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Abstract
Background  Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and second leading 
cause of cancer-related deaths worldwide. The heightened mortality associated with HCC is largely attributed to its 
propensity for metastasis, which cannot be achieved without remodeling or loss of the basement membrane (BM). 
Despite advancements in targeted therapies and immunotherapies, resistance and limited efficacy in late-stage 
HCC underscore the urgent need for better therapeutic options and early diagnostic biomarkers. Our study aimed to 
address these gaps by investigating and evaluating potential biomarkers to improve survival outcomes and treatment 
efficacy in patients with HCC.

Method  In this study, we collected the transcriptome sequencing, clinical, and mutation data of 424 patients with 
HCC from The Cancer Genome Atlas (TCGA) and 240 from the International Cancer Genome Consortium (ICGC) 
databases. We then constructed and validated a prognostic model based on metastasis and basement membrane-
related genes (MBRGs) using univariate and multivariate Cox regression analyses. Five immune-related algorithms 
(CIBERSORT, QUANTISEQ, MCP counter, ssGSEA, and TIMER) were then utilized to examine the immune landscape 
and activity across high- and low-risk groups. We also analyzed Tumor Mutation Burden (TMB) values, Tumor Immune 
Dysfunction and Exclusion (TIDE) scores, mutation frequency, and immune checkpoint gene expression to evaluate 
immune treatment sensitivity. We analyzed integrin subunit alpha 3 (ITGA3) expression in HCC by performing single-
cell RNA sequencing (scRNA-seq) analysis using the TISCH 2.0 database. Lastly, wound healing and transwell assays 
were conducted to elucidate the role of ITGA3 in tumor metastasis.
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Background
Hepatocellular carcinoma (HCC) is the most com-
mon primary liver cancer and the second leading cause 
of cancer-related deaths worldwide [1]. Due to its rapid 
growth and early metastasis, the mortality rate for HCC 
is extremely high, especially in patients with tumor 
metastasis [2]. Early detection and diagnosis play a piv-
otal role in determining the prognosis of patients with 
cancer, and early treatments such as surgical resection 
and liver transplantation offer a potential cure yet remain 
challenging due to the asymptomatic nature of early-
stage HCC. In recent years, progress has been made in 
the treatment of HCC through targeted therapies such 
as sorafenib and lenvatinib, which target tumor growth 
pathways, and immune checkpoint inhibitors (ICIs) like 
atilizumab and bevacizumab, which, compared to classic 
first-line sorafenib-based chemotherapy, are associated 
with a better prognosis [3, 4]. However, despite these 
advancements, resistance to treatments like sorafenib 
and limited efficacy in late-stage HCC highlight the 
urgent need for improved therapeutic options and bio-
markers for the monitoring and early diagnosis of HCC, 
which have not exhibited significant improvements [5]. 
Therefore, this study aimed to investigate and evalu-
ate potential biomarkers to provide robust support for 
improving the survival outcomes and treatment efficacy 
in patients with HCC, with a particular focus on over-
coming drug resistance, enhancing early detection, and 
offering individualized treatment plans.

Tumor metastasis manifests as the penetration of 
tumor cells through the basement membrane (BM) 
from the primary lesion site to distant organs to form 
new metastases [6]. The BM is a thin layer of extracel-
lular matrix located beneath epithelial and endothelial 
tissues. It serves as a structural barrier, primarily com-
posed of laminin and collagen IV proteins, which hinder 
the invasion, intravasation, and extravasation of cancer 
cells [7]. The BM is also considered a major obstacle that 
tumor cells must overcome repeatedly to facilitate the 

