cell populations with fewer 
than 20 cells were removed; and c. if a certain cell pop-
ulation was present in fewer than four samples, this cell 

population was removed. Uniform prevalence approxi-
mation and projection (UMAP) clustering of 10X sin-
gle-cell RNA sequencing data was performed using the 
Seurat 4.0r package. The resolution was set to 0.25. Man-
ually annotated cell names for the cell clusters obtained 
from UMAP clustering. The cell proportion of each cell 
population was calculated after cell annotation. Cell 
type-specific marker data were obtained from a single-
cell study of lung cancer by Laughney and Bischoff et al. 
[17, 18].

The monocle2 package was used to transform the Seu-
rat object into the CDS object of Monocle, calculate the 
size factor and dispersion, filter low-quality cells, perform 
semisupervised dimensionality reduction clustering, find 
the hypervariable genes needed for downstream pseudo-
time analysis, calculate the cell pseudotime, and display 
the cell time trajectory. The time sequence changes of the 
target genes in the cells were calculated.

Statistical analysis
The statistical analysis in this study was conducted using 
R 4.3.2. For quantitative data that followed a normal 
distribution, a t test was performed, while for data that 
did not follow a normal distribution, a Wilcoxon test 
was used. When more than two groups were analysed, 
the Kruskal‒Wallis test was applied for nonparametric 
tests, while ANOVA was applied for parametric tests 
[19]. The calculation of the incidence rate of events was 
conducted using Fisher’s exact test. The survival package 
was used to analyse the difference in prognosis between 
the two groups. The log-rank test was used to assess the 
significance of the differences in prognosis between dif-
ferent groups of patients. P < 0.05 (bilateral) was consid-
ered to indicate a statistically significant difference (ns, 
no statistically significant difference; *P < 0.05; **P < 0.01; 
***P < 0.001; ****P < 0.0001). The false discovery rate 
(FDR) was tested by the Benjamini–Hochberg method 
[20].

Results
T‑cell exclusion induced by MDSCs is the main immune 
escape mechanism affecting the survival of patients 
with lung adenocarcinoma
There are two different mechanisms of tumor immune 
evasion. One is the dysfunction of T cells in the TME. 
Second, the presence of immunosuppressive factors in 
the TME, such as MDSCs, M2 macrophages, and CAFs, 
prevents T-cell tumor infiltration. Exclusion and dys-
function scores and MDSC, M2, and CAF infiltration lev-
els were calculated for each lung adenocarcinoma patient 
using the TIDE framework, as detailed in Table S1. The 
associations of exclusion, dysfunction, MDSCs, M2 
macrophages, and CAFs with survival time and survival 

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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status were evaluated to identify the major immune 
escape mechanisms that threaten the survival of patients 
with lung adenocarcinoma [8]. Univariate Cox regression 
analysis revealed that only exclusion and MDSCs were 
risk factors for survival in all 5 lung adenocarcinoma 
cohorts (GSE41271, TCGA, GSE42127, GSE30219, and 
GSE14814), with P < 0.05 (Figure S1A-F).

The above analysis suggested that the immune escape 
mechanism of MDSCs by T cells has a significant impact 
on the survival of patients with lung adenocarcinoma. 
Based on the interquartile range, we simulated high, 
medium, and low infiltration levels of MDSCs in the lung 
adenocarcinoma TME and divided the samples into high, 
medium, and low infiltration groups. Survival analysis of 
the GSE41271 cohort revealed that the survival rate of 
patients in the high infiltration group was significantly 
lower than that in the low infiltration group (HR = 2.96, 
95% CI 1.45, 6.03; P = 0.002) (Fig.  1A). Survival analysis 
of the TCGA cohort also revealed that the survival rate 
of patients in the high infiltration group was significantly 
lower than that in the low infiltration group (HR = 2.46, 
95% CI 1.47, 4.10; P < 0.001) (Fig.  1B). The same analy-
sis of the GSE42127, GSE30219, and GSE14814 cohorts 
revealed that the survival rate of patients with high 
MDSC infiltration was significantly lower (P < 0.05) 
(Figure S2A-C). In the GSE41271 cohort, multivari-
ate Cox regression analysis revealed that high infiltra-
tion of MDSCs, an advanced pathological stage, was an 
independent prognostic factor for lung adenocarcinoma 
(HR = 2.52, 95% CI (1.17, 5.43), P < 0.05) (Fig. 1C). In the 
TCGA cohort, high infiltration of MDSCs, an advanced 
pathological stage, was an independent prognostic fac-
tor for lung adenocarcinoma (HR = 2.40, 95% CI (1.39, 
4.41), P < 0.05) (Fig. 1D). In the GSE30219 and GSE14814 
cohorts, high infiltration of MDSCs was an independent 
prognostic factor for LUAD (P < 0.05) (Figure S2E and 
F). There was no significant difference in the GSE42127 
cohort (Figure S2D).

