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Abstract
Background  Chemokine (C-C motif ) receptor 8 (CCR8) is a chemokine receptor selectively expressed on tumor-
infiltrating regulatory T cells (Tregs). Strong immunosuppression mediated by CCR8+ Tregs observed in breast and 
lung malignancies suggest for their functional significance in cancer therapy. To date, detailed characterization of 
tumor-infiltrating CCR8+ Tregs cells in colorectal cancer (CRC) is limited.

Methods  To study the presence and functional involvement of CCR8+ Tregs in CRC, we analyzed the proportions 
of CCR8-expressing T cells in different T cell subsets in tumor and adjacent normal tissues and peripheral blood 
mononuclear cells (PBMCs) from CRC patients by Flow cytometry. Also, we compared the distribution of CCR8+ T 
cells in malignant tissues and peripheral lymphoid organs from a subcutaneous CRC murine model. Bioinformatic 
analysis was performed to address the significance of CCR8 expression levels in CRC prognosis, immune regulatory 
gene expression profiles and potential molecular mechanisms associated with CCR8+ Tregs in CRC tumors. Further, we 
administrated an anti-CCR8 monoclonal antibody to CT26 tumor-bearing mice and examined the antitumor activity 
of CCR8-targeted therapy both in vivo and in an ex vivo confirmative model.

Results  Here, we showed that Tregs was predominantly presented in the tumors of CRC patients (13.4 ± 5.8, 
p < 0.0001) and the CRC subcutaneous murine model (35.0 ± 2.6, p < 0.0001). CCR8 was found to be preferentially 
expressed on these tumor-infiltrating Tregs (CRC patients: 63.6 ± 16.0, p < 0.0001; CRC murine model: 65.3 ± 9.5, 
p < 0.0001), which correlated with poor survival. We found that majority of the CCR8+ Tregs expressed activation 
markers and exhibited strong suppressive functions. Treatment with anti-CCR8 antibody hampered the growth of 
subcutaneous CRC tumor through effectively restoring the anti-tumor immunity of CD4+ conventional T cells (CD4+ 
Tconvs) and CD8+ T cells, which was confirmed in the ex vivo examinations.
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Background
Colorectal cancer (CRC) has become the second leading 
cause of cancer death, with estimated global incidence 
of 1.93 to 3.2 million by 2040 [1, 2]. Despite the benefits 
of screening in reducing the morbidity and mortality of 
CRC patients, about 50% CRC patients have exhibited 
the spread of cancer at the time of diagnosis [3, 4]. The 
5-year survival rate for individuals diagnosed with met-
astatic colorectal cancer (mCRC) is less than 15% [5]. 
Conventional treatments for CRC include surgery and 
adjuvant chemotherapy. Fluoropyrimidines and their 
combination with oxaliplatin, tyrosine-kinase inhibitors, 
and antibodies to VEGF and EGFR have been shown to 
partially increase the therapeutic outlook [6]. However, 
these treatments become largely ineffective with the 
occurrence of metastasis [6]. Therefore, the develop-
ment of new treatment strategies to improve CRC patient 
survival is an ever growing need in the field of medical 
oncology [7–12].

In recent years, immune checkpoint therapy has 
remarkably improved the overall survival of CRC patients 
[13–15]. These treatments restore the anti-tumor activity 
of cytotoxic T cells and relieve tumor-mediated immu-
nosuppression [16]. Currently, the complete response 
rate to immunotherapy is still not sufficient for CRC. 
Enriched presence and proficient infiltration of immuno-
suppressive cells in the tumors, such as Tregs, is one pos-
sible reason for the limited responses to immunotherapy 
in these CRC patients.

Tregs are a subset of CD4+ T cells that normally func-
tions in maintaining self-tolerance and immune homeo-
stasis. Accumulating evidences have revealed that the 
contribution of tumor-infiltrating Tregs to the immu-
nosuppressive tumor microenvironment (TME) can 
be achieved through competitive interaction of Treg-
expressed CD25 to IL-2 for inhibiting effector T cell 
activation and function, enhanced release of immuno-
suppressive molecules, such as IL-10, TGF-β, and IL-35, 
and direct functional inhibition of antigen-presenting 
cells (APCs) [17–20]. High infiltration of Tregs is often 
associated with worse prognosis in multiple types of can-
cers, including malignancies in the lung [21, 22], breast 
[23, 24], liver [25, 26], ovary [18, 27] and colorectal [28]. 
Therefore, approaches through depletion or functional 
inhibition of Tregs have drawn recent attentions in 
expectation to restore anti-tumor cellular immunity.

