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Introduction
In recent decades, immunotherapy has emerged as an 
essential tool for treating distinct types of human can-
cer [1–5]. The advent of immune checkpoint inhibitors, 
such as antibodies that target cytotoxic T lymphocyte-
associated protein 4 (CTLA-4) and programmed death 
1/programmed death-ligand 1 (PD-1/PD-L1), has rede-
fined cancer immunotherapy, and these inhibitors have 
rapidly become an emerging pillar of cancer treatment 
[6]. Under physiological conditions, the immune system 
detects and eliminates premalignant or malignant cells in 
the body; this process is known as immunosurveillance 
[7]. However, during the development of clinically mani-
fest tumors, a set of cancer cells can acquire the ability 

Journal of Translational 
Medicine

†Zhiyun Duana and Runhan Shi contributed equally to this work.

*Correspondence:
Jiabin Cai
cai.jiabin@zs-hospital.sh.cn
1Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 
Shanghai 200032, P.R. China
2Department of Immunology, School of Basic Medical Sciences, Shanghai 
Medical College of Fudan University, Shanghai 200032, P.R. China
3Department of Ophthalmology and Vision Science, Shanghai Eye Ear 
Nose and Throat Hospital, Fudan University, Shanghai 200031, P.R. China
4Department of Liver Surgery and Transplantation, Zhongshan Hospital, 
Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of 
Education, Liver Cancer Institute, Fudan University, Shanghai  
200032, P.R. China
5Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, 
Fudan University, Xiamen 361015, P.R. China

Abstract
During tumorigenesis and progression, the immune checkpoint programmed death-1 (PD-1) and its ligand 
programmed death ligand-1 (PD-L1) play critical roles in suppressing T cell-mediated anticancer immune responses, 
leading to T-cell exhaustion and subsequent tumor evasion. Therefore, anti-PD-L1/PD-1 therapy has been an 
attractive strategy for treating cancer over the past decade. However, the overall efficacy of this approach remains 
suboptimal, revealing an urgent need for novel insights. Interestingly, increasing evidence indicates that both PD-L1 
on tumor cells and PD-1 on tumor-specific T cells undergo extensive N-linked glycosylation, which is essential for 
the stability and interaction of these proteins, and this modification promotes tumor evasion. In various preclinical 
models, targeting the N-linked glycosylation of PD-L1/PD-1 was shown to significantly increase the efficacy of 
PD-L1/PD-1 blockade therapy. Furthermore, deglycosylation of PD-L1 strengthens the signal intensity in PD-L1 
immunohistochemistry (IHC) assays, improving the diagnostic and therapeutic relevance of this protein. In this 
review, we provide an overview of the regulatory mechanisms underlying the N-linked glycosylation of PD-L1/
PD-1 as well as the crucial role of N-linked glycosylation in PD-L1/PD-1-mediated immune evasion. In addition, we 
highlight the promising implications of targeting the N-linked glycosylation of PD-L1/PD-1 in the clinical diagnosis 
and treatment of cancer. Our review identifies knowledge gaps and sheds new light on the cancer research field.
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to evade the immune response and self-replicate, which 
eventually leads to tumorigenesis [8]. PD-1, PD-L1 and 
CTLA-4 are three primary immune checkpoint proteins 
that can inhibit T-cell function to prevent immune sys-
tem overactivation. These proteins play critical roles in 
immune evasion by inhibiting the immune response and 
allowing cancer cells to evade immune attack [9, 10]. 
Therefore, antibodies that target immune checkpoints, 
which are called checkpoint inhibitors, can overcome 
the inhibitory effects of these proteins on the immune 
response and activate the immune system to target and 
destroy cancer cells [11, 12]. Notably, in the context of 
clinical research, the PD-L1/PD-1 pathway stands out 
because of the distinct efficacy of targeting this pathway 
in the treatment of a variety of carcinomas [13, 14]. Since 
in 2014, when the FDA approved pembrolizumab, the 
first PD-L1/PD-1 pathway inhibitor, for the treatment of 
advanced unresectable melanoma [15], multiple clinical 
trials have indicated that PD-L1/PD-1 pathway inhibi-
tors can induce a potent and durable immune response 
against cancer cells [16–19]. However, despite the 
impressive efficacy of anti-PD-L1/PD-1 immunotherapy, 
a considerable subset of patients demonstrate suboptimal 
therapeutic responses due to intrinsic and acquired resis-
tance [20, 21]. Hence, more studies are needed to identify 
therapeutic strategies that are capable of increasing the 
efficacy of PD-L1/PD-1 blockade immunotherapy.