completion of metastasis [7]. Recent studies have shown 
that tumor cells can invade by altering the stiffness 
and tension of the BM [8]. In addition, upregulation of 
COL4A1, a gene encoding collagen IV, promotes the pro-
liferation and metastasis of HCC cells via FAK-Src sig-
naling [9], and overexpression of LAMC1 and LAMA4, 
genes encoding subunits of laminin, predicts poor prog-
nosis and enhances HCC cell invasion and migration [10, 
11]. Notably, some studies suggest that the expression 
of the BM genes CTSA, ITGA6, ITGA8, and LAMC1 in 
HCC is significantly elevated compared to that in normal 
tissues, both at the mRNA and protein levels, and these 
genes therefore have an extremely high diagnostic value 
[12]. Moreover, the expression of the metastasis genes 
SIX4, PRMT9, and ONECUT2 are important risk factors 
for recurrence and survival in patients with HCC and 
could serve as prognostic biomarkers [13–15]. Although 
both metastasis and BM genes expression have signifi-
cant prognostic significance in HCC, prognostic models 
that combine both metastasis and BM genes to elucidate 
the overall impact of these factors on the prognostic sig-
nificance, characteristics of the tumor microenviron-
ment (TME), immunotherapy, and metastasis of HCC are 
lacking.

TME is closely associated with tumorigenesis and the 
escape of tumor cells from the immune system, as well 
as the efficacy and clinical prognosis of tumors [16]. The 
mechanism of tumor metastasis involving the BM has 
been shown to be closely related to the TME. Previous 
literature has indicated that the expression of BM genes 
is positively correlated with immune scores in HCC, sug-
gesting that BM genes have a similar impact in the TME 
[16]. For example, in addition to secreting signaling mol-
ecules that facilitate tumor cell invasion, immune cells 
can traverse the BM. Additionally, numerous studies have 
demonstrated that T cells can be stimulated, prolifer-
ate, adhere, and migrate under the regulation of various 
components of the BM, thereby promoting tumor growth 
and metastasis [17–20]. In particular, regulatory T cells 

Results  Patients with HCC were categorized into high- and low-risk groups based on the median values, with 
higher risk scores indicating worse overall survival. Five immune-related algorithms revealed that the abundance of 
immune cells, particularly T cells, was greater in the high-risk group than in the low-risk group. The high-risk group 
also exhibited a higher TMB value, mutation frequency, and immune checkpoint gene expression and a lower tumor 
TIDE score, suggesting the potential for better immunotherapy outcomes. Additionally, scRNA-seq analysis revealed 
higher ITGA3 expression in tumor cells compared with normal hepatocytes. Wound healing scratch and transwell cell 
migration assays revealed that overexpression of the MBRG ITGA3 enhanced migration of HCC HepG2 cells.

Conclusion  This study established a direct molecular correlation between metastasis and BM, encompassing clinical 
features, tumor microenvironment, and immune response, thereby offering valuable insights for predicting clinical 
outcomes and immunotherapy responses in HCC.
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(Tregs) indirectly promote tumor cell metastasis by sup-
pressing antitumor immune responses [18]. Furthermore, 
macrophages promote cancer cell endocytosis [19] and 
degrade the BM by secreting several matrix metallopro-
teinases (MMPs) [20]. Notably, in HCC, cohorts with 
high expression of the BM gene MMP9 are more suscep-
tible to immunotherapy and exhibit increased CD8 T-cell 
infiltration with functional failure due to high expres-
sion of immune checkpoints. Thus, MMP9 may serve 
as a predictor of the immune profile of HCC and the 
response to immunotherapy [21]. Although significant 
research has investigated the impact of the TME on can-
cer, whether immune cells can enhance the invasion of 
HCC by mechanically modifying the BM is still not fully 
understood. Therefore, assessing the immunological sta-
tus of HCC based on metastasis and BM genes is impera-
tive to advance the development of immunotherapies and 
enhance the prognosis of patients with cancer.

In our study, a prognostic model consisting of 12 genes 
was constructed for HCC based on metastasis and base-
ment membrane-related genes (MBRGs), one of which, 
ITGA3, was further analyzed to investigate its novel role 
in the invasion of human HCC HepG2cells. Physicians 
should use the results of this study to provide more pre-
cise and individualized therapeutic choices for patients 
with HCC.