Recent attempts have been made targeting surface mol-
ecules on Tregs, including CTLA4, GITR, CCR4, PD-1, 

OX-40, and LAG3 and CD25 [17]. The lack of Treg-spec-
ificity of these molecules limits the anti-tumor immune 
response and reduced the efficacy of these targeted 
approaches [29]. Therefore, the development of more 
selective strategies to target tumor-infiltrating Tregs is 
needed. Chemokine (C-C motif ) receptor 8 (CCR8) is 
a G protein-coupled receptor and a member of the che-
mokine receptor subfamily [30]. Elevated expression of 
CCR8 has been associated with poor immunotherapeu-
tic outcomes in breast cancer, non-small-cell lung can-
cer (NSCLC) and bladder cancer patients [31]. Recent 
studies report that CCR8 is selectively up-regulated on 
tumor-infiltrating Tregs [23, 31–36], which is in con-
junction with effective anti-tumor immune response by 
targeted approaches against CCR8 [29, 32, 34]. Despite 
these updated findings, the functional characteristics of 
CCR8+ Tregs in CRC patients have not been clearly elu-
cidated, and the effect of CCR8+ Tregs on effector T cells 
remains to be further investigated.

In the present study, we examined the features of 
CCR8+ Tregs and their functional profiles in CRC 
patients and CRC subcutaneous murine model. We dem-
onstrated that the proportion of Tregs in CD4+ T cells 
was significantly elevated in CRC tumors, and CCR8 
was predominantly enriched on these tumor-infiltrat-
ing Tregs. High proportion of CCR8+ Treg cells in CRC 
tumors were correlated with poor patient survival. We 
found that majority of CCR8+ Treg cells exhibited acti-
vation markers with high functional immune suppres-
sion. CCR8-targeting antibodies effectively delayed CT26 
subcutaneous tumor growth, by proficiently reducing 
the proportion of tumor-infiltrating Tregs in CD4+ T 
cells. Specifically, we demonstrated a marked reverse of 
the exhausted state of CD4+ Tconvs and CD8+ T cells by 
targeting CCR8, both in vivo and ex vivo. Collectively, 
these findings highlight the potential applicable value of 
targeted therapy against CCR8+ Treg for CRC treatment.

Materials and methods
Colorectal carcinoma patients
9 colorectal carcinoma tissues, 12 peripheral blood sam-
ples and 4 normal autologous colonic tissues of CRC 
patients during primary surgical treatment were collected 
from department of gastrointestinal surgery, the First 
Affiliated Hospital of Chongqing Medical University. No 
patient received neoadjuvant chemo- and/or radiother-
apy. This project was approved by the ethics committee 
of Chongqing Medical University (2020 − 557). Informed 

Conclusions  Collectively, these findings illustrate the importance of CCR8+ Tregs for an immunosuppressive 
microenvironment in CRC tumors by functional inhibition of CD4+ Tconvs and CD8+ T cells, and suggest for the 
applicable value of CCR8-targeted therapy for CRC.
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consent was obtained from all individual donors before 
this research.

Cell line
Murine tumor cell lines CT26. WT cells (CRL-2638) 
were cultured in RPMI 1640 medium (Gibco, USA) sup-
plemented with 10% (v/v) fetal bovine serum (ExCell, 
China), 2 mM L-glutamine, 100 µg/ml streptomycin and 
100 units/ml penicillin at 37℃ in a 5% CO2 incubator.

Mice and tumour models
All animal experiments described in this study were 
reviewed and approved by the Institutional Animal Care 
and Use Committee of Chongqing Medical University 
(No. IACUC-CQMU-2024-0014). Six-week-old female 
BALB/c mice were supplied by the Animal Center of 
Chongqing Medical University (Chongqing, China) and 
raised under specific pathogen-free (SPF) standard con-
ditions. 5 × 105 CT26 cells in 100 µl Dulbecco’s Phosphate 
Buffered Saline (PBS) were injected subcutaneously into 
the right shaved flanks of syngeneic BALB/c mice. CT26-
bearing mice were subcutaneously inoculated with 4 µg 
purified rat IgG2b isotype antibody (rat IgG2b, k, Clone 
RTK4530; BioLegend) or purified anti-CCR8 antibody 
(rat IgG2b, k, clone SA214G2; BioLegend) on day 5, day 
6, day 8, day 9, day 12, day 14 and day 15. Tumor vol-
ume (mm3) was measured using caliper and calculated 
according to the formula: V = (length × width2)/2. To 
analyze tumor-infiltrating T cells upon anti-CCR8 anti-
body treatment, tumors from all groups were harvested 
20 days after tumor implantation.