Initial research on the PD-L1/PD-1 pathway focused 
on its genetic, transcriptional and posttranscriptional 
regulation [14, 22, 23]; however, accumulating evidence 
has revealed that posttranslational modifications (PTMs) 
of PD-L1/PD-1 are also critical regulators, revealing 
novel directions for therapeutic approaches that har-
ness the immune system to treat tumors [24–26]. Among 
the various types of PTMs, glycosylation is one of the 
most abundant and diverse forms, and it is common 
in all eukaryotic cells [27, 28]. Interestingly, increas-
ing evidence has shown that both PD-L1 on tumor cells 
and PD-1 on tumor-specific T cells undergo extensive 
N-linked glycosylation and that this modification plays 
a pivotal role in their stability and interaction, ultimately 
promoting PD-L1/PD-1-mediated immune evasion. In 
this review, we focus on recent progress in understanding 
PD-L1/PD-1  N-glycosylation and further highlight the 
potential therapeutic and diagnostic implications of tar-
geting PD-L1/PD-1 N-linked glycosylation in the context 
of cancer immunotherapy.

N-linked glycosylation of PD-L1 and PD-1 and their 
potential roles in tumorigenesis
Glycosylation is a fundamental form of posttranslational 
modification
Glycosylation is mediated by the activity of complex 
enzymes that attach glycans to proteins or lipids; this 

modification is mediated by a variety of glycosyltrans-
ferases [29, 30]. Glycosylation plays an essential role in a 
wide range of biological processes, including protein fold-
ing, immune regulation, cellular homeostasis, and multi-
ple disease conditions [31]. There are two main types of 
protein glycosylation in humans: O-linked and N-linked 
glycosylation [32]. O-linked glycosylation, which involves 
the attachment of glycans to the oxygen atom (O) of ser-
ine (Ser) or threonine (Thr), is a type of glycosylation 
involved in cell‒cell interactions, signal transduction, 
virus infection and other biological processes [33, 34]. 
N-linked glycosylation refers to the attachment of glycans 
to the nitrogen (N) atom of an asparagine (Asn) residue 
in a protein, which plays a critical role in protein local-
ization and secretion, immunogenicity and the immune 
response [35, 36]. As knowledge in the field of glycobiol-
ogy has grown, recent studies have begun to explore the 
role of glycosylation in tumorigenesis and its potential 
implications for diagnosis and therapeutic strategies [28, 
37]. Gaining insight into protein glycosylation is critical 
for revealing the mechanisms underlying protein interac-
tions, cellular signaling, and tumor biology.

N-linked glycosylation of PD-L1 on tumor cells
Interestingly, increasing evidence indicates that PD-L1 
is heavily glycosylated on various types of tumor cells, 
including melanoma, breast, lung, and colon cancers. 
[38–42]According to Western blot profiling, PD-L1 
manifests as a range of bands of approximately 55  kDa, 
whereas naïve PD-L1 is predicted at approximately 33 
kDa [43]. After treatment with the recombinant glycosi-
dase peptide-N-glycosidase F (PNGase F), which can effi-
ciently remove N-glycans from the extracellular domain 
of PD-L1, a single PD-L1 band of the predicted 33  kDa 
size becomes visible, indicating that PD-L1 mainly 
undergoes N-linked glycosylation [44]. It has also been 
reported that treatment with specific N-linked glyco-
sylation inhibitors, rather than O-linked glycosylation 
inhibitors, changes the electrophoretic pattern of PD-L1, 
supporting the notion that PD-L1 mainly undergoes 
N-linked glycosylation [45]. Furthermore, there are four 
asparagine residues in the PD-L1 extracellular domain, 
N35, N192, N200, and N219 have been identified as 
N-glycosylation sites. Mutagenesis of these sites to gluta-
mine can completely abrogate PD-L1 glycosylation [44]. 
(Fig. 1)

N-linked glycosylation of PD-1 on tumor-specific T cells
PD-1 has also been reported to undergo extensive 
N-linked glycosylation on tumor-specific T cells [46, 47]. 
According to electrophoresis experiments, PD-1 pres-
ents two distinct bands of 46  kDa and 32  kDa. Similar 
to PD-L1, after treatment with PNGase F or N-linked 
glycosylation inhibitors, a single PD-1 band of ~ 32 kDa 
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becomes visible, indicating that the PD-1 bands with 
higher molecular weights can be attributed to N-linked 
glycosylation [46]. There are also four potential N-linked 
glycosylation sites in the extracellular domain of PD-1, 
namely, N49, N58, N74, and N116, and mutation of 
each of these sites leads to a significant reduction in the 
molecular weight according to SDS‒PAGE electrophore-
sis [47, 48]. In addition, nonsynonymous single nucleo-
tide polymorphisms (SNPs) at N58 and N116 have been 
reported in the dbSNP database, which indicates that 
PD-1 on tumor-specific T cells undergoes a variety of 
N-glycan modifications [48]. (Fig. 1)

