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Abstract 

Background  Myelodysplastic syndrome (MDS) is a complicated hematopoietic malignancy characterized by bone 
marrow (BM) dysplasia with symptoms like anemia, neutropenia, or thrombocytopenia. MDS exhibits considerable 
heterogeneity in prognosis, with approximately 30% of patients progressing to acute myeloid leukemia (AML). Single 
cell RNA-sequencing (scRNA-seq) is a new and powerful technique to profile disease landscapes. However, the cur-
rent available scRNA-seq datasets for MDS are only focused on CD34+ hematopoietic progenitor cells. We argue 
that using entire BM cell for MDS studies probably will be more informative for understanding the pathophysiology 
of MDS.

Methods  Five MDS patients and four healthy donors were enrolled in the study. Unsorted cells from BM aspiration 
were collected for scRNA-seq analysis to profile overall alteration in hematopoiesis.

Results  Standard scRNA-seq analysis of unsorted BM cells successfully profiles deficient hematopoiesis in all five 
MDS patients, with three classified as high-risk and two as low-risk. While no significant increase in mutation burden 
was observed, high-risk MDS patients exhibited T-cell activation and abnormal myelogenesis at the stages between 
hematopoietic stem and progenitor cells (HSPC) and granulocyte–macrophage progenitors (GMP). Transcriptional 
factor analysis on the aberrant myelogenesis suggests that the epigenetic regulator chromatin structural protein-
encoding gene HMGA1 is highly activated in the high-risk MDS group and moderately activated in the low-risk MDS 
group. Perturbation of HMGA1 by CellOracle simulated deficient hematopoiesis in mouse Lineage-negative (Lin-) BM 
cells. Projecting MDS and AML cells on a BM cell reference by our newly developed MarcoPolo pipeline intuitively 
visualizes a connection for myeloid leukemia development and abnormalities of hematopoietic hierarchy, indicat-
ing that it is technically feasible to integrate all diseased bone marrow cells on a common reference map even 
when the size of the cohort reaches to 1,000 patients or more.
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Introduction
MDS is a highly heterogeneous blood disorder and 
around 30% MDS patients will proceed to Acute Myeloid 
Leukemia (AML) [7, 22]. Except few MDS subtypes could 
be clearly defined by gene mutations (i.e. mutations in 
SF3B1 induces the MDS-RS subtype), most of the MDS 
have no clear diagnosis criteria since they share numer-
ous mutations in a panel of common genes and even have 
quite similar symptoms as other myeloid abnormalities 
(i.e. AML, chronic myelomonocytic leukemia CMML, or 
myeloproliferative neoplasm MPN), or autoinflammatory 
diseases (i.e. vacuoles E1 enzyme X-linked autoinflam-
matory somatic, VEXAS) [4, 9, 28, 36].

Single-cell-omics (SCO) studies are changing the field 
of clinical research including its practice and even the 
regular clinical management in future (i.e. diagnosis, drug 
responses, patient tailoring, and disease follow-up) [35]. 
In the past five years, numerous studies dissected the 
abnormalities of AML using unsorted or sorted BM cells 
for SCO analysis [1, 11, 30–32, 37, 40, 42]. With regards 
to the published SCO studies of MDS, most of them used 
sorted BM cells to profile hematopoietic alterations. To 
our knowledge, however, few studies so far directly pro-
file entire BM cells of MDS patients. In the report by 
Guess et al., only two MDS patients scRNA-seq datasets 
were generated and their controls are the BM cell at their 
AML stage rather than the healthy donors [15]. Thus, 
most of the publicly accessible resources of scRNA data-
sets were analyzing only a small pool of BM biopsies, e.g. 
hematopoietic stem progenitor cells (HSPC), common 
myeloid progenitor cells (CMP) or granulocyte–mac-
rophage-progenitor cells (GMP). To date, a comprehen-
sive cell atlas of MDS and the differences or connections 
with other myeloid neoplasms are still lacking.