MDSCs inhibit the antitumour immune response 
and promote tumor immune escape in lung 
adenocarcinoma
MDSCs play an important role in the immune escape 
of lung adenocarcinoma tumors, and their high infiltra-
tion level is an independent prognostic risk factor for 
lung adenocarcinoma patients. Patients in the 5 LUAD 
cohorts were divided into MDSC high- and low-infiltra-
tion groups according to the upper and lower quartiles, 
respectively. Differences were detected between the 
groups with high and low MDSC infiltration, and the 
results for the 5 cohorts are shown in Fig. 2A. A total of 
373 common differentially expressed genes (Co-DEGs), 
including 132 upregulated genes and 241 downregulated 

genes (Fig.  2B and Table  S2), were identified in the five 
cohorts. GO enrichment analysis revealed that the 
upregulated genes were enriched in biological processes 
such as the cell cycle, cell division, and mitosis. In addi-
tion, these genes were related to nucleotide metabolism 
and energy metabolism (Fig.  2C), and the downregu-
lated genes were involved mainly in biological processes 
such as the immune response, immune activation, and 
immune regulation (Fig.  2E). KEGG enrichment analy-
sis revealed that the upregulated genes were mainly 
enriched in DNA replication, mismatch repair, antigen 
processing and presentation, and glycolysis/gluconeogen-
esis (Fig. 2D), and the downregulated genes were mainly 
related to DNA replication, mismatch repair, antigen 
processing and presentation, and Th1 and Th2 cell differ-
entiation (Fig.  2F). In conclusion, genes involved in cell 
proliferation-related processes such as mitosis, cell divi-
sion, energy metabolism, and glycolysis were activated, 
while genes involved in the immune response, positive 
immune regulation, and immune activation were down-
regulated in the tumor microenvironment of lung adeno-
carcinoma patients with high MDSC infiltration.

MDSCs reportedly limit the infiltration of T cells and 
related antitumour immune cells in the TME [7]. The 
level of immune cell infiltration in the 5 lung adenocar-
cinoma cohorts was evaluated by the ssGSEA algorithm. 
In the GSE41271 cohort, there was a significant negative 
correlation between the infiltration level of MDSCs and 
each immune cell subtype (Fig.  3A). In addition, except 
for activated CD4 T cells, effector memory CD4 T cells, 
type 2 helper T cells, and dim CD56 natural killer cells, 
the infiltration levels of other immune cell subtypes 
were significantly reduced in the MDSC high infiltra-
tion group (P < 0.05) (Fig. 3D). The biological behavior of 
tumor cells (tumor proliferation rate, hypoxia, glycolysis, 
and epithelial–mesenchymal transition) and antitumour 
immune responses (antigen-presenting cell infiltration, 
antigen presentation, and T-cell toxicity) were specifi-
cally evaluated by the GSVA algorithm. In the GSE41271 
cohort, the TME with high MDSC infiltration showed a 
greater tumor cell proliferation rate, severe hypoxia, and 
a greater level of glycolysis (Fig. 3B). Under the influence 
of several factors, epithelial cells lose their polarity and 
tight adhesion between cells, gain infiltration and migra-
tion abilities and transform into cells with interstitial cell 
characteristics. This behavior enables cells to undergo 
transfer and infiltration, thereby accelerating immune 
escape [21]. In the GSE41271 cohort, epithelial–mesen-
chymal transition (EMT signature) was more pronounced 
in the TME with high MDSC infiltration (Fig. 3B). In the 
GSE41271 cohort, the levels of macrophages and DC 
trafficking and antigen presentation ability in the TME 
with high MDSC infiltration were significantly reduced. 
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In addition, T-cell cytotoxicity was also significantly 
reduced (Fig. 3C). Similar results were obtained from the 
same analysis described above for the TCGA, GSE42127, 
GSE30219, and GSE14814 cohorts (Figure S3-S6).