Human tissue digestion and PBMCs isolation for flow 
cytometry
To prepare single-cell suspensions of human colorectal 
carcinoma, normal autologous colonic tissues, necrotic 
tissue and fat were first mechanically separated. Sam-
ples were cut into 1–9 mm2 fragments and digested for 
30  min at 37℃ under agitation (RPMI 1640 medium 
supplemented with 1.5 mg/ml collagenase type II (Sigma-
Aldrich, USA), 10 µg/mL DNase I (Solarbio, China), 2% 
fetal bovine serum). Digestion was stopped with RPMI 
1640 medium containing 10% fetal bovine serum. Cell 
suspensions were filtered through a 70  μm cell strainer 
and resuspended in PBS containing 2% fetal bovine 
serum. Human whole blood was diluted with an equal 
volume of PBS with 2% fetal bovine serum and mixed 
gently. Peripheral blood mononuclear cells (PBMCs) 
separation was performed directly in a SepMate™ PBMCs 
Isolation Tubes (STEMCELL, Canada) with pre added 
Lymphoprep™ (STEMCELL, Canada). The diluted blood 
samples were centrifuged at 1200×g for 10 min at room 
temperature. PBMCs were washed twice using PBS with 
2% fetal bovine serum.

Mouse tissue digestion and PBMCs isolation for flow 
cytometry
To obtain mouse tumor-infiltrating cells, separated 
tumor tissues were cut into 1–9 mm2 fragments and 
digested for 30 min at 37℃ under agitation (RPMI 1640 
medium supplemented with 0.5 mg/ml collagenase type 
IV (Sigma-Aldrich, USA), 10  µg/ml DNase I (Solarbio, 
China), 2% fetal bovine serum). Digestion was stopped 
with RPMI 1640 medium containing 10% fetal bovine 
serum. Cell suspensions were filtered through a 70  μm 
cell strainer and resuspended in PBS containing 2% fetal 
bovine serum. PBMCs were isolated from mice periph-
eral blood and red blood cells lysed using lysis buffer 
(Biosharp, China). Cells were washed twice using PBS 
and resuspended in PBS containing 2% fetal bovine 
serum. Murine spleen and lymph nodes was first extir-
pated and mechanically squashed on nylon filter. The 
obtained cell suspensions were isolated by density gradi-
ent centrifugation with lymphocyte separation medium 
(DAKEWEI, China) and resuspended in PBS containing 
2% fetal bovine serum. Single cell suspensions were used 
for flow cytometry.

Analysis of single-cell RNA-seq data for GO and KEGG
Single-cell RNA-seq data of human CRC tumor-infiltrat-
ing T cells were obtained from CRC_GSE108989 [37]. 
According to the expression density curve of CCR8 in 
Tregs, cells were divided into CCR8+ Tregs (1163 cells) 
and CCR8− Tregs (560 cells) with a threshold of 0.8. The 
FC values of all genes in the CCR8+ Tregs and CCR8− 
Tregs were calculated. The wilcoxon rank sum test was 
then used to calculate the significance of gene differ-
ences (p-value) and BH correction (fdr value). Differen-
tial genes were extracted according to fdr < 0.01 and log2 
(FC) > 0.3, including 52 up-regulated genes (red) and 3 
down-regulated genes (blue). The collated core targets 
were imported into Metascape (https://meta-scape.org/
gp/index.html#/main/step1) for Gene ontology (GO) 
enrichment analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis, and the results 
were visualized using bioinformatics.

Analysis of CCR8 antibody treatment on single-cell 
suspensions derived from ex vivo tumors
Three CT26 tumors were harvested 20 days after tumor 
implantation. The single cell suspension were prepared as 
above, then further isolated by density gradient centrifu-
gation with lymphocyte separation medium (DAKEWEI, 
China) to remove most of the tumor cells. Cells were pel-
leted and then resuspended in RPMI supplemented with 
10% fetal bovine serum and filtered again using a 70 μm 
cell strainer, then into 24-well plates and cultured for 72 h 
in the presence or absence of anti-CCR8 antibody (5 µg/
ml) on plates coated with anti-CD3 antibody (2  µg/ml, 

https://meta-scape.org/gp/index.html#/main/step1
https://meta-scape.org/gp/index.html#/main/step1
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BioLegend, USA) in the presence of anti-CD28 antibody 
(1 µg/ml, BioLegend, USA) and IL-2 (200 U/ml, Peprot-
ech, USA) in flow cytometry assays as described below.

Flow cytometry analysis
For human samples, the following fluorochrome-con-
jugated antibodies were used: BV510-anti-CD3 (clone 
SK7, BioLegend), PerCP-Cy5.5-anti-CD4 (clone RPA-T4, 
BioLegend), FITC-anti-CD8 (clone HIT8a, BioLegend), 
BV650-anti-CD25 (clone BC96, BioLegend), APC-anti-
CD127 (clone A019D5, BioLegend), BV785-anti-CD127 
(clone A019D5, BioLegend), PE-anti-CCR8 (clone 
L263G8, BioLegend), APC-anti-CD134 (clone Ber-
ACT35 (ACT35), BioLegend), APC-anti-CD137 (clone 
4B4-1, BioLegend), BV605-anti-CD39 (clone A1, BioLeg-
end), BV605-anti-PD-1 (clone EH12.1, BioLegend), APC-
anti-TIM-3 (clone F38-2E2, BioLegend). The following 
fluorochrome-conjugated antibodies and reagents were 
used for flow cytometry of murine samples: BV510-anti-
CD3 (clone 145-2C11, BioLegend), PerCP-Cy5.5-anti-
CD4 (clone RM4-5, BioLegend), FITC-anti-CD8 (clone 
53 − 6.7, BioLegend), BV785-anti-CD25 (clone PC61, 