We are conducting a study to profile around 100 MDS 
patients using unsorted BM cells on single cell omics 
platforms. We argue that this cohort of unsorted BM cells 
will produce more valuable resource and a more com-
prehensive cell atlas for understanding MDS etiology, 
comparable to or even outperforming datasets of  flow 
cytometry, especially when considering the continuous 
status of hematopoiesis in scRNA-seq analysis and the 
interaction between abnormal cells and their microenvi-
ronment [40, 41]. In this study, we report our preliminary 
results based on a mini-cohort of MDS patients (N = 5) 

along with healthy controls (N = 4). All of the original 
sequencing datasets were produced by a same single-cell 
RNA-sequencing platform (SeekOne, see Methods in 
detail) and the  downstream analysis were conducted by 
rigorous filtering and computing.

Materials and methods
Patients
This study was conducted with the approval of the Tian-
jin Medical University General Hospital’s Ethics Com-
mittee and participants were provided written informed 
consent prior to taking part in the study. The five treat-
ment-naive MDS patients were enrolled in the study 
during June 2022 and June 2023 in the hospital. Clinical 
information of the enrolled MDS patients were summa-
rized in Table 1. Of note, the patients MDS2 and MDS5 
had somatic mutations in DDX41 [33]; the patients 
MDS1 had somatic mutations in several genes including 
SRSF2, RUNX1, PTPN11.

Preparation of bone marrow cells
Fresh bone marrow blood was separate using His-
topaque®-10771 (Sigma-Aldrich Catalog No.10771-
6X100ML) as instructions. Cell count and viability was 
estimated using fluorescence Cell Analyzer (Countstar® 
Rigel S2) with AO/PI reagent after removal erythrocytes 
(Solarbio R1010). Finally, fresh cells were washed twice in 
the RPMI1640 and then resuspended at 1 × 106 cells per 
ml in 1 × PBS and 0.04% bovine serum albumin.

Single cell RNA‑seq library construction and sequencing
Single-cell RNA-Seq libraries were prepared using See-
kOne® Digital Droplet Single Cell 3’ library preparation 
kit (SeekGene Catalog No.K00202). Briefly, appropriate 
number of cells were mixed with reverse transcription 
reagent and then added to the sample well in SeekOne® 
chip. Subsequently Barcoded Hydrogel Beads (BHBs) 
and partitioning oil were dispensed into correspond-
ing wells separately in chip. After emulsion droplet gen-
eration reverse transcription were performed at 42  ℃ 
for 90  min and inactivated at 80  ℃ for 15  min. Next, 
cDNA was purified from broken droplet and amplified 
in PCR reaction. The amplified cDNA product was then 
cleaned, fragmented, end repaired, A-tailed and ligated 
to sequencing adaptor. Finally, the indexed PCR were 

Conclusion  Through scRNA-seq analysis on unsorted cells from BM aspiration samples of MDS patients, this study 
systematically profiled the development abnormalities in hematopoiesis, heterogeneity of risk, and T-cell microenvi-
ronment at the single cell level.

Keywords  Myelodysplastic syndrome, Single cell omics, Computational hematopoiesis, Bone marrow cell reference, 
HMGA1
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performed to amplified the DNA representing 3′ polyA 
part of expressing genes which also contained Cell Bar-
code and Unique Molecular Index. The indexed sequenc-
ing libraries were cleanup with SPRI beads, quantified by 
quantitative PCR (KAPA Biosystems KK4824) and then 
sequenced on illumina NovaSeq 6000 with PE150 read 
length.

Cell clustering, annotation, and visualization by Seurat
The scRNA-seq dataset analysis was performed using 
Linux scripts and R language and the in-house comput-
ing platforms have been described [16, 24]. Standard pre-
processing and quality controls were performed on the 
dataset using Seurat (version: 4.1). Dimension reduction 
and visualization of the datasets were achieved through 
UMAP (Uniform Manifold Approximation and Projec-
tion). To address batch effects, Harmony (version: 1.2.0) 
was utilized for dataset integration. Clusters were identi-
fied using Seurat’s cluster-finder computation algorithm, 
while cell types were annotated based on expression of 
canonical tissue compartment markers.