Aberrant N-glycosylation of PD-L1/PD-1 in tumorigenesis
N-linked glycosylation is reported to play critical roles in 
tumorigenesis and progression, contributing to abnor-
mal cell matrix interactions, impaired signaling path-
ways, metastasis, immune evasion, etc. [37, 49–52]. 
Accumulating evidence indicates that extensive N-linked 

glycosylation is essential for PD-L1/PD-1-mediated 
immunosuppression via two mechanism: first, this modi-
fication increases protein stability to prevent proteasomal 
degradation, and second, this modification facilitates the 
interaction between PD-L1 and PD-1 [44, 45]. N-glyco-
sylation has also been reported to be important for the 
cell surface localization of these proteins. Furthermore, 
N-glycans in the PD-1 extracellular domain have been 
shown to facilitate the binding of some monoclonal anti-
bodies [48, 53, 54]. Collectively, these findings suggest 
that the N-linked glycosylation of PD-L1/PD-1 plays a 
crucial role in tumorigenesis mediated by these proteins 
and that profiling this sophisticated process may shed 
new light on cancer treatment, which is currently limited.

Fig. 1  Structures of PD-L1/PD-1 and N-linked glycosylated PD-L1/PD-1. PD-L1, which is a membrane protein that is highly expressed on tumor cells, pos-
sesses four asparagine residues that are undergo N-linked glycosylation (N35, N192, N200, and N219) and are distributed across the IgV-like and IgC-like 
domains of PD-L1. PD-1, which is a membrane protein that is expressed mainly on T cells, possesses four asparagine residues (N49, N58, N74, and N116) 
that undergo N-linked glycosylation and span the IgV-like domain of PD-1. There are also several potential O-linked glycosylation sites in the stalk domain 
of PD-1. The numbers represent amino acid residues. TM, transmembrane; IgV, immunoglobulin variable; IgC, immunoglobulin constant
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Regulatory mechanisms underlying PD-L1/
PD-1 N-linked glycosylation and its ability to 
mediate immune evasion
N-linked glycosylation is a complex process that is 
precisely regulated. Since both PD-L1 on tumor cells 
and PD-1 on tumor-specific T cells undergo extensive 
N-linked glycosylation in their extracellular domains, an 
increasing number of studies have focused on elucidating 
the regulatory mechanisms of PD-L1/PD-1 N-linked gly-
cosylation and its ability to mediate immune evasion. In 
this section, we focus on several essential signaling path-
ways that are involved in PD-L1/PD-1 N-linked glycosyl-
ation, which are also classical pathways that are involved 
in cancer development and progression (Fig. 2).

IL-6/IL-6R axis
Interleukin-6 (IL-6), a critical cytokine that performs 
various biological functions in immunity, tissue regenera-
tion and metabolism, can bind to its membrane-localized 
receptor IL-6R and initiate downstream signaling [55]. 
Dysregulation of IL-6R signaling is known to contribute 
to inflammatory and lymphoproliferative disorders, such 
as rheumatoid arthritis and Castleman disease [56–59]. 
Recently, Chan et al. reported that the IL-6/IL-6R axis is 
involved in PD-L1 N-linked glycosylation. They reported 
that the activation of IL-6/IL-6R signaling in cancer 
cells induces the phosphorylation of PD-L1 at Tyr112 by 
tyrosine-protein kinase 1 (JAK1). Phosphorylated PD-L1 
then recruits the N-glycosyltransferase STT3A to cata-
lyze the N-linked glycosylation of PD-L1 and maintain its 
stability [60].

Fig. 2  A diagram of the regulatory mechanisms of PD-L1/PD-1 N-linked glycosylation. In tumor cells, GSK3β binds to nonglycosylated PD-L1 and phos-
phorylates ngPD-L1 at T180/S184, which results in the polyubiquitination of ngPD-L1 via β-TcRP and its 26 S proteasomal degradation. Activated AMPK 
directly phosphorylates PD-L1 at S195, inducing the abnormal glycosylation of PD-L1 and ERAD. Several signaling pathways are involved in promoting 
PD-L1 N-glycosylation during tumorigenesis: (1) IL-6/IL-6R signaling activation leads to PD-L1 phosphorylation at Y112 via JAK1 in the ER lumen, which 
recruits STT3 to N-glycosylate PD-L1; (2) EGF/EGFR signaling inhibits PD-L1 degradation via GSK3β inactivation, while the EGF/EGFR axis induces PD-L1 
N-glycosylation by upregulating the glycosyltransferase B3GNT3; and (3) EMT transcriptionally induces STT3 through β-catenin/TCF4, which is recruited 
to PD-L1 and catalyzes PD-L1 N-glycosylation. In T cells, the N-linked glycosylation of PD-1 via B3GNT2 and FUT8 inhibits PD-1 proteasomal degradation 
and promotes PD-1 cell-surface localization and PD-1/PD-L1 interaction; FKBP51 and sigma1 function as PD-L1 molecular chaperones, facilitating PD-L1 
folding and N-linked glycosylation
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EGF/EGFR axis
Evidence has shown that EGFR signaling activation can 
increase PD-L1 expression and promote PD-L1/PD-
1-mediated immune evasion in EGFR-driven cancer [61, 
62]. EGF/EGFR signaling can upregulate PD-L1 tran-
scription through multiple pathways [14], and emerging 
studies have suggested that EGF-induced posttransla-
tional modifications, particularly N-linked glycosylation, 
are involved in regulating PD-L1 stability and the PD-L1/
PD-1 interaction [44, 45, 63]. Specifically, EGF can induce 
PD-L1 N-linked glycosylation in basal-like breast cancer, 
leading to the inhibition of PD-L1 polyubiquitination and 
subsequent proteasomal degradation by antagonizing 
the binding of GSK3β [44]. Additionally, EGF/EGFR sig-
naling activation enhances the PD-L1/PD-1 interaction 
through the upregulation of a glycotransferase, B3GNT3, 
which is recruited to PD-L1 and mediates PD-L1 N-gly-
cosylation [45].