BioLegend), BV650-anti-CD127 (clone A7R34, Bio-
Legend), PE-anti-CCR8 (clone SA214G2, BioLegend), 
BV421-anti-CD134 (clone OX-86, BioLegend), APC-anti-
CD137 (clone 17B5, BioLegend), APC-anti-CD39 (clone 
DUha59, BioLegend), APC-anti-PD-1 (clone RMP1-30, 
BioLegend), BV421-anti-TIM-3 (clone PMT3-23, Bio-
Legend). Cells were stained by commercial antibodies 
at room temperature for 20  min. Then, the cells were 
washed by PBS and stained for 15  min using LIVE/
DEAD viability dye (Thermo Fisher Scientific). Data were 
acquired using the FACSCelesta cytometer and analyzed 
by FlowJo software.

Statistical analysis
GraphPad Prism 8.0 (GraphPad Software, San Diego, CA, 
USA) was used for statistical analysis. Data are shown 
as the mean ± standard deviation (mean ± SD). Differ-
ences between groups were determined using unpaired 
t-test. When comparing more than two groups, one-way 
ANOVA or two-way ANOVA was used. p values < 0.05 
were considered statistically significant (* p < 0.05, ** 
p < 0.01, *** p < 0.001 and **** p < 0.0001).

Results
CCR8 is selectively expressed on tumor-infiltrating Tregs
We first analyzed the proportion of different T cell 
subsets in the primary tumors of CRC patients (as 
shown in Table  1) by flow cytometry. The results 
showed that a significantly higher percentage of Tregs 
(CD4+CD25+CD127−) was presented in tumor-infiltrat-
ing T cell (TIL) population than in the para-neoplastic 
tissues (Para) or the PBMCs (Fig. 1A, B). This was in line 
with a markedly increased ratio of Tregs to CD8+ T cells 
in the TILs relative to those in the other two compart-
ments (Fig. 1C). Next, we determined CCR8 expression 
in different T cell subsets by flow cytometry analysis. The 
result showed that the proportion of CCR8-expressing 
Tregs was markedly higher on tumor-infiltrating Tregs 
than that on Tregs from the PBMCs (Fig. 1D). These find-
ings suggested that CCR8+ Tregs were predominantly 
enriched within the tumors of CRC patients.

This phenomenon was confirmed in a CRC murine 
model with subcutaneous CT26 tumors established in 
wild-type BALB/c mice. Similar to what was observed 
from CRC patient samples, the highest percentage of 
Tregs in CD4+ T cells was found in the tumor-infil-
trating T cell population in CT26 tumor-bearing mice, 
compared with T cells obtained from the spleen, lymph 
nodes (LNs) and PBMCs (Fig. 2A). We also investigated 
CCR8 expression on Tregs in CT26 tumor-bearing mice. 
The result of flow cytometric analysis showed that the 
proportion of CCR8-expressing Tregs was significantly 
higher in the tumor-infiltrating Treg population, relative 
to those from the spleen, LNs and PBMCs (Fig.  2B). In 

Table 1  Demographic and clinical information of CRC patients
Variable Total number, (%)
Age in years, mean (± SD) 69.7 (±) 12
Gender, n (%)
  Male 8 (66.7%)
  Female 4 (33.3%)
Tumor location, n (%)
  Colon 8 (66.7%)
  Rectum 4 (33.3%)
T-stage, n (%)
  2 2 (16.7%)
  3 2 (16.7%)
  4 8 (66.7%)
N-stage, n (%)
  0 7 (58.3%)
  1 3 (25%)
  2 2 (16.7%)
M-stage, n (%)
  0 10 (83.3%)
  1 2 (16.7%)
Grade, n (%)
  I 2 (16.7%)
  II 5 (41.7%)
  III 3 (25%)
  IV 2 (16.7%)
MSI status, n (%)
  MSS 10 (83.3%)
  MSI 1 (8.3%)
  Unknown 1 (8.3%)
Lymphatic metastasis, n (%)
  Yes 5 (41.7%)
  No 7 (58.3%)
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addition, we showed that CCR8 expression was absent 
in CT26 tumor cells (Additional file 1: Figure S1). These 
data suggested that CCR8 was selectively expressed on 
tumor-infiltrating Tregs in both CRC patients and the 
subcutaneous tumors of CRC.