In conclusion, high MDSC infiltration in the TME of 
lung adenocarcinoma significantly inhibited the anti-
tumour immune response but enhanced the immune 
escape ability of tumor cells.

Fig. 2 Survival analysis between groups with high and low MDSC infiltration in lung adenocarcinoma; A and B Kaplan‒Meier survival curves 
between the high‑ and low‑invasive groups in the GSE41271 and TCGA cohorts; the log‑rank test was used to test the significance of survival rates 
between groups. C and D Multivariate Cox regression analysis of the GSE41271 and TCGA lung adenocarcinoma cohorts. Mu‑Cox multivariate Cox 
regression analysis, HR:, hazard ratio, 95% CI, 95% confidence interval
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IRF8 deficiency induces the differentiation and formation 
of MDSCs in lung adenocarcinoma
A high infiltration level of MDSCs accelerates tumor 
immune escape in lung adenocarcinoma. Moreover, high 
levels of MDSCs, an advanced pathological stage, were 
found to be independent prognostic factors for lung ade-
nocarcinoma. Therefore, it is highly important to explore 
the upstream target molecules that induce MDSC 
formation.

To explore the factors affecting the infiltration of 
MDSCs, we conducted a correlation analysis between a 
total of 373 Co-DEGs and the infiltration level of MDSCs 
in 5 lung adenocarcinoma cohorts while retaining Co-
DEGs with a | R |≥ 0.55. A total of 45 co-DEGs were asso-
ciated with the MDSC infiltration level (| R | acuity 0.55, 
P < 0.05) (Fig. 4A). Figure 4B shows the 45 genes, among 
which IRF8, EVI2B, CD37, and DPEP2 had the strongest 
correlation, with R ≤ −0.70 and P < 0.05. Previous studies 
have demonstrated that impaired differentiation of mye-
loid cells leads to their differentiation into MDSCs [22, 
23]. GO enrichment analysis of the C5 gene set was per-
formed on 45 highly correlated co-DEGs to screen DEGs 
related to myeloid cell differentiation. C5-GO enrich-
ment analysis revealed that IRF8, CD4, RASSF2, and 
EVI2B were involved in the development and differentia-
tion of myeloid cells such as macrophages, dendritic cells, 
and monocytes. Differential analysis between tumor and 
adjacent lung adenocarcinoma tissue samples from the 
TCGA and GETx databases was performed. The results 
showed that IRF8, RASSF2, and EVI2B were significantly 
downregulated in lung adenocarcinoma tumors. The 
expression of CD4 was not significantly different. There-
fore,  we hypothesized that the downregulation of IRF8, 
CD4, RASSF2, and EVI2B may impair myeloid differenti-
ation and induce myeloid differentiation toward MDSCs.

Using the GSE164789 single-cell RNA-seq cohort, we 
investigated the variations in the expression of IRF8, 
CD4, RASSF2, and EVI2B during myeloid differentiation. 
UMAP analysis and visualization revealed various cell 
types in the lung adenocarcinoma TME. Among these 
cells, myeloid cell populations, including macrophages, 

myeloid dendritic cells, monocytes, and MDSCs, were 
identified (Fig.  5A). All cell types and cell markers are 
shown in Figure S7A and B. Figure  5B shows the pro-
portion of each cell population in the TME. Localiza-
tion analysis of genes of interest in cell subpopulations 
revealed that IRF8, CD4, RASSF2, and EVI2B were 
consistently highly expressed in myeloid cells (Figure 
S7C). We further investigated the expression of IRF8, 
CD4, RASSF2, and EVI2B in myeloid subtypes of lung 
adenocarcinoma. Figure  5C shows that IRF8 was highly 
expressed in macrophages, myeloid dendritic cells, 
and monocytes but was significantly downregulated in 
MDSCs. CD4 and EVI2B were stably highly expressed 
in all four types of myeloid cells. RASSF2 was highly 
expressed in myeloid dendritic cells and monocytes and 
weakly expressed in macrophages and MDSCs.