Materials and methods
Data resources
A total of 424 HCC patients were screened from The 
Cancer Genome Atlas (TCGA) database (https://por-
tal.gdc.cancer.gov/). The liver hepatocellular carcinoma 
(LIHC)-Japan (JP) cohort, obtained from the Interna-
tional Cancer Genome Consortium (ICGC) database 
(https://dcc.icgc.org/), was used for external validation. 
Expression data, clinical information, and mutation data 
of the 424 HCC samples(374 tumor samples and 50 nor-
mal samples) for signature establishment were obtained 
from TCGA. The expression data and clinical informa-
tion of 240 HCC samples for external validation were 
obtained from the LIHC-JP cohort acquired from the 
ICGC database. The BM genes were obtained from pre-
vious research [22]. Metastasis genes were obtained 
from the Human Cancer Metastasis Database (HCMDB; 
https://ngdc.cncb.ac.cn/) [23].

Differential analysis and univariate cox regression analysis 
in TCGA-LIHC
We initially obtained 424 TCGA-LIHC patient sam-
ples (374 tumor and 50 normal patients) containing 
59,427 genes (FPKM ) from the TCGA database. Sub-
sequently, we performed differential analysis of these 
genes utilizing the “limma” R package [24]. Applying the 

following screening criteria for differential analysis of 
variance: log2|Fold change| ≥ 1 and false discovery rate 
(FDR) < 0.05. Ultimately, we obtained 13,095 differentially 
expressed genes (DEGs) in TCGA-LIHC. We obtained 
2165 metastasis genes from the HCMDB database and 
224 BM genes from previous research [22]. We took the 
intersection of the 13,095 DEGs, 2165 metastasis genes, 
and 224 BM genes from TCGA-LIHC and concluded 
with 35 differentially expressed metastasis and BM genes. 
Next, 12 DEGs related to prognosis in metastasis and BM 
were obtained utilizing univariate Cox regression analysis 
(p < 0.05) [25].

Construction and validation of a prognostic model for 
MBRGs
We further constructed a prognostic risk model on 
the basis of 12 MBRGs using multivariate Cox regres-
sion analysis with the 12 prognostic-related metastasis 
and BM genes derived from the univariate Cox regres-
sion analysis [26]. The risk score was determined using 
standardized HCC mRNA expression data from TCGA 
dataset and was calculated using the following equa-
tion: patient risk score =∑(each gene expression level 
× corresponding coefficient) [27]. Patients with HCC 
were divided into high- and low-risk groups according 
to the median risk score, and their overall survival (OS) 
was compared [28]. The LIHC cohort from the ICGC 
database was used for validation. The expression lev-
els of each MBRG were normalized, and the risk score 
was calculated using the aforementioned formula. 
Subsequently, patients with LIHC in the ICGC cohort 
were divided into high- and low-risk groups based on 
median risk scores, allowing for the comparison of OS 
between the two groups. Additionally, the “stats” R 
package was employed to conduct principal component 
analysis (PCA) and t-distributed stochastic neighbor 
embedding (t-SNE) on the MBRGs prognostic model 
for patients in the high- and low-risk groups, as previ-
ously described [29].

Nomogram construction and independent prognostic 
analysis of TCGA-LIHC data
Univariate and multivariate Cox regression analyses were 
used to identify independent risk factors in patients with 
HCC. Based on the results of the multivariate Cox analy-
ses, the R package “RMS” was applied to create nomo-
gram to guide clinical decision-making. We constructed 
a nomogram using age, grade, and tumor-node-metasta-
sis (TNM) staging combined with risk scores in TCGA-
LIHC dataset and further validated its accuracy using 1-, 
2- and 3-year calibration curves [30]. Finally, the concor-
dance index calibration method was used to verify the 
accuracy of our prognostic model.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://ngdc.cncb.ac.cn/
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Functional enrichment and gene set enrichment analyses
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
Genomes (KEGG) analyses were performed on the 
high- and low-risk groups of patients with HCC using 
the “clusterProfiler” R package [31]. Subsequently, gene 
set enrichment analysis (GSEA) was conducted to iden-
tify the gene sets (c2.cp.kegg.v2022.1.Hs.symbols.gmt) 
(MSigDB database, https://www.gsea-msigdb.org) with 
consistent but insignificant differential expression trends 
to explore the relationship between the epithelial-mes-
enchymal transition (EMT) pathway which involves cells 
penetrating the BM and confers metastatic properties 
upon cancer cells, and the expression levels of each prog-
nostic gene [32].