CRC tumor-infiltrating CCR8+ tregs exhibit strong 
immunosuppressive functions
To confirm the significance of CCR8 expression in CRC 
prognosis, we first analyzed CRC patient data obtained 
from The Cancer Genome Atlas (TCGA). The results 
showed that the overall survival of CRC patients with 
high level CCR8 expression was significantly reduced 
than that of the CCR8 low-level group (Fig.  3A). Next, 
we analyzed immune regulatory gene expression pro-
file associated with CCR8+ Tregs in CRC tumors using 
the CRC_GSE108989 dataset. Genes functionally cor-
related with immune suppression, such as CTLA4, 
IL2RA (CD25), TIGIT and ENTPD1 (CD39), and T cell 
activation signature genes, such as TNFRSF4 (CD134) 
and TNFRSF9 (CD137), were all expressed at higher 
levels in CCR8+ Tregs compared with their CCR8− 
counterparts (Fig.  3B, C). These data indicated that 

tumor-infiltrating CCR8+ Tregs might be functionally 
activated and preferentially contribute to an immune 
suppressive microenvironment.

To elucidate possible molecular mechanisms associ-
ated with CCR8+ Tregs, we analyzed the differentially 
expressed gene (DEG) profile. GO enrichment results 
showed that the DEGs between CCR8+ and CCR8− Tregs 
were predominantly enriched in cytokine-mediated 
signaling pathway, regulation of leukocyte activation, 
regulation of I-kappaB kinase/NF-kappaB signaling and 
inflammatory response (Fig.  3D). KEGG pathways 
enrichment analysis revealed that cytokine-cytokine 
receptor interaction, viral carcinogenesis, TNF signaling 
pathway and Glycolysis/Gluconeogenesis exhibited high 
level distinguishment between these groups with diverse 
CCR8 expressions (Fig. 3E).

Up-regulated expression of Treg signature markers in 
intratumoral CCR8+Tregs
We utilized tumor samples collected from CRC patients 
to verify the results of bioinformatics analysis shown 
above. CRC tumor-infiltrating Tregs were divided into 
CCR8+ Tregs and CCR8− Tregs in human CRC tumor 

Fig. 1  CCR8 is selectively expressed on tumor-infiltrating Tregs in CRC patients. A-B Representative flow cytometry plots for Tregs (CD4+ CD25+ CD127-) 
staining of CD4+ T cells and the proportion of Tregs in CD4+ T cells from the peripheral blood mononuclear cells (PBMCs, n = 12), para-neoplastic tissues 
(Para, n = 4) and tumour-infiltrating T cells (TIL, n = 9) in CRC patients. C Ratio of Tregs to CD8+ T cells in PBMCs, Para and TIL. D Representative flow cytom-
etry plots of CCR8 expression on CD8+ T, CD4+ Tconv (CD4+ CD25-) and Tregs within PBMCs (n = 12) and TIL (n = 9). The error bars represent SD, and B-Cp-val-
ues were calculated via unpaired t-test. Dp-value of the right graph was calculated using one-way ANOVA. *** p < 0.001, **** p < 0.0001. ns, no significant
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by flow cytometry. We assessed the expressions of Treg-
related activation and suppression functional mole-
cules and found significantly increased levels of CD134, 
CD137, CD39 and PD-1 in CCR8+ Tregs compared with 
CCR8− Tregs (Fig.  4A). Similarly, tumor-infiltrating 
CCR8+ Tregs in CT26 tumor-bearing mice demonstrated 
marked elevation in CD137, CD39, PD-1 and TIM-3 
expressions relative to CCR8− Tregs, while no significant 
changes were observed for CD134 levels (Fig. 4B). These 
data demonstrated that tumor-infiltrating CCR8+ Tregs 
exhibited up-regulation of Treg signature molecules, sug-
gesting for enhanced immune suppressive functions of 
these Tregs in CRC tumors.

CCR8-targeted therapy reduces Tregs immunosuppression 
and enhances T cell antitumor immunity
To determine the potential antitumor activity of CCR8-
targeted therapy, we treated CT26 tumor-bearing mice 
with an anti-CCR8 antibody. We found that the anti-
CCR8 antibody treatment markedly delayed tumor 
growth than the isotype IgG2b control group after the 
initial three doses, and further treatment with the anti-
CCR8 antibody completely eradicated the tumor by 18 
days (Fig.  5A). Given the effective antibody-induced 
obliteration of tumors, the T cell subsets in LNs of the 
CT26 tumor-bearing mice were analyzed by flow cyto-
metric analysis. The results showed that the anti-CCR8 

antibody not only significantly reduced the frequency of 
Tregs in LNs, but also decreased the ratio of Treg/CD8+ 
T cells within LNs (Fig. 5B, C). Examination of functional 
markers in Tregs in LNs showed that CD39, PD-1 and 
TIM-3 were expressed at low levels in the anti-CCR8 
antibody treated group than the IgG2b isotype control 
group (Fig. 5D). Moreover, we assessed exhaustion mark-
ers in CD4+ Tconv and CD8+ T cells in LNs. The results 
showed that both CD4+ Tconv cells and CD8+ T cells of 
the anti-CCR8 therapy group exhibited significantly 
lower levels of PD-1, TIM-3 and LAG-3 than those of the 
control group (Fig. 5E, F).