Pseudotime state of each cell and gene expression 
simulated by Palantir
After transferring Seurat object to the proper Anndata 
format, we then run the python package Palantir with 
default parameters [34]. Only HSPC, GMP, Pro_Neutro-
phil, Neutrophil and Monocytes were used for Palantir 
analysis for simplicity. We randomly selected an HSPC as 
the starting point for trajectory analysis. The pseudotime 
state and gene expression matrix of each cell per cell type 
or per group were extracted from the simulated datasets 
and then visualized by ggplot2.

Analysis of transcriptional factors and their regulons 
by SCENIC
The SCENIC  computation pipeline was executed using 
the Python package pySCENIC [2, 6], and  Van [39]. 
Firstly, the log-normalized count matrix was utilized as 
input, along with a curated list of known transcription 
factors (TFs), to generate regulons based on their correla-
tion with putative target genes. Secondly, by integrating 
the generated adjacency matrix with human cisTarget 
databases (10kbpUp10kbpDown and TSS ± 10 kbp), the 
regulons were refined through pruning targets that 
lacked enrichment for the corresponding TF motif. 
Lastly, cells were scored for each regulon with a measure 
of recovery of target genes from a given regulon.

Single base substitution (SBS) mutations calling using 
scRNA‑seq datasets
The biocomputational working platform SComatic is 
a newly developed toolkit designed for calling somatic 

mutations in cells, with any germline mutations being 
filtered out during the procedure [25]. Therefore, to our 
knowledge, SComatic is currently the most advanced 
algorithm available for measuring somatic mutations in 
MDS. The software SComatic was used to conduct SBS 
calling according to its tutorial (python scripts in Linux 
miniconda environment). Firstly, raw sequencing files 
(formatted as BAM and containing aligned sequencing 
reads for all cell types) were split into cell-type-specific 
BAMs using precomputed cell type annotations in Seu-
rat. Secondly, base count information for each cell type 
and every position in the genome was recorded and 
merged into a single matrix as TSV files. Finally, variants 
were called and high-quality mutations were labeled as 
’PASS’ for downstream statistical analysis. Mutation bur-
den (per sample) was normalized: dividing the number of 
mutations by the number of cells in each sample.

Cell communication analysis
After standard analysis of the scRNA-seq datasets by 
Seurat, cell-to-cell communication analysis was con-
ducted using R package CellChat (Version: 1.6.1) [17]. All 
cell types in BMs were included in the analysis. The com-
parison analysis was performed between the high-risk 
MDS group and healthy controls or between the low-risk 
MDS group and healthy controls.

Construction of gene signatures and scoring bioactivities 
in each cell
We integrated classic gene sets to characterize different 
bioprocesses, generating gene lists for subsequent analy-
ses. The function ‘AddMouduleScore’ in the Seurat pack-
age was employed to calculate the average expression 
levels for each cluster. All signatures were binned based 
on the average expression.

Statistical analysis
Statistical analyses were performed using Prism 9 or R 
packages. If not stated elsewhere, differences of quanti-
tative parameters were assessed using the t-test for data 
that was normally distributed, or nonparametric test for 
data that was not normally distributed. Wilcoxon test 
was performed to test for differences in Palantir pseudo-
time between conditions. Results with p < 0.05 were con-
sidered statistically significant. *, p < 0.05; **, p < 0.01; ***, 
p < 0.001; ****, p < 0.0001.