EMT/β-catenin/STT3 axis
A recent study revealed that elevated PD-L1 expres-
sion in cancer stem cells (CSCs) contributes to immune 
evasion [64]. Mechanistically, the process of epithe-
lial‒mesenchymal transition (EMT) is involved in the 
upregulation of PD-L1 [65]. Initially, EMT induces the 
nuclear translocation of β-catenin, activating the promot-
ers of STT3 isoform genes with the help of another tran-
scription factor, TCF4. STT3 subsequently mediates the 
N-linked glycosylation of PD-L1 and increases its stabil-
ity. Additionally, Fat Atypical Cadherin 4 (FAT4), a type 
of cadherin-associated protein, can interfere with the 
nuclear translocation of β-catenin and further downregu-
late STT3A mRNA expression to inhibit PD-L1 N-glyco-
sylation, thus destabilizing PD-L1 and ultimately leading 
to polyubiquitination-dependent degradation [66].

FUT-8 and PD-1 N-linked glycosylation
Increasing evidence suggests that PD-1 on tumor-spe-
cific T cells also undergoes extensive N-linked glycosyl-
ation, which is critical for its cell-surface localization and 
interaction with PD-L1 [46, 67, 68]. Interestingly, a study 
revealed that all four N-glycosylation sites, especially 
N49 and N74, undergo extensive core fucosylation [67], 
which is a type of glycosylation that has been reported 
to be essential for proper protein expression and/or 
ligand‒receptor interactions [69, 70]. Furthermore, this 
process is catalyzed by FUT8; knocking out FUT8 via 
the CRISPR-Cas9 system or pharmacological inhibition 
reduces cell-surface PD-1 expression and enhances T-cell 
activation [67]. Mechanistically, loss of core fucosylation 
leads to increased PD-1 polyubiquitination and subse-
quent proteasome-mediated degradation [68]. FUT8 
is significantly upregulated in various types of cancer, 
and blocking core fucosylation enhances the antitumor 

immune response in vivo, suggesting that PD-1 expres-
sion on tumor-specific T cells is significantly affected by 
core fucosylated N-glycans [67, 71].

Others
Considering the crucial role of PD-L1/PD-1  N-linked 
glycosylation in tumor development and progression, 
an increasing number of studies have focused on the 
N-linked glycosylation of PD-L1/PD-1 and the underly-
ing mechanisms involved. For example, it was reported 
that SEC61G, which is an essential subunit of the Sect. 61 
translocon complex, can facilitate the trafficking of newly 
synthesized PD-L1 to the endoplasmic reticulum (ER) 
and promote its N-glycosylation, stabilization, and mem-
brane localization, thereby facilitating the immune eva-
sion of EGFR-amplified glioblastoma [72]. Moreover, 
interferon-stimulated gene 15 (ISG15) can inhibit N-gly-
cosylation of PD-L1 by promoting PD-L1 ubiquitination 
and degradation [73]. GFAT1, which produces a precur-
sor for N-glycosylation, was shown to be required for 
PD-L1 expression and stability. Inhibiting GFAT1 sup-
presses the N-linked glycosylation of PD-L1 and acceler-
ates its proteasomal degradation [74]. GLTD1, an enzyme 
that transfers glycans to proteins, was reported to stabi-
lize PD-L1 via N-linked glycosylation [75]. In addition, 
evidence suggests that transmembrane and ubiquitin-
like domain-containing protein 1 (TMUB1) can increase 
PD-L1 N-linked glycosylation and stability by recruit-
ing STT3A to promote PD-L1 maturation [76]. Sigma1 
and FKBP151s, which serve as chaperon molecules for 
PD-L1, are implicated in PD-L1 stabilization in tumor 
cells by facilitating its folding in the ER and promoting its 
N-linked glycosylation [77, 78]. Recently, a newly iden-
tified glycosyltransferase of PD-L1, namely, B4GALT1, 
has been shown to directly mediate the N-linked glyco-
sylation of PD-L1, leading to the inhibition of its ubiqui-
tination and proteasome degradation [79, 80]. Together, 
these findings indicate that N-linked glycosylation of 
PD-L1 and PD-1 is precisely regulated by multiple signal-
ing pathways and molecules. Leveraging these pathways 
and molecules may shed new light on cancer diagnosis 
and treatment, which is reviewed below.