To further confirm the effect of anti-CCR8 therapy on 
Tregs immunosuppression, we prepared single cell sus-
pension of the CT26 subcutaneous tumors established in 
BALB/c mice and subjected these cell suspensions to the 
anti-CCR8 antibody treatment ex vivo. Flow cytometric 
analysis results showed that the proportion of Tregs was 
significantly decreased after treatment with CCR8 anti-
body for 3 days, in comparison with the control group 
(Fig. 6A). This was accompanied by a markedly reduced 
ratio of Treg/CD8+ T cells (Fig.  6B). The proportions 
of Tregs with surface expressions of PD-1, TIM-3 and 
LAG-3 were significantly reduced by the treatment of 
the anti-CCR8 antibody, indicative of decreased immune 
suppressive functions of Tregs (Fig.  6C). Meanwhile, 
we observed that the proportions of PD-1+, TIM3+ and 

Fig. 2  CCR8 is selectively expressed on tumor-infiltrating Tregs in CRC murine model with subcutaneous CT26 tumors. Spleen (Spl), PBMCs, lymph nodes 
(LNs) and TIL (n = 4 / group) from CT26 tumor-bearing mice were harvested 20 days after tumor implantation. A Representative flow cytometry plots for 
Tregs (CD4+ CD25+ CD127-) staining of CD4+ T cells and the proportion of Tregs in CD4+ T cells from the Spl, PBMCs, LNs and TIL in CT26 tumor-bearing 
mice. B Representative flow cytometry plots of CCR8 expression on Tregs within Spl, PBMCs, LNs and TIL in CT26 tumor-bearing mice. The error bars 
represent SD, and A-Bp-values were calculated using one-way ANOVA. * p < 0.05, **** p < 0.0001. ns, no significant
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LAG-3+ CD4+ Tconv (Fig. 6D) and CD8+ T cells (Fig. 6E) 
were also robustly reduced after treatment with the 
CCR8 antibody, suggesting an effective reversal of cel-
lular immunity. Collectively, the anti-CCR8 antibody 
treatment could selectively deplete the CCR8+ Treg pop-
ulation with profound immune suppressive functions, 
and enhance the antitumor immunity of effector T cells 
by antagonizing T cell exhaustion.

Discussion
Tumor-infiltrating Tregs is one of the major obstacles 
for driving effective tumor-specific immune responses, 
and Treg-targeted therapy is expected to improve the 
anti-tumor immunity. In the present study, we found that 
the proportion of Tregs in CD4+ T cell populations were 

remarkably higher in the tumors of CRC patients and a 
subcutaneous CRC murine model, relative to that in 
PBMCs, in the spleen or in tumor-draining LNs. More-
over, we showed that CCR8 expression was preferentially 
enriched in tumor-infiltrating Tregs rather than Tregs 
from PBMCs in CRC patient samples. Similar result was 
found in the CT26 subcutaneous tumor-baring immune 
competent BALB/c mice. Notably, we found that CCR8 
was expressed at comparatively low levels in the CT26 
tumor cells, or in Tregs from the PBMCs, LNs or the 
spleen. Further, the tumor-infiltrating CCR8+ Tregs were 
shown to be correlated with an activated functional state 
and exhibited strong immune suppressive features. Tar-
geting approach against these CCR8+ Tregs by a CCR8 
specific antibody demonstrated effective abolishment 

Fig. 3  CRC tumor-infiltrating CCR8+ Tregs exhibit strong immunosuppressive function by bioinformatics analysis. A Overall survival curves showing the 
significant differences of CRC patients stratified based on the median CCR8 mRNA expression in the cohorts from The Cancer Genome Atlas (TCGA). B Vol-
cano plot of genes significantly differentially expressed between CCR8- Tregs and CCR8+ Tregs in the CRC TME were obtained from the CRC_GSE108989 
dataset [37]. Up-regulated genes were indicated in red and down-regulated genes were indicated in blue. C Heatmap of Treg signature genes expressed 
by CCR8- Tregs and CCR8+ Tregs in B. D-E GO functional enrichment analysis (D) and KEGG pathway enrichment analysis (E) based on differential ex-
pressed genes between CCR8- Tregs and CCR8+ Tregs
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of Tregs functions and a re-establishment of the anti-
tumor activities of effector T cells, both in vivo and in the 
CRC tumor single cell suspension ex vivo examinations. 
The complete obliteration of subcutaneous tumors with 
continued CCR8-antagonizing antibody treatment high-
lighted a potential applicable basis for the CCR8-targeted 
strategies in CRC clinical therapeutic development.