The MarcoPolo pipeline and the gene‑perturbation 
prediction by CellOracle
In brief, the MarcoPolo pipeline is a machine-learning 
based one-stop computing procedure for annotating 
bone morrow or blood cells and generating visualiza-
tion results including the density map on the reference 
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and cell-type-fraction data frames. Detailed computing 
protocol and pipeline  for MarcoPolo will be described 
elsewhere  by Ma and Cai (manuscript in preparation). 
For the gene-perturbation prediction, we first generated 
a high-quality Lineage-negative (Lin−) bone morrow cell 
rather than total bone marrow cells or LSK cells in-house 
from the WT mouse (cell number 7266), along with 
mutations in some critical genes or in some stressed con-
dition  (Wen and Cai, manuscript submitted). To reduc-
ing the computing burden, we filtered only 2000 cells 
with 30,665 genes for CellOracle analysis [19]. The devel-
opmental flow without perturbation was computed by 
Palantir as described above [34]. Perturbation score (the 
inner product) is calculated based on comparing the 2D 
vector and visualized by the dots on the grids. The posi-
tive inner product is shown in green (indicating  devel-
opmental trajectory is strengthened or expedited) while 
the negative inner product is shown in purple (indicat-
ing  developmental trajectory is reversed). Detailed pro-
tocol for gene-perturbation in our own mouse Lin− BM 
datasets will be described elsewhere  by Wen and Cai 
(manuscript submitted).

Results
Unsorted BM cells for single cell RNA‑sequencing analysis
The five treatment-naive MDS patients and four health 
donors were enrolled in the study during June 2022 and 
June 2023 in the hospital (Fig. 1A). The clinical informa-
tion of the 5 MDS patients is briefed in Table 1. Of note, 
the MDS patients were detected with chromosomal nor-
mal and most of them were detected with mutations in 
clonal hematopoiesis-driver genes such as DNMT3A, 
TP53, ASXL1 and WT1 (with very low to very high vari-
ant allele fraction [VAF] value). When they were hospi-
talized, one was reported with 10-year psoriasis (Patient 
Index: MDS1), one was with EB virus infection (Patient 
Index: MDS5), one with acute myocardial infarction 
(Patient Index: MDS3) and two with pneumonia (Patient 
Index: MDS2 and MDS4).

After standard pre-processing, a total of 106,521 cells 
were filtered for downstream analysis (69,625 cells from 
5 MDS patients and 36,896 cells from 4 healthy donors, 
respectively; range: 3734–24,843 cells per sample). 
In total 14 cell types were meticulously annotated in 
the Uniform Manifold Approximation and Projection 
(UMAP) presentation (Fig. 1B). In line with the clinical 
diagnosis, we clearly observed 3 out of 5 MDS patients 
have dramatic low production of both pro-neutrophils, 
neutrophils, and monocytes (Fig.  1C). Another two 
MDS patients have comparable fraction of these mature 
myeloid cells but higher HSPC fractions in their BM 
(Fig. 1C). Consistent with the 10-year psoriasis history 

(Fig. 1C, Patient Index: MDS1), a large fraction of plas-
matic dendric cells (pDC) was identified in the UMAP 
plot, which is also revealed by flow cytometry (data not 
shown).

To facilitate the downstream analysis, we classified 
the 3 MDS patients with extreme low level of mature 
myeloid cells as the high-risk MDS group and the other 
two as the low-risk MDS group. Quantification of each 
cell type suggests that both MDS groups have greater 
fraction of HSPCs (Fig.  1D). The fractions of GMP in 
the three groups appear to be comparable. However, 
the fractions of neutrophils and monocytes are signifi-
cantly decreased in the MDS-high risk group, indicat-
ing deficient myelogenesis in patients MDS1, 2 and 5 
(Fig. 1E). The ratio of myeloid/lymphoid appears to be 
opposite between high-risk MDS and low-risk MDS, 
suggesting a transition stage probably exists between 
the groups in this blood disorder.