Immunological analysis and immunotherapy
The single-sample GSEA (ssGSEA) algorithm was used 
to analyze the abundance of 16 immune cell types in 
each LIHC sample, implemented through the “gsva” R 
package. The immune landscape of the high- and low-
risk groups of the MBRGs model was evaluated using 
the Cell-type Identification By Estimating Relative Sub-
sets Of RNA Transcripts (CIBERSORT) [33], Quanti-
fying Tumor Immune Signature Events (QUANTISEQ) 
[34], Microenvironment Cell Populations (MCP) coun-
ter [35], ssGSEA [36], and Tumor Immune Estimation 
Resource (TIMER) [37] algorithms. The expression of 
immune checkpoint genes was examined for differ-
ences between the two groups to evaluate treatment 
sensitivity.

Mutation analysis
The mutation data of patients from the TCGA cohort 
were extracted for the analysis of mutation conditions 
and gene copy number variations (CNV) of prognos-
tic genes. Survival was estimated for patients in both 
the high- and low-risk groups, as well as for those with 
high and low mutation burdens. Somatic mutations in 
TCGA high- and low-risk groups were analyzed using the 
“mafTools” package in R [38]. Subsequently, the tumor 
mutation burden (TMB) of the two groups of patients 
was evaluated.

Drug sensitivity analyses
The drug half-maximal inhibitor concentration (IC50) 
analysis for the high- and low-risk groups of patients 
with HCC was conducted using the “pRRophetic” pack-
age in R [39], based on the Genomics of Drug Sensitivity 
in Cancer database (GDSC, https://www.cancerrxgene.
org/) [40], and we analyzed the gene expression of spe-
cific drug targets using the DrugBank database (www.
drugbank.ca).

Protein-protein interaction network
A protein-protein interaction (PPI) network was devel-
oped using the GeneMAINA database (https://genema-
nia.org/) to analyze the co-expression of and interaction 
between key proteins.

Single cell RNA sequencing analysis based on the tumor 
immune single-cell hub 2.0 database
We utilized the Tumor Immune Single-cell Hub 2.0 
(TISCH 2.0) database (http://tisch.comp-genomics.org/) 
for single-cell RNA sequencing (scRNA-seq) analysis 
of ITGA3 in HCC [41]. We acquired two HCC datas-
ets from this database, GSE166635 [42], which contains 
22,631 cells from two samples, and GSE146409 [43] 
which contains 2916 cells from six samples.

Immunohistochemical analysis
The Human Protein Atlas (HPA) database (https://
www.proteinatlas.org/) is a comprehensive proteome 
atlas that provides information on the distribution of 
proteins in human tissues and cells. We downloaded 
immunohistochemical images of tumor tissues and their 
corresponding normal tissues from the HPA to analyze 
the differential expression of ITGA3 at the protein level 
[44].

Cell lines and culture
The human HCC cell line HepG2 was purchased from 
Procell Biotech (Wuhan, China). The cells were cultured 
in Dulbecco’s Modified Eagle Medium (DMEM) high-
sugar medium (Procell, Wuhan, China) supplemented 
with 10% fetal bovine serum (Procell, Wuhan, China) at 
37 °C in a 5% CO2 atmosphere.

Lentiviral vector transfection
ITGA3-overxpressing (ITGA3-OE) and non-targeted 
control (vector) lentiviral vectors were constructed and 
packaged by LeapWal Biotech (Hunan, China). HepG2 
cells at 50% confluency were transfected with lentiviral 
particles using polybrene according to the manufacturer’s 
guidelines.

Reverse transcription-quantitative PCR
After incubation with ITGA3-OE or vector lentiviral par-
ticles for 16 h, the RNA isolation reagent TRIzol (Takara, 
Dalian, China) was used to extract total RNA from the 
cells for reverse transcription-quantitative PCR (RT-
qPCR). cDNA was obtained from mRNA with a Prime-
script™ RT reagent kit (Takara). A SYBR Green PCR 
kit (GeneCoepia) was used for amplification using the 
Light Cycler systemABI QuantStudio1 (Thermo Fisher 
Scientific, USA). The primers used for amplification of 
ITGA3 and the internal control β-actin were as follows: 
sense 5′-​C​T​A​C​G​A​A​G​T​C​A​G​C​A​A​T​G​G​C​A​A​G​T​G-3′ and 