The observed elevation in the proportion of tumor-
infiltrating Tregs suggests for poor anti-cancer immune 
activities in CRC patients as well as a less desired immu-
notherapy outcome in these patients. The selective 
expression of CCR8 on infiltrating-Tregs of CRC tumor 
provided a unique role of this surface receptor as an indi-
cator of Treg percentages in CRC. Indeed, analysis of 
CRC patient data obtained from TCGA showed a shorter 
overall survival in CRC patients with high CCR8 expres-
sion, with similar prognostic tendencies in breast, lung 

and bladder cancer patients [23, 29, 31]. Additional anal-
ysis revealed the functional significance of CCR8+ Tregs, 
as the expression of Treg-related molecules and the 
immune inhibitory effect were markedly higher with this 
cell population than the CCR8− Tregs. These findings, 
together with the observed low level of CCR8 expression 
on effector T cells, imply for a practical therapeutic win-
dow for CCR8-targeted therapy.

To date, focused study utilizing single-cell RNA-seq 
data from human tumor samples and mice samples to 
address the features of CCR8+ Tregs is rare [29, 31–34]. 
In the present study, we took advantage of available sin-
gle-cell RNA-seq data [37] and systematically analyzed 
the immune regulatory gene expression profile associ-
ated with CCR8+ Tregs in CRC tumors. We revealed a 
significance of CCR8+ Treg in CRC disease progression, 
which shared functional similarity to those observed 

Fig. 4  Up-regulated expression of Treg signature markers in intratumoral CCR8+ Tregs measured by flow cytometry. A Frequency of CD134, CD137, CD39, 
PD-1 and TIM-3 expression on tumor-infiltrating CCR8- Tregs (blue) and CCR8+ Tregs (red) subsets from CRC patients (n = 3), respectively. B Frequency of 
CD134, CD137, CD39, PD-1 and TIM-3 expression on tumor-infiltrating CCR8- Tregs (blue) and CCR8+ Tregs (red) from CT26 tumor-bearing mice (n = 7), 
respectively. The error bars represent SD, and A-B p-values were calculated using unpaired t-test. * p < 0.05, ** p < 0.01, *** p < 0.001. ns, no significant
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in other types of cancer and yet had not been reported 
in gastrointestinal malignancies from this perspective. 
The essential role of CCR8+ Treg in CRC tumor regula-
tion was further validated with patient tumor samples 

and in a CRC subcutaneous murine model. In addition, 
we explored potential signaling activities associated with 
CCR8+ Tregs in CRC patient tumors, and uncovered 
a series of molecular explanations with comparatively 

Fig. 5  Targeting CCR8 reduces Tregs immunosuppression and enhances T cell antitumor immunity in vivo. A Growth curves of CT26-bearing mice treat-
ed with anti-CCR8 antibody and isotype IgG2b control (n = 5 / group). B Frequency of Tregs in CD4+ T cells of LNs in CT26 tumor-bearing mice after anti-
CCR8 antibody treatment (n = 5). C Ratio of Tregs to CD8+ T of LNs in CT26 tumor-bearing mice after anti-CCR8 antibody treatment (n = 5). D Frequency 
of CD39, PD-1 and TIM-3 expression on Tregs of LNs in CT26 tumor-bearing mice after anti-CCR8 antibody treatment (n = 4–5), respectively. E Frequency 
of PD-1, TIM-3 and LAG-3 expression on CD4+ Tconvs of LNs in CT26 tumor-bearing mice after anti-CCR8 antibody treatment (n = 4–5), respectively. F Fre-
quency of PD-1, TIM-3 and LAG-3 expression on CD8+ T cells of LNs in CT26 tumor-bearing mice after anti-CCR8 antibody treatment (n = 3–5), respectively. 
The error bars represent SD, and A p-values were calculated using two-way ANOVA. B-F p-values were calculated using unpaired test. * p < 0.05, ** p < 0.01, 
*** p < 0.001, **** p < 0.0001. ns, no significant
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higher association to the immune suppressive functions 
of these cells rather than their CCR8− counterparts. For 
example, GO analysis and KEGG analysis both identified 
the enrichment of cytokine-mediated signaling activities 
in CRC tumor infiltrating CCR8+ Tregs. The activation 
of this pathway has been shown to foster the differen-
tiation and enhance the immunosuppressive capabilities 
of Tregs, both of which are essential in facilitating the 

immune suppressive secretome and antagonizing the 
tumor cell killing of cytotoxic TILs [38]. This could serve 
as a potential functional explanation of the sharpened 
tumor inhibition observed in the CRC murine model 
by CCR8-targeting, although further validation with 
broader CRC cell lines choices and mechanism charac-
terization and confirmation are definitely needed.