Single-cell pseudotemporal analysis was performed on 
myeloid cell populations as well as on various myeloid cell 
subtypes. Figure 5D–E show the developmental and state 
trajectories of myeloid cells; since we focused on the vari-
ation of genes of interest with cell development, we did 
not analyse further at the branch point. Figure 5F shows 
the time trajectory of cell development, from which it can 
be seen that the myeloid cells gradually matured from left 
to right. Figure 5G–H show that IRF8 was upregulated at 
the later stage of the myeloid cell progression. However, 
CD4, RASSF2, and EVI2B did not change significantly 
with the duration of myeloid cell culture (Fig. 7D–E). Fig-
ure 5I, J show the developmental and state trajectories of 
MDSCs. Figure  5K–M shows the relationship between 
the developmental time trajectory of MDSCs and the 
expression of IRF8. In the early stages of MDSC devel-
opment, IRF8 expression is high, and over time, IRF8 
expression rapidly decreases and remains at a low level 
for a long time. However, CD4, RASSF2, and EVI2B did 
not change significantly with the development of MDSCs 
(Figure S7F and G). Figure 5N, O show the developmen-
tal and state trajectories of myeloid dendritic cells. Fig-
ure 5P–R shows that IRF8 expression gradually increased 
over time during myeloid dendritic cell development. 
With the development of myeloid dendritic cells, EVI2B 

(See figure on next page.)
Fig. 3 Functional enrichment analysis of DEGs between the MDSC‑high and MDSC‑low groups; A Volcano plot of DEGs in five LUAD cohorts. B 
Venn diagram of common DEGs in the five cohorts. C Bubble plot of upregulated DEGs according to Gene Ontology (GO) functional enrichment 
analysis, and the size of the circle represents the number of enriched genes. D KEGG enrichment analysis circle diagram of upregulated genes; 
KEGG: Kyoto Encyclopedia of Genes and Genomes. There are four circles from the outside to the inside. The first circle shows the enrichment 
classification and the coordinate ruler of the gene number. Different colors represent different classifications; 2. The second circle is the number 
of categories in the background genes and the P value. The more genes there are, the longer the bar. 3. The third circle shows the proportions 
of upregulated and downregulated genes in the bar graph; purple represents the proportion of upregulated genes, and blue represents 
the proportion of downregulated genes. The specific values are shown below. 4. The fourth circle is the RichFactor value of each category 
(the number of foreground genes divided by the number of background genes in the category), and a small cell represents 0.1. E Bubble plot 
of downregulated DEGs from the GO functional enrichment analysis. F KEGG enrichment analysis circle diagram of downregulated DEGs
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expression gradually decreased, CD4 expression gradu-
ally increased, and RASSF2 expression did not signifi-
cantly change (Figure S7 H and I). Figure S8A shows that 
CD4 expression first increased and then decreased with 

the development of macrophages, while IRF8, RASSF2, 
and EVI2B expression did not significantly change. Fig-
ure S8B shows that EVI2B expression first decreased and 
then gradually increased during monocyte development, 

Fig. 3 (See legend on previous page.)
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Fig. 4 Assessment of antitumour immune responses between MDSCs with high and low infiltration in the GSE41271 cohort; A Correlation 
heatmap of circular lines between MDSCs and other immune cell infiltration levels in lung adenocarcinoma. B Ridge plot of differences 
in the biological behavior of tumor cells between MDSCs with high and low infiltration. C Ridge plot of the differences in antitumour immune 
responses between MDSCs with high and low infiltration. D Box plot of the differences in the infiltration levels of immune cells between MDSCs 
with high and low infiltration. −, no significant difference; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001
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while IRF8, RASSF2, and CD4 expression did not signifi-
cantly change.

In summary, IRF8 is stably highly expressed in myeloid 
cells, whereas it is significantly downregulated in MDSCs 

of myeloid cell subtypes. Single-cell pseudotemporal 
analysis revealed that IRF8 expression was high in the 
early stages of MDSC development but rapidly decreased 
with cell development and maintained a low expression 

Fig. 5 Identification of genes involved in the differentiation of MDSCs. A Venn diagram of DEGs strongly associated with MDSC infiltration in all 
5 cohorts. B Bubble map of genes strongly related to MDSC infiltration (a total of 45 genes); the size of the bubble represents the correlation. C 
Bubble plots of enrichment analysis to identify genes that affect myeloid cell differentiation and development; D–G Box plots of differences in IRF8, 
EVI2B, RASSF2, and CD4 expression between LUAD tissues and normal tissues; T tumor tissue, N normal tissue
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state for a long time. Therefore, these results confirmed 
our hypothesis that the downregulation of IRF8 impaired 
the normal development of myeloid cells and induced the 
differentiation and development of myeloid cells toward 
MDSCs.