https://www.gsea-msigdb.org
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
http://www.drugbank.ca
http://www.drugbank.ca
https://genemania.org/
https://genemania.org/
http://tisch.comp-genomics.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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antisense 5′-​G​G​T​T​G​A​T​A​A​G​G​T​C​T​C​C​A​G​G​T​G​G​T​C-3′ 
for ITGA3; sense 5′-​T​G​A​C​G​T​G​G​A​C​A​T​C​C​G​C​A​A​A​G-3′ 
and antisense 5′-​C​T​G​G​A​A​G​G​T​G​G​A​C​A​G​C​G​A​G​G-3′ 
for β-actin. The cycling program used was as follows: 
denaturation at 95  °C for 30  s, followed by 40 cycles of 
denaturing at 95  °C for 10  s, and annealing at 60  °C for 
30 s. The results were analyzed using the 2−ΔΔCt method 
[45].

Cell proliferation assay
Approximately 5 × 103 HepG2 cells were seeded in 6-well 
plates and incubated with ITGA3-OE or vector lentiviral 
particles. After incubation for 24 and 48 h, cell counting 
kit-8 (CCK-8) reagent (Beyotime, Shanghai, China) was 
added to each well, and then the cells were incubated for 
another 2  h at 37  °C. The optical density value of each 
well was measured at 450 nm using a microplate reader 
(BioTek, Winooski, VT, USA) [46].

Wound healing scratch assay
After incubation with ITGA3-OE or vector lentiviral par-
ticles in a 6-well plate, HepG2 cells were serum-starved 
and artificial scratch wounds were made using a 200-µL 
pipette tip. The cells were then washed twice with phos-
phate-buffered saline. Cell migration was imaged at the 
indicated time points.

Transwell cell migration assay
HepG2 cells (1 × 105) transfected with ITGA3-OE or vec-
tor lentiviral particles for 16  h were suspended in 200 
µL of serum-free DMEM high sugar medium and then 
added to the upper chamber of a transwell migration 
plate, and 600 µL of complete media was added to the 
lower chamber. After 48 h of incubation, the cells in the 
upper chamber were removed using cotton swabs, and 
the cells that migrated through the polyvinylidene fluo-
ride membrane were fixed in 4% paraformaldehyde for 
10 min, stained with crystal violet dye (Solarbio, Beijing, 
China), and counted under a microscope (three fields per 
chamber).

Data analysis
All statistical analyses were conducted using R software 
(version 4.2). Gene expression levels between tumor 
and adjacent normal tissues were compared using inde-
pendent-sample t-tests. Specifically, we examined the 
differences in immune cell infiltration and activation of 
immune pathways between these two groups, and the 
statistical significance of the proportional differences was 
assessed using chi-squared tests. The coefficients of the 
prognostic characteristics were calculated using multi-
variable Cox regression analysis. Kaplan-Meier curves 
were used to generate survival curves for the high- and 
low-risk groups, and we used Pearson’s correlation test to 

analyze the correlation between variables, employing the 
log-rank test to assess the statistical significance of the 
differences. Univariate and multivariate Cox regression 
analyses were conducted to determine the independent 
prognostic factors for OS, with variables reaching sta-
tistical significance used in the multivariate Cox propor-
tional hazards model. Statistical significance was set at 
p < 0.05 for all tests. Our flowchart was created using Bio-
render website (biorender.com).  Clinical features charts 
were created using Xiantao bioinformatics tool (http://
www.xiantaozi.com/).