Deglycosylation of PD-L1 contributes to its 
detection and prediction of anti-PD-L1/PD-1 
immunotherapy outcomes
Since the response rate to anti-PD-L1/PD-1 immunother-
apy remains suboptimal [81], identifying patients who 
may benefit from PD-L1/PD-1 inhibitor therapy through 
the use of reliable predictive biomarkers is needed to 
achieve personalized treatment. Recent evidence has sug-
gested that PD-L1 expression is a promising predictor for 
stratifying patients for PD-L1/PD-1 inhibitor therapy [82, 
83]. However, in many trials, paradoxically, many patients 
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exhibit favorable responses regardless of their PD-L1 
expression level in their tumor samples [84–86], making 
it imperative to improve PD-L1 detection and predictive 
accuracy. In this section, we summarize new insights into 
the effects of N-linked glycosylation on diagnosis and 
how deglycosylation techniques can increase the inten-
sity of PD-L1 in detection assays (Fig. 3).

N-linked glycosylation inhibits PD-L1 detection
As mentioned above, PD-L1 is a glycoprotein that under-
goes extensive N-linked glycosylation in its extracellu-
lar domain [45]. N-linked glycans on PD-L1 hinder the 
recognition and subsequent binding of diagnostic mol-
ecules, such as mAbs [87]. However, most commercial 
PD-L1 antibodies are currently produced without con-
sidering the impact of posttranslational modifications, 
including N-glycosylation, on antigen epitopes [88–90]. 
Thus, the precision of antibody-based assays remains 
suboptimal. To address this issue, Lee et al. [87] devel-
oped an approach to remove N-linked glycosylation from 
PD-L1 via the recombinant glycosidase PNGase F. These 
authors showed that pretreatment with PNGaseF effi-
ciently removes N-glycans from the extracellular domain 
of PD-L1, and deglycosylation significantly increases the 

interaction between the antibody and PD-L1. In addition, 
it has been reported that in lung cancer, the removal of 
N-glycans from PD-L1 significantly increases the detec-
tion efficiency of commercially available PD-L1 antibod-
ies, such as 28 − 8, CAL10, and SP142 [91]. Together, 
these findings suggest that N-linked glycosylation can 
inhibit the precise detection of PD-L1 and that deglyco-
sylation of PD-L1 is a promising method for the develop-
ment of reliable detection assays.

Deglycosylated PD-L1 is a robust biomarker for predicting 
anti-PD-L1/PD-1 immunotherapy outcomes
The discrepancy between the expression levels of PD-L1 
and the therapeutic outcomes of ICBs has long confused 
oncologists. Recently, the discovery of PD-L1 N-linked 
glycosylation and its impact on PD-L1 detection has pro-
vided new insight into this inconsistency. A retrospec-
tive study demonstrated that deglycosylation of PD-L1 
can improve the correlation between PD-L1 expression 
levels and both overall survival (OS) and disease-free 
survival (DFS) in patients receiving anti-PD-L1/PD-1 
immunotherapy [87]. Furthermore, since deglycosyl-
ation can increase the detection accuracy, as shown by 
increased PD-L1 immunohistochemical (IHC) readouts, 

Fig. 3  Comparison of heavily N-linked glycosylated PD-L1 and deglycosylated PD-L1 via an IHC assay. N-linked glycans on PD-L1 hinder its recognition 
by currently common anti-PD-L1 antibodies, leading to suboptimal precision of IHC assays. To address this issue, fixed FFPE tissue slides can be pretreated 
with the recombinant glycosidase PNGase F to remove N-glycans from PD-L1. This process makes epitopes more accessible for antibody binding, thereby 
increasing PD-L1 signal intensity and improving PD-L1 detection and therapeutic relevance
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this approach will render a subset of patients, who would 
otherwise be classified as PD-L1-negative and deemed 
ineligible for ICB therapy, as being eligible for this treat-
ment [87]. Removing N-glycans from PD-L1 makes 
PD-L1 expression a more reliable biomarker for patient 
classification and predicting patient response [87]. Taken 
together, these findings indicate that N-linked glycosyl-
ation of PD-L1 partly explains the inconsistency between 

PD-L1 expression levels and ICB treatment responses 
and that deglycosylated PD-L1 has the potential to 
expand the pool of patients who are considered eligible 
for anti-PD-L1/PD-1 therapy and is a more reliable bio-
marker for predicting therapeutic outcomes.