IRF8 induces the differentiation and maturation of MDSCs 
by regulating the IL6‑JAK‑STAT3 pathway
Studies have confirmed that STAT3 is involved in all 
stages of MDSC development [24]. Research on breast 
tumor-bearing mice also confirmed that the IRF8-STAT3 
axis regulates the development of MDSCs [25]. The 5 
lung adenocarcinoma cohorts were divided into high- 
and low-MDSC infiltration groups and high- and low-
IRF8 expression groups, respectively, with the upper and 
lower quartiles as the cut-off points. GSEA was applied 
to compare hallmark characteristics between groups with 
high and low MDSC infiltration and between groups with 
high and low IRF8 expression, and the top 5 and/or 6 
results are presented. In both the GSE41271 and TCGA 
lung adenocarcinoma cohorts, the IL6-JAK-STAT3 path-
way was activated in the MDSC high infiltration group, 
while the IL6-JAK-STAT3 pathway was inhibited in the 
IRF8 high-expression group (Fig.  6A, B). The results 
were similar in the GSE42127, GSE30219, and GSE14814 
cohorts (Figure S9A-C).

Based on the GSE164789 lung adenocarcinoma single-
cell RNA-seq cohort, the variations in the expression of 
STAT3 and JAK1, the core genes in the IL6-JAK-STAT3 
pathway, were calculated based on the developmental 
trajectory of MDSCs. The results showed that STAT3 
and JAK1 were rapidly upregulated during the late devel-
opmental stages of MDSCs (Fig.  6C, D). Therefore, we 
speculate that IRF8 may affect MDSC differentiation by 
regulating the IL6-JAK-STAT3 pathway in lung adeno-
carcinoma. IRF8 is an independent prognostic factor for 
lung adenocarcinoma.

IRF8 is an independent prognostic factor for lung 
adenocarcinoma
The expression of IRF8 is closely related to the develop-
ment of MDSCs in the tumor microenvironment of lung 
adenocarcinoma. Therefore, we explored the practical 

clinical significance of variations in the expression of 
IRF8 in lung adenocarcinoma patients. The 5 lung ade-
nocarcinoma cohorts were, respectively simulated as 
high and low IRF8 expression groups with the upper and 
lower quartiles as the cut-off points. The KM curve of 
the GSE41217 cohort showed that IRF8 was a protective 
factor for survival (HR = 0.35, 95% CI 0.17, 0.72; P < 0.05) 
(Fig. 7A). The KM curve of the GSE42127 cohort showed 
that IRF8 was a protective factor for survival (HR = 0.35, 
0.13, 0.96; P < 0.05) (Fig. 7B). The KM curve of the TCGA 
cohort showed that IRF8 was a protective factor for sur-
vival (HR = 0.54, 0.33, 0.88; P < 0.05) (Fig.  7C). In the 
GSE30219 and GSE14814 cohorts, the expression of IRF8 
had no significant impact on survival. In the GSE41271, 
GSE42127, and TCGA cohorts, multivariate Cox analy-
sis confirmed that high expression of IRF8 is a protective 
independent prognostic factor for lung adenocarcinoma 
(Fig. 7D–F).