Superfast annotation of BM cells by MarcoPolo pipeline 
reveals a connection between MDS and AML
To test if an automatic identification of BM cells facili-
tates our long-term clinical studies, we developed a 
working pipeline named as MarcoPolo which is able to 
reliably annotate ten thousand cells (a regular size of a 
scRNA-seq dataset for a BM sample) and visualize the 
dataset in an intuitive density map in 3  min  (Ma and 
Cai, manuscript in preparation). In brief, we first gener-
ate a reference map of BM cells covering both progeni-
tor cells and mature cells defined by gene expression 
matrix. The reference of myeloid linage  cells is shown 
in Fig. 2A. When the datasets from the 5 MDS patients 
and 4 healthy donors were analyzed by MarcoPolo 
pipeline, the results are comparable to the meticu-
lous annotation as shown in Fig. 1. We notice that the 
4 healthy donors have balanced production of HSPCs, 
GMPs, and mature myeloid cells (monocytes and neu-
trophils) (Fig. 2A). However, the 3 MDS patients from 
the high-risk MDS group show much low density of 
mature myeloid cells (Fig.  2B). We also validate the 
MarcoPolo pipeline using MDS BM cells from the study 
(GSE205490), and healthy and AML BM cells from the 
study (GSE130756) [15, 42]. Consistently, the MacoPolo 
working flow efficiently and intuitively discriminates 
AML from healthy in 3  min per sample with ~ 10,000 
cells (Fig. 2C and D). The quantification of BM cells by 
MarcoPolo pipeline is also comparable to our meticu-
lous annotation (Fig. 2E and F), compared with Fig. 1D 
and E). This result suggests the MarcoPolo pipeline is 
able to quickly and accurately annotate BM cells includ-
ing leukemic cells in a larger scale of cell numbers or in 
a larger cohort of enrolled samples.
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Computing the hematopoietic trajectory demonstrates 
an aberrant granulocyte genesis in the high‑risk MDS 
group
The developmental trajectory from HSPC to mature 
neutrophils and monocytes has been well studied 

experimentally using human or mouse BM cells [26, 29]. 
The development route is illustrated in Fig.  3A. When 
simulating the pseudotime of the MDS cells using the 
diffusion map-based algorithm Palantir (see related lit-
eratures and Methods for detail) [34], we observed that 
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Fig. 3  Aberrant and deficient hematopoiesis visualized by simulating the developmental time of each cell. A A schematic illustrating 
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(See figure on next page.)
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the pseudotime state of the HSPCs and GMP cells were 
significantly altered in both high-risk and low-risk MDS 
groups (Fig.  3B). Monocyte development appears nor-
mal. However, a procrastinated state was observed dur-
ing pro-neutrophil and neutrophil development, which is 
consistent with decreased productions of these two cell 
types in the high-risk MDS group (Fig. 3B).

We also analyzed the expression of well-established 
markers or transcriptional factors in hematopoiesis. 
The difference in their expression is consistent with 
our expectation based on the ground-truth experi-
mental results. For example, the expression of HSPC 
marker CD34 is overactivated in the two MDS groups 
(Fig.  3C#1) while the expression of GMP maintenance 
markers MS4A3 and MPO are repressed (Fig. 3C#5, #6). 
Accordingly, expression of mature neutrophil markers 
including SPI-1, CEBPD, FOS, S100A8 are also decreased 
(Fig.  3C#3, #4, #7, #8). Expression of mature monocyte 
marker CD14 appears to be normal (Fig. 3C#9). Interest-
ingly, the expression of megakaryocyte-erythroid pro-
genitor (MEP) marker EGR1 appears to be repressed in 
MDS group (Fig.  3C#2), which is consistent with that 
anemia and thrombocytopenia are generally found in 
MDS patients. When analyzing altered pathways, we also 
found the high-risk MDS group has a typical upregula-
tion of Interferon alpha and gamma signaling and inflam-
matory pathways, which is not observed in the low-risk 
MDS group (Fig. 3D). Taken together, these results dem-
onstrate that the development abnormalities in the high-
risk MDS group is faithfully detected by the pseudotime 
simulations using the scRNA-seq datasets.