Targeting N-linked glycosylation of PD-L1/PD-1 is 
an emerging therapeutic strategy to increase the 
efficacy of cancer immunotherapy
Since the N-linked glycosylation of PD-L1 and PD-1 
has been shown to be essential for their ability to medi-
ate immune evasion, scientists have rationally developed 
multiple small-molecule drugs that target N-glycosyl-
ation for use as cancer treatment and evaluated them in 
several tumor models (Table  1). Furthermore, potential 
combination strategies to elicit synergistic antitumor 
effects have also been explored in a set of preclinical tri-
als (Table 2).

Metformin
Metformin is a well-established medicine that is mainly 
used to treat type 2 diabetes [92]. However, an increas-
ing number of studies have indicated that metformin 
may also have promising antitumor properties [104]. A 
case‒control study showed that metformin treatment 
can reduce the incidence of various cancer types among 
patients with type 2 diabetes [106]. Moreover, recent 
studies revealed that metformin can maintain high cyto-
toxic T lymphocyte (CTL) activity in tumor tissues [96, 
107–109]. Potentially, metformin decreases the stabil-
ity and membrane localization of PD-L1 by disrupting 
N-linked glycosylation [97]. Metformin activates AMP-
activated protein kinase (AMPK) and directly phosphor-
ylates PD-L1 at S195, resulting in abnormal N-linked 
glycosylation of PD-L1, causing its retention in the endo-
plasmic reticulum (ER) and subsequent ER-associated 
protein degradation (ERAD) [97]. On the basis of these 
findings, metformin was combined with anti-CTLA4 
therapy in a 4T1 breast tumor model, and this approach 
resulted in significant improvements in tumor burden, 
survival rate, and CTL activity [97]. It has also been 
reported that metformin combined with vaccine immu-
notherapy potently increases the antitumor response via 
a tumor-intrinsic mechanism and enhances the function 
of tumor-infiltrated CD8+ T cells in several tumor mod-
els [98].

D-mannose
D-mannose serves as the primary monosaccharide com-
ponent of N-glycans [99]. High levels of D-mannose 
were shown to inhibit cell growth and enhance sensitiv-
ity to major forms of chemotherapy in several types of 
tumors; this finding indicates that D-mannose is a prom-
ising small-molecule drug for cancer treatment [100]. 

Table 1  Drugs targeting PD-L1/PD-1 N-linked glycosylation
Drug Mechanisms Cancer 

types
Refer-
ence

Metformin AMPK, activated by met-
formin, phosphorylates 
PD-L1 at S195 to induce 
abnormal glycosylation 
and ERAD

Breast cancer, 
Lung cancer, 
Oral cancer, 
Endometrial 
cancer;

[92, 
93–95]

D-mannose Similar to metformin Breast cancer [96]
Resveratrol Blocking α-glucosidase/α-

mannosidase and thereby 
ER retention of abnor-
mally glycosylated form 
of PD-L1

Breast cancer [97]

2-DG As glucose analog interfer-
ing with PD-L1 glycosyl-
ation processes

Breast cancer, 
Lung cancer

[98–100]

Etoposide EMT/β-catenin/STT3 
signaling pathway

Breast cancer, 
Colon cancer

[62]

Niclosamide 1. Inhibiting HuR cytoplas-
mic translocation, which 
directly bound to and 
stabilize PD-L1 mRNA

Breast cancer [101]

2. Disturbing glycosylation 
of PD-L1

STM108 Antibody directly target-
ing glycosylated PD-L1

Breast cancer [41]

ADC \ Breast cancer [41, 102, 
103]

Abbreviations: ERAD, endoplasmic reticulum-associated degradation; ADC, 
antibody-drug conjugate

Table 2  Combinational strategies based on N-linked 
glycosylation of PD-L1/PD-1
Combinational strategies Cancer types Reference
Metformin + TMV vaccine Breast cancer, oral cancer [104]
Metformin + anti-CTLA4 Breast cancer [92]
D-mannose + anti-PD-1 Breast cancer [96]
PDG-NVs Lung cancer [100]
2-DG + PARPi Breast cancer [98]
2-DG + anti-4-1BB Breast cancer [99]
Gefitinib + anti-4-1BB Breast cancer [99]
Etoposide + anti-Tim-3 Breast cancer, colon cancer [62]
Niclosamide + anti-PD-1 Breast cancer, lung cancer [101]
STM108 + MMAE Breast cancer [41]
Swainsonine + anti-PD-L1 Lung cancer, melanoma [105]
Abbreviations: TMV, tumor membrane vesicles; PDG-NVs, nanovesicles with 
PD-1 displayed on membrane and 2-DG packaged in vesicles; MMAE, anti-
mitotic drug monomethyl auristatin E.
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Recently, Zhang et al. [102] reported that D-mannose 
can restore T-cell function, increasing the sensitivity of 
tumor cells and tumor-bearing mice to immunotherapy 
and radiotherapy. Similar to metformin, D-mannose pro-
motes PD-L1 degradation via AMPK activation and the 
AMPK-mediated phosphorylation of PD-L1 at S195A, 
which results in impaired N-glycosylation and enhanced 
polyubiquitination. In vivo, combining D-mannose with 
anti-PD-1 significantly inhibits tumor growth in 4T1 
breast tumor models and prolongs the lifespan of tumor-
bearing mice [102].