Discussion
There are two different immune mechanisms of tumor 
immune escape in the TME: T-cell dysfunction and 
exclusion [6, 7]. In this study, it was found that only 
exclusion, an immune escape mechanism, had a signifi-
cant impact on the survival prognosis of patients with 
lung adenocarcinoma. CAFs, MDSCs, and M2 mac-
rophages are the main cell types that restrict T-cell entry 
into tumor tissues. Survival analysis of 954 patients in 5 
lung adenocarcinoma cohorts revealed that only the infil-
tration level of MDSCs was a serious threat to survival 
prognosis, and a high infiltration level of MDSCs, similar 
to advanced tumor stage, was an independent prognostic 
factor. In addition, we found that the high infiltration of 
MDSCs in lung adenocarcinoma significantly inhibited 
the antitumour immune response and promoted tumor 
proliferation and tumor cell mesenchymal transition. 
This suggests that the tumor microenvironment with 
high infiltration levels of MDSCs is devoid of immune 
surveillance and that tumor cells grow aggressively and 
undergo distant metastasis. The accumulation of MDSCs 
in the TME is the main immune escape mechanism in 
lung adenocarcinoma. Thus, exploring the infiltration 

Fig. 6 Single‑cell RNA‑Seq Analysis of Lung Adenocarcinoma; A UMAP of cell clustering and annotation. B Proportional plot of the distribution 
of different cells in the TME of lung adenocarcinoma. C Violin plot of IRF8, EVI2B, RASSF2, and CD4 expression in myeloid cell subsets. D 
Developmental trajectories of myeloid cell subsets. E Trajectories of developmental states of myeloid cell subsets. F Temporal trajectories 
of myeloid cell subset development. G Trajectories of IRF8 distribution in myeloid cell subsets. H Map of IRF8 distribution in myeloid cell subsets. 
I Developmental trajectories of MDSCs. J Developmental state trajectories of MDSCs. K Time trajectory of MDSC development. L IRF8 distribution 
trajectories in MDSC populations. M IRF8 distribution map in MDSC populations. N Myeloid dendritic cell developmental trajectories. O Trajectories 
of the developmental states of myeloid dendritic cells. P Time trajectories of myeloid dendritic cell development. Q IRF8 distribution trajectories 
in myeloid dendritic cell populations. R IRF8 distribution map in myeloid dendritic cell populations

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Fig. 7 Identification of signalling pathways regulating the differentiation of MDSCs A GSEA between groups with high and low MDSC infiltration 
and groups with high and low IRF8 expression in the GSE41271 cohort; B GSEA between groups with high and low MDSC infiltration and groups 
with high and low IRF8 expression in the TCGA cohort; C Plot of STAT3 distribution in the developmental trajectory of MDSC populations; D Plot 
of JAK1 distribution in the developmental trajectory of MDSC populations
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Fig. 8 Survival analysis between lung adenocarcinoma patients with high and low IRF8 expression. A–C Kaplan‒Meier survival curves 
between the high‑ and low‑expression groups in the GSE41271, GSE42127, and TCGA cohorts; a log‑rank test was used to test the significance 
of differences in survival rates between groups. C and D: Multivariate Cox regression analysis between the high and low‑expression groups 
in the GSE41271, GSE42127, and TCGA cohorts; Mu‑Cox multivariate Cox regression analysis, HR hazard ratio 95% CI 95% confidence interval
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mechanism of MDSCs is highly important for immuno-
therapy for lung adenocarcinoma (Fig. 8).

MDSCs consist of a mixture of myeloid-derived cells 
at different stages of differentiation, and their pheno-
types are complex and vary with tumor type [26, 27]. This 
study suggested that MDSCs play an important role in 
tumor immune escape in lung adenocarcinoma, but few 
studies have reported the pathogenesis and progression 
of MDSCs in lung adenocarcinoma. A study based on 
breast tumor-bearing mice showed that the IRF8-STAT3 
axis regulates the development of MDSCs and that IRF8 
deficiency is positively correlated with the accumulation 
of MDSCs in tumors [25]. IRF8 is a complete transcrip-
tion factor involved in the differentiation and lineage 
commitment of myeloid cells and participates in different 
stages of myelopoiesis [28–31]. Our study showed that 
IRF8 expression was high in the early stages of MDSC 
development but rapidly decreased with cell develop-
ment and maintained a low expression state for a long 
time in lung adenocarcinoma. In summary, IRF8 defi-
ciency may impair the normal development of myeloid 
cells and induce the differentiation and development of 
myeloid cells toward MDSCs. In addition, we found that 
IRF8 was significantly upregulated during dendritic cell 
development and maturation. Recent studies have also 
demonstrated that high expression of IRF8 is required for 
the formation of type 1 classical dendritic cells (cDC1s) 
[32]. Human cDC1s perform excellently in antitumour 
cellular immunity. cDC1s migrate to tumor-draining 
lymph nodes to activate CD8 + T cells, present tumor 
antigens, recruit CD8 + T cells, and secrete cytokines in 
the TME, thereby enhancing the local tumor immune 
response [33]. Therefore, activating IRF8 may be another 
interesting targeted approach for the immunotherapy of 
lung adenocarcinoma.