The chromatin epigenetic regulator HMGA1 and its 
regulons are overactivated in the high‑risk MDS patients
To identify critical transcriptional or epigenetic regula-
tors in the MDS single cell transcriptomic datasets, we 
then performed unbiased data-mining on the transcrip-
tional factors and their regulons (downstream effector 

genes) using the algorithm SCENIC, SCENIC-plus [2, 
6], and  Van [39]. We first rank the regulon activities in 
HSPCs and GMP cells. The activity heatmap of top 14 
regulons are shown in Fig. 4A. We notice that the regulon 
activities are gradually distributed in the healthy controls 
while 4 out of 5 MDS patients were dominated by 1 to 3 
regulons. For example, in the HSPCs and GMP cells from 
the MDS1, 3, 4 patients, the HMGA1 regulon dominated 
the cell pools. The rank level of HMGA1 regulon is also 
elevated while that of CEBPD and EGR1 were decreased. 
HMGA1 has been reported to be overactivated in AML, 
MPN and MDS [23]. Here we then examined its expres-
sion level using the single cell datasets. As shown in 
Fig.  4B and D), expression of HMGA1 is uniformly and 
significantly overactivated in the MDS-high risk group. 
Accordingly, we also validated its overactivation in the 
published MDS scRNA-seq dataset using only CD34+ 
BM cells (GSE180298, Fig. 4E). As the scaffold-encoding 
gene RACK1 is predicted as a downstream effector of 
HMGA1, we validated that its expression is also upregu-
lated in high-risk MDS group (Fig. 4C and D).

To further validate the results from the above analysis, 
we used scRNA-seq datasets of sorted CD34+ progeni-
tor cells from patients with del(5q) MDS (GSE245452) 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE24​5452), we found that expression of HMGA1 and 
RACK1 was also significantly elevated in the MDS group. 
Meanwhile, using bulk RNA-seq datasets of CD34+ pro-
genitor cells from 159 patients with MDS patients and 17 
healthy controls (GSE58831) [14], we found that expres-
sion of HMGA1 was significantly elevated in the MDS 
group (Supplementary Fig.  1A–B). We simulated the 
expression of HMGA1 and RACK1 in the pseudotime 
axis and the results indicate its role is probably critical 
for HSPC and GMP maintenance (Fig. 4F). Meanwhile, it 
has been reported  that the reduction of HMGB1 is suf-
ficient to impair HSC self-renewal and promote apop-
totic cell death in MDS and that inhibitors of HMGB1 

(See figure on next page.)
Fig. 4  HMGA1 encodes a critical transcription factor for hematopoiesis but is overactivated in the high-risk MDS group. A The heatmap plot 
of top 14 transcriptional factors according to their regulon activity in HSPCs and GMP cells. Notice that in 4 out of the 5 MDS patients, only 1–3 
transcriptional factor regulons are dominated the cells while in the healthy donors, several transcriptional factors are balanced well. B Expression 
of HMGA1 on the UMAP plots. C RACK1 is predicted as one of effector downstream genes regulated by HMGA1. D Quantification of the gene 
expression level of HMGA1 and RACK1 in the indicated groups. E Quantification of the gene expression level of HMGA1 and RACK1 in the published 
study GSE180298. F Expression of HMGA1 and RACK1 along the pseudotime axis. The function of HMGA1 is probably involved in regulating 
maintenance of HSPCs while that of RACK1 in hematopoiesis is largely unknown. G A recently developed algorithm CellOracle is able to predict 
cell trajectory after perturbating certain transcriptional factors. See Methods for details. H We generated a high-quality dataset of mouse 
Lin- bone marrow cells for predicting the consequence of Cebpd and Hmga1. As shown in the middle and right panel, the perturbation of Cebpd 
and Hmga1 results in development deficiency of neutrophil production but increased production level of HSPC and GMP. Perturbation score (the 
inner product) is calculated based on comparing the vectors and visualized by the dots on the grid. The positive inner product is shown in green 
(indicating developmental trajectory is strengthened and expedited) while the negative inner product is shown in red (indicating developmental 
trajectory is reversed) **, p < 0.01; ****, p < 0.0001

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE245452
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE245452
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signaling provided a first-in-class therapeutic option for 
patients with MDS[44]. Our results also confirmed the 
high expression of HMGB1 in HSPCs and GMP cells of 
MDS (Supplementary Fig.  1C–E). Taken together, these 
results suggest that HMGA1 and HMGB1 both are likely 
involved in pathogenesis of MDS.