Resveratrol
Resveratrol is a common type of dietary polyphenol 
that is well-known to play a key role in glucose metabo-
lism [103, 101]. Recently, research has shown that when 
cancer cells are pretreated with resveratrol, the activity 
of cytotoxic T cells is significantly increased. Similar to 
metformin and D-mannose, resveratrol can also induce 
aberrant N-glycosylation of PD-L1, leading to the accu-
mulation of an abnormally N-linked glycosylated form 
of PD-L1 in the ER and promoting ERAD. In addition, 
resveratrol can bind to the intracellular domain of PD-L1 
and induce its dimerization, which interferes with the 
PD-L1/PD-1 interaction [93].

2-Deoxyglucose (2-DG)
2-DG, which is a glucose analog, was reported to reduce 
cell-surface PD-L1 expression by disrupting PD-L1 
N-linked glycosylation. On this basis, a set of combina-
tion strategies have been explored in multiple tumor-
bearing murine models. Shao et al. [94] reported that 
2-DG can reverse the PARPi-induced upregulation of 
PD-L1 by deglycosylating PD-L1 in TNBC; thus, the 
combination of PARP inhibition with 2-DG has more 
potent antitumor activity. It has also been reported that 
2-DG combined with the EGFR inhibitor gefitinib can 
inhibit PD-L1 N-linked glycosylation and PD-L1-medi-
ated immunosuppression. In TNBC synergistic murine 
models, combination treatment with 2-DG/gefitinib and 
the 4-1BB antibody has been shown to enhance antitu-
mor immunity [95]. In the context of chimeric antigen 
receptor (CAR)-T cell therapy, the utilization of 2-DG 
reduces the capacity of PD-L1+ T3M-4 cells to bind to 
recombinant human PD-1, allowing CAR-T cells to cir-
cumvent immune checkpoint inhibition and increasing 
their efficacy [40]. In addition, Li et al. [105] developed 
a genetically engineered PD-1-displaying nanovesicle 
(P-NV) and reported that loading P-NVs with 2-DG 
enhances antitumor activity. Together, these findings 
identify 2-DG as a promising small-molecule drug for 
combination with current immunotherapies for treating 
carcinomas.

gPD-L1 antibodies and ADCs
As mentioned above, N-linked glycans in the extracel-
lular domain of PD-L1 hinder the recognition and bind-
ing of diagnostic and therapeutic molecules; thus, the 
development of monoclonal antibodies (mAbs) that spe-
cifically target N-linked glycosylated PD-L1 (gPD-L1) or 
antibody‒drug conjugates (ADCs) with deglycosylation 
capabilities has become a promising new therapeutic 
strategy. Xiao et al. [110] designed an antibody‒enzyme 
conjugate that can selectively remove sialic acids from 
the surface of tumor cells, resulting in increased tumor 
cell killing capacity compared with that of the antibody 
alone. Another antibody and antimitotic drug conjugate 
(STM108 + MMAE) was also reported to exert a potent 
cell-killing effect, while a bystander effect killed adjacent 
cancer cells that lacked PD-L1 expression [45]. STM108 
is an antibody specifically designed to recognize highly 
N-linked glycosylated PD-L1. In a TNBC murine model, 
STM108 can effectively inhibit the PD-L1/PD-1 interac-
tion and promote cell-surface PD-L1 internalization and 
degradation [45]. Furthermore, a tumor microenviron-
ment-activated nanoassembly involving the coassem-
bly of PD-L1- or CTLA-4-antagonizing aptamers and a 
glucose transporter one inhibitor was shown to signifi-
cantly decrease PD-L1 N-linked glycosylation. In vivo, 
the nanoassembly can effectively inhibit N-glycosylation-
driven immunosuppression and promote a response to 
immune checkpoint blockade therapy [111]. Collectively, 
these findings suggest that targeting gPD-L1 and gener-
ating antibody‒drug conjugates are promising directions 
for cancer treatment in the future.

gPD-1 antibodies
Similar to PD-L1, multiple N-glycans in the extracellu-
lar domain of PD-1 may play crucial roles in the bind-
ing of anti-PD-1 antibodies. Compared with current 
FDA-approved anti-PD-1 antibodies, mAbs that spe-
cifically target glycosylated PD-1 exhibit higher binding 
affinity for PD-1, effectively hindering the PD-L1/PD-1 
interaction and leading to potent antitumor immunity 
[46]. In addition, PD-1 N58 glycosylation can promote 
the binding of some monoclonal antibodies, including 
cemiplimab [53], camrelizumab [48], and MW11-h317 
[54]. Together, these findings suggest that targeting 
PD-1  N-glycosylation is also a promising strategy for 
improving the efficacy of immune therapy.