Fig. 6  Targeting CCR8 reduces Tregs immunosuppression and enhances T cell antitumor immunity ex vivo. Single cell suspension of the CT26 subcutane-
ous tumors established in BALB/c mice were harvested from day 20 implanted CT26 nontreated tumors and cultured for 72 h in the presence or absence 
of anti-CCR8 antibody on plates coated with anti-CD3 antibody in the presence of anti-CD28 antibody and IL-2. A Frequency of Tregs in CD4+ T cells in 
ex vivo CT26-bearing tumor after anti-CCR8 antibody treatment (n = 4). B Ratio of Treg to CD8+ T in ex vivo CT26-bearing tumor after anti-CCR8 antibody 
treatment (n = 4). C Frequency of PD-1, TIM-3 and LAG-3 expression on Tregs in ex vivo CT26-bearing tumor after anti-CCR8 antibody treatment (n = 4). D 
Frequency of PD-1, TIM-3 and LAG-3 expression on CD4+ Tconvs in ex vivo CT26-bearing tumor after anti-CCR8 antibody treatment (n = 4). E Frequency of 
PD-1, TIM-3 and LAG-3 expression on CD8+ T cells in ex vivo CT26-bearing tumor after anti-CCR8 antibody treatment (n = 3). The error bars represent SD, 
and A-E p-values were calculated using unpaired t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. ns, no significant
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Other than inhibiting the cytotoxic execution of effec-
tor T cells, Tregs can hamper the functions of a variety 
of immune cells in the tumor microenvironment [17, 39]. 
We observed enhanced expression of CTLA4 and TIGIT 
in CCR8+ Tregs than in CCR8− Tregs in our study, which 
encouraged the speculation of a preferential functional 
suppression of APCs by the CCR8+ Tregs. Also, we found 
elevated expression of ENTPD1 (CD39) in CCR8+ Tregs 
relative to the CCR8− Tregs, which suggested for a pos-
sible reduction in effector T cell activation and func-
tion through CD39/CD73-mediated metabolite restrain 
[40, 41]. Similarly, the enhanced IL2RA (CD25) levels in 
CCR8+ Tregs might be account for increased intracellu-
lar signal transduction in response to IL-2, highlighting a 
possible feed-forward loop for the enrichment of CCR8+ 
Tregs in the TME, which further the immune escape of 
CRC tumors. In depth analysis is needed to determine 
vital mechanisms unique to CCR8+ Tregs in the suppres-
sion of effector T cell activation and functions.

Utilizing a commercially available CCR8 antibody, 
we demonstrated complete tumor growth regression in 
the CT26 subcutaneous model. In absence of tumors, 
we moved to an examination of T cell subsets in lymph 
nodes, the main sites of immune response, which was 
confirmed by an additional analysis with tumor single-
cell suspension. The abolishment of Tregs functions and 
the re-establishment of anti-tumor functions of effec-
tor T cells confirmed successful disengagement in the 
Treg-modulated immunosuppressive network. Given 
the lack of CCR8 expression in CT26 cells, the robust 
tumor growth inhibition was largely due to the cytotoxic-
ity of effector T cells that experienced a gain-of-function 
subsequent to targeting of CCR8+ Tregs. The observed 
decrease in the expression of apoptosis indicators (PD-
1, TIM-3 and LAG-3) in the effector T cell populations 
indicated a reduce of cellular apoptosis and an effective 
reversal of cellular immunity. This is of particular impor-
tance for improving the immunotherapeutic efficacies 
clinically applied for CRC treatment. On one hand, as the 
CCR8+ Tregs represented a group of Tregs with advanced 
immunosuppression, the depletion of these cells might 
provide fundamental increase in effector T cell functions 
both in the lymph nodes and tumors. On the other hand, 
as we observed a close correlation in the expression of 
CCR8 and PD-1 on CCR8+ Treg cell surface, the alter-
nate targeting of CCR8+ Tregs might be beneficial for 
overcoming the reported activation of PD-1+ Treg cells 
induced by anti-PD-1 therapy [42, 43], thus pausing the 
Immune Checkpoint Blockade (ICB)-related hyperpro-
gression of malignancies.

Immunotherapy is a currently wide-applied therapeu-
tic approach with characterized clinical benefits to many 
cancers. Targeting immune checkpoint proteins, like 
CTLA4, PD-1 and its ligand (PD-L1) has been shown 

to restore and enhance the anti-tumor function of effec-
tor T cells in a fraction of CRC patients [44]. But the 
improvement of ICB therapeutic effectiveness still stands 
as a central focus of medical research of CRC [45]. Given 
the identified unique expression of CCR8 in CRC tumors, 
CCR8-targeted therapy can weaken the immune-suppre-
sive function of CCR8+ Treg and inhibit tumor growth 
with minimum off-target risks. The combination efficacy 
of ICB and CCR8-targeted therapy and the correspond-
ing molecular profiles need to be further addressed.

Conclusions
Our study demonstrated that CCR8 was selectively 
expressed on CRC tumor-infiltrating Tregs. These 
CCR8+ Tregs were predominantly activated and exhib-
ited strong immune suppressive features. CCR8-targeted 
therapy could induce complete tumor growth regres-
sion, suggesting for a possible duo role of CCR8 in CRC 
prognosis and immunotherapies. Together, these findings 
evidence a basis for the development of CCR8-targeted 
approaches for the treatment of CRC.
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