Furthermore, we generated a mouse wildtype Lin− BM 
cells with high quality for CellOracle analysis (Fig.  4G; 
See Methods for detail) [19]. In the mouse Lin− UMAP 
plot, 6 branches were annotated (Fig. 4H). Upon pertur-
bation of Cebpd and Hmga1, we successfully simulated 
aberrant hematopoiesis (higher fraction of HSPCs and 
low fraction of committed progenitor cells), reminiscent 
of MDS phenotypes in human (Fig. 4H). Taken together, 
our results suggest that HMGA1 and its regulon are over 
activated in the high-risk MDS group. Our study war-
rants that reducing the expression or activity of HMGA1 
represents an important strategic option for ameliorating 
MDS in future study.

T cell microenvironment is actively mobilized 
in the high‑risk MDS
During the diagnosis, we notice several clonal hemat-
opoiesis-related gene were mutated (see the Table 1). We 
ask if increased somatic mutations exist in MDS patients 
compared with the healthy controls. We performed the 
somatic mutation calling at the coding-sequence wide 
by the SComatic pipeline using the scRNA-seq data-
sets (Fig. 5A; See Methods for detail) [25]. As shown in 
Fig.  5B, no significant somatic mutation burdens were 
observed. We then ask if cell-to-cell chat is altered in the 
MDS patients. As shown in Fig.  5C, the high-risk MDS 
group manifests much greater strength of cellular com-
munication in the BM environment, especially when 
HSPCs and GMPs were calculated. When scoring the 
activity of T cells in the MDS groups, we also observed 
that high-risk MDS group have increased inflamma-
tion level, exhaustion activity, cytotoxicity activity and 
immune surveillance level for CD8+T and DNT cells 
(Fig.  5D–G). Based on these side-by-side comparisons 
using the T cells form the scRNA-seq datasets, we con-
cluded that T cells are more activated in the high-risk 
MDS group than that in the low-risk MDS group.

Discussion
In the study we report an interim result of our long-term 
100 MDS scRNA-seq project. Integration of the large 
BM datasets using a regular algorithm or by the  Mar-
coPolo pipeline warrant that we can handle million BM 
cells in future. The MarcoPolo pipeline is able to quickly 
and accurately annotate BM cells including leukemic cells 
in a larger scale of cell numbers or in a larger cohort of 
enrolled samples. The open-access availability of the large 

cohort of BM datasets will assist our understanding the 
pathology and heterogenicity of MDS.

Distinct from previous single cell omic studies using 
sorted BM cells [3, 5, 8, 13, 15, 21, 38, 43], here we aim 
to  profile all of the BM cells from healthy donors or 
patients with MDS (as described in this study) and other 
blood disorders (our other long-term goals). Even in 
the mini-cohort of MDS in the study, we observed het-
erogenicity of this complicated blood disorders. Based 
on the frequencies of mature myeloid cells, we stratified 
the 5 MDS patients into two groups: high-risk and low-
risk group. Interestingly, both groups manifest a higher 
proportion of hematopoietic stem and progenitor cells 
(HSPCs). The results indicate that bone marrow dys-
plasia in MDS patients display malignancies at different 
grades or at different developmental stages. This may be 
related to the selective growth advantage of somatically 
mutated clonal HSPCs in the hematopoietic system [27]. 
The proportions of neutrophils and monocytes exhibit 
a significant decrease in the MDS-high risk group, sug-
gesting impaired myelogenesis in patients MDS1, 2, and 
5. The pathway enrichment results show that the high-
risk group of MDS patients is enriched in the upregula-
tion of interferon alpha and gamma signaling pathways, 
while the low-risk group of MDS patients is enriched in 
the UV response and epithelial-mesenchymal transition 
pathways. This observation is in accordance with previ-
ous reports demonstrating increased inflammatory sign-
aling in the disease [12, 20].