In a recent review describing MDSCs, the molecular 
pathways regulating the development of MDSCs, which 
mainly include factors such as IRF8, STAT3, STAT1, 
and STAT6, were identified [24]. Our single-cell pseu-
dotemporal analysis showed that STAT3 and JAK1 were 
significantly upregulated during MDSC development, 
which was consistent with the activation of the IL6-JAK-
STAT3 pathway by the increased infiltration of MDSCs. 
Jeremy D. et al. reported that IRF8 deletion activates the 
STAT3 pathway to promote the accumulation of MDSCs 
in mice with breast cancer [25]. In addition, we found 
a significant inverse correlation between IRF8 expres-
sion and MDSC infiltration in the lung adenocarcinoma 
TME. Therefore, we inferred that downregulation of IRF8 
might induce MDSC formation by activating the IL6-
JAK-STAT3 pathway in lung adenocarcinoma.

MDSCs have a short survival time in the TME, and 
they achieve long-lasting immunosuppression by 

continuous recruitment to the target area. Because of 
their short lifespan, it is difficult to reverse their acti-
vation state. Therefore, blocking the differentiation of 
MDSCs, inhibiting their infiltration into tumor tissues, 
or directly targeting them may be effective treatments. 
Our work showed that a high infiltration level of MDSCs, 
similar to advanced tumor stage, was an independent 
prognostic factor. This conclusion was obtained from the 
analysis of the survival of 954 patients in 5 lung adeno-
carcinoma cohorts, and we believe that this conclusion is 
reliable. In a phase II clinical trial that directly targeted 
MDSCs, a monoclonal anti-CD33 antibody combined 
with a toxin was shown to deplete CD33-expressing 
MDSCs with promising efficacy [34–37]. These findings 
undoubtedly provide hope for the use of immunotherapy 
for lung adenocarcinoma patients. Hopefully, our single-
cell pseudotemporal analysis showed that IRF8 was rap-
idly down-regulated and maintained at a long-term low 
level as MDSC developed and matured, and IRF8 was 
also down-regulated in lung adenocarcinomas. This may 
be because IRF8 deficiency impairs the normal differ-
entiation of myeloid cells, promoting the formation and 
accumulation of MDSCs. In addition, our study showed 
that high expression of IRF8 was an independent protec-
tive factor for lung adenocarcinoma. Therefore, we sug-
gest that targeting the activation of IRF8 to inhibit the 
differentiation of MDSCs may provide a new approach 
for immunizing lung adenocarcinoma.

The study still has limitations. IRF8 promotes MDSC 
formation in lung adenocarcinoma which lacks experi-
mental verification, especially since IRF8 regulates 
MDSC differentiation through the IL6-JAK-STAT3 path-
way, which only provides us with theoretical insights. 
Our subsequent studies will focus on immune escape 
animal models, cell co-culture, and functional detection 
by which IRF8 induces MDSC formation.

Conclusion
IRF8 deficiency impaired the normal development of 
myeloid cells and induced the differentiation of myeloid 
cells toward MDSCs, thereby accelerating the immune 
escape of lung adenocarcinoma cells. Targeting the acti-
vation of IRF8 may be a new immunotherapy strategy for 
lung adenocarcinoma.
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responses between MDSCs with high and low infiltration in the GSE30219 
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high and low infiltration. C: Violin plot of the differences in antitumour 
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lines between MDSCs and other immune cell infiltration levels in lung 
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tion of IRF8, EVI2B, RASSF2, and CD4. B: Temporal trajectories of monocytes 
and distribution of IRF8, EVI2B, RASSF2, and CD4. Figure S9. Identification 
of signalling pathways regulating the differentiation of MDSCs A: GSEA 
between groups with high and low MDSC infiltration and groups with 
high and low IRF8 expression in the GSE42127 cohort; B: GSEA between 
groups with high and low MDSC infiltration and groups with high and low 
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sion in the GSE14814 cohort.
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