Others
Etoposide is a common medication that has been used 
to treat various cancers. A recent study suggested that 
it can disrupt N-glycosylation by inhibiting the EMT/β-
catenin/STT3/PD-L1 axis, leading to the downregulation 
of PD-L1 and the sensitization of cancer cells to anti-
Tim-3 therapy by altering PD-L1 N-linked glycosylation 
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[65]. An inhibitor of α-mannosidase, namely, swainso-
nine, was reported to interrupt PD-L1 N-glycosylation, 
and the combination of swainsonine and anti-PD-L1 
exerted a synergistic therapeutic effect on lung can-
cer and melanoma [112]. It was also demonstrated that 
niclosamid can enhance CTL activity by disrupting 
PD-1  N-linked glycosylation and significantly improve 
the efficacy of anti-PD-1 immunotherapy in vivo. [113]. 
As mentioned above, the IL-6/JAK1 pathway can induce 
PD-L1 phosphorylation at Y112 to promote PD-L1 
N-glycosylation. The combination of anti-IL-6 and anti-
Tim-3 has been shown to be an effective targeted thera-
peutic strategy [60].

Perspective and conclusion
Immune evasion is a hallmark of cancer, and it allows 
tumors to resist the host immune system and escape 
immune detection and destruction. Here, we reviewed 
the N-linked glycosylated modification of PD-L1/PD-1 
and its critical role in PD-L1/PD-1-mediated immune 
evasion, which consequently contributes to tumorigen-
esis. We also explored the potential implications of the 
N-linked glycosylation of PD-L1/PD-1 in the clinical 
diagnosis and treatment of cancer, suggesting that target-
ing N-linked glycosylation might be a promising strategy 
for more precise diagnosis and more efficient immuno-
therapy. Notably, although substantial strides have been 
made in understanding PD-L1/PD-1 glycosylation and 
its role in immune evasion, the mechanisms underly-
ing this complex process are not fully understood; for 
example, the alterations in PD-L1/PD-1 N-linked glyco-
sylation that are involved in the development of cancer 
are not well understood. In addition, research on the role 
of PD-L1/PD-1  N-linked glycosylation in diagnosis and 
treatment is currently in the preclinical stage. Whether 
patients in the real world could benefit from these newly 
proposed promising strategies requires a series of clini-
cal trials with increasing scale. A major challenge is that 
small-molecule drugs, such as 2-DG and D-mannose, 
inhibit protein N-linked glycosylation in a general man-
ner. How to precisely target these drugs to tumor cells 
and reduce systemic side effects is an issue that urgently 
needs to be solved. To achieve more precise treatment, 
antibody‒drug conjugates (ADCs) and tumor-targeted 
nanovesicles, which are emerging strategies for drug 
delivery, may have broad application prospects in the 
future. Moreover, in addition to PD-L1 on cancer cells 
and PD-1 on T cells, N-linked glycans are also commonly 
found on a variety of cell-surface immune checkpoint 
proteins, such as PD-L2 [114], B7-H3 [115], B7-H4 [116], 
and VISTA [117]. It would be interesting to determine 
whether the presence of N-glycans in the extracellular 
domains of these proteins plays a role in immune evasion 
in vivo and hinders their detection in vitro [43]. Research 

has reported that the inhibition of B7-H4 glycosylation 
could be favorably combined with current therapeutic 
strategies to achieve a superior response rate in immu-
nologically cold breast cancers [118]. Interestingly, previ-
ous studies have focused mainly on the N-glycosylation 
of PD-L1/PD-1, but a recent study revealed that O-linked 
N-acetylglucosamine (O-GlcNAcylation) can promote 
tumor immune evasion by inhibiting PD-L1 lysosomal 
degradation [119]. Moreover, a previously undescribed 
site in the stalk region of the PD-1 protein that undergoes 
O-linked glycosylation was also identified [120]. Thus, 
further investigations of the O-linked glycosylation of 
PD-L1/PD-1 and its role in clinical diagnosis and treat-
ment would be worthwhile.

In conclusion, the elucidation of PD-L1/PD-1 glyco-
sylation has shed new light on the clinical diagnosis and 
treatment of cancer. Moreover, further research on the 
underlying mechanisms and the implications of this pro-
cess for the real world is needed. With the development 
of glycobiology, harnessing the glycosylation of immune 
checkpoint points, such as PD-L1 and PD-1, would be a 
promising strategy to benefit patients in the future.
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