Our study also shed light into the molecular patho-
genesis of MDS at the transcriptional or epigenetic reg-
ulation level. Transcription factor analysis results show 
that the regulators of each cell type differ between MDS 
patients and healthy donors. Each MDS patients showed 
alterations of specific regulons, indicating that the het-
erogeneity of the disease, which is not possible to be 
observed by regular flow cytometry. When comparing 
the healthy control and MDS group, we also notice that 
the ranks of regulons in HC appear to be diversified while 
that in MDS is dominated by one or two regulons. Impor-
tantly, we prioritized that HMGA1 should be appreciated 
in the future MDS studies. HMGA1 is involved in vari-
ous cellular processes such as transcriptional regulation, 
DNA repair, cell differentiation and regulated cell death. 
In our MDS patients (3 out of 5), the activity of HMGA1 
regulon is significantly higher than in the healthy group. 
When comparing its activity within the MDS group, we 
also noticed that HMGA1 expression level in the high-
risk group of MDS is significantly higher than that in the 
low-risk group. We also validated the result using addi-
tional public datasets. This observation is in accordance 
with previous reports demonstrating distinctly upregu-
lated of HMGA1 in these MDS [10] and AML patients 
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[23]. We think the upregulation of HMGA1 contributes 
to the pathogenesis of MDS likely through blocking nor-
mal myeloid differentiation. HMGA1 gene may play a 
key role in controlling the occurrence and progression 
of MDS patients. The risk degree of MDS patients could 
be assessed based on the expression level of the HMGA1 
gene.

In addition, we also found that one of the HMG fam-
ily memers HMGB1 is highly expressed in MDS datasets 
from GSE245452 and GSE180298. Kam et al. discovered 
that High Mobility Group Box-1 (HMGB1) had increased 
expression in primary CD34+ MDS cells compared to 
healthy CD34 + hematopoietic cells [18]. It has been 
suggested that HMGB1 may be a very useful biomarker 
for the diagnosis and prognosis of hematological malig-
nancies [44]. Our results are consistent with these stud-
ies, indicating that HMGB1 is also a therapeutic target 
in MDS. In addition, our study found SMAD1 regulon 
was active in patient MDS1, showing its highest activity 
in HSC and GMP cell types. Patient MDS1 presented an 
ubiquitous activity of the regulon guided by POU2F2, a 
transcriptional factor overexpressed in AML. SMAD1 
and POU2F2 has been shown to be highly active in 
patients with MDS [3].

Finally, in addition to interferon signaling mentioned 
above, we also observed changes in the immune micro-
environment of MDS patients. We showed that T cells 
exhibit a higher level of activation in the high-risk MDS 
group. Single-cell omic datasets with genetic mutation 
profiles and gene expression will further assist under-
standing the interaction of malignant and non-malignant 
cells. Nonetheless, our study certainly has several limi-
tations since the mutant or malignant cells in the BM 
scRNA-seq dataset are not well defined in the present 
study. Including the mutation information, malignant 
information, and even lineage/phylogeny information 
in the datasets will greatly assist us stratify different BM 
cells in the MDS pathogenesis.

In the future, if feasible, larger cohorts for comparing 
MDS with other blood disorders including myeloid leu-
kemia, VEXAS, aplastic anemia are desired. Extending 
the cohort to 50 MDS patients or 100 MDS patients from 
multiple centers, or longitudinal collecting MDS BM 
samples with drug treatments will also assist us to have 
better understanding the development of this compli-
cated blood disorders.

Conclusions
As an initial outcome of our on-going large  cohort of 
MDS single cell omics project, we successfully profiled 
deficient hematopoiesis in the high-risk MDS group 
using unsorted bone marrow cells  in the  study. We 
developed several computing tools or working pipelines 

to determine the alterations in MDS and its relation-
ship with AML or other blood disorders. Importantly, 
our study warrants that chromatin-dynamics-related 
epigenetic regulator HMGA1 is reprogrammed during 
hematopoiesis in MDS. Targeting HMGA1 should be 
appreciated for interfere MDS development. In sum-
mary, the present study warrants that single cell omics 
studies generate valuable and comprehensive cell atlas 
for understanding blood disorders including MDS.
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