Results
Identification and analysis of prognostic genes
Figure 1 shows the workflow chart of the study. We ini-
tially obtained 424 TCGA-LIHC patient samples (374 
tumor and 50 normal) containing 59,427 genes (FPKM) 
from the TCGA database. Subsequently, we performed 
differential analysis of these genes, applying the screen-
ing criteria of log2 |Fold change| ≥ 1 and FDR < 0.05 for 
differential analysis of variance. Ultimately, we obtained 
13,095 DEGs in TCGA-LIHC. We obtained 2165 metas-
tasis genes from the HCMDB database and 224 BM 
genes from previous research. We took the intersection 
of the 13,095 DEGs, 2165 metastasis genes, and 224 BM 
genes from TCGA-LIHC and concluded with 35 differ-
entially expressed metastasis and BM intersection genes 
(Fig.  2A). Among the 35 genes, 32 were up-regulated 
and 3 were down-regulated (Fig. 2B). Subsequently, uni-
variate Cox regression analysis of these 35 differentially 
expressed metastasis and BM intersection genes was 
used to identify 12 prognostic genes, all of which were 
significantly related to OS, with hazard ratio > 1 in HCC 
(all p < 0.05). In addition, 12 prognostic genes were upreg-
ulated in tumor tissues (Fig. 2C, D). The correlation net-
work results showed a positive correlation between the 
prognostic genes (Fig. S1). These results suggest that the 
high expression of prognostic genes predict a poor prog-
nosis. Next, the mutation status of prognostic genes and 
the incidence of CNVs in HCC were assessed; out of 371 
HCC cases, 35 (9.43%) had mutations in metastasis- and 
BM-related genes, including ROBO1 (3%), ITGB5 (2%), 
ITGAM (1%), ITGA3 (1%), ITGAV (1%), ITGA2 (1%), and 
MMP14 (1%) (Fig. 2E). In addition, CNVs were prevalent 
in most of the prognostic genes. Among them, ITGA3 
and ITGA2 were mainly subjected to amplifications, 
whereas ADAM9, ITGAM, MMP1 and MMP14 were 
mainly subjected to deletions (Fig.  2F). Subsequently, 
we speculated on the survival analyses of the prognostic 
genes and found that the expression levels of prognos-
tic genes were significantly different for patient survival, 
with elevated expression of the prognostic genes indicat-
ing a poorer prognosis (Fig. S2) (all p < 0.01).

http://www.xiantaozi.com/
http://www.xiantaozi.com/
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Fig. 1  Workflow chart of the study, created with BioRender. Abbreviations: BM, basement membrane; CNV, copy number variable; GO, Gene Ontology; 
EMT, epithelial-mesenchymal transition; GSEA, gene set enrichment analysis; ICGC, International Cancer Genome Consortium; ITGA3, integrin subunit 
alpha 3; KEGG, Kyoto Encyclopedia of Genes and Genomes; MBRGs, metastasis and basement membrane-related genes; PCA, principal component analy-
sis; ROC, receiver operating characteristic; ssGSEA, single-sample gene set enrichment analysis; TCGA, The Cancer Genome Atlas; TIDE, tumor immune 
dysfunction and exclusion; TMB, tumor mutation burden; t-SNE, t-distributed stochastic neighbor embedding
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Construction of an MBRGs prognostic model in TCGA 
database
Using the 12 prognostic genes derived from univariate 
Cox regression analysis, we further developed a prog-
nostic model based on these 12 MRBGs using multivar-
iate Cox regression analysis. Multivariate Cox analysis 
was performed to obtain the risk coefficients of each 
MBRG, which are shown in Table S1. The risk score 
was calculated using the following formula, wherein 
“exp.” denotes the expression level of the corresponding 
MBRG:

	

Riskcore = (0.556 ∗ UNC5B exp.) + (0.1291 ∗ ROBO1 exp.)
+ (0.1482 ∗MMP14 exp.) + (0.7548 ∗MMP1 exp.)

+ (0.3003 ∗ ITGB5 exp.) + (0.4213 ∗ ITGAV exp.)

+ (− 0.2984 ∗ ITGAM exp.) + (− 0.3605 ∗ ITGA5 exp.)
+ (− 0.7239 ∗ ITGA3 exp.) + (− 0.1902 ∗ ITGA2 exp.)
+ (0.9724 ∗ CD151 exp.) + (0.6254 ∗ ADAM9 exp.)

Using the median risk score, we categorized the patients 
into low- and high-risk groups. In TCGA dataset, we 
observed that the low-risk group had significantly lon-
ger survival than the high-risk group (p < 0.001) (Fig. 3A). 
In addition, the receiver operating characteristic (ROC) 
curve demonstrated that this MBRGs-based prognostic 
model was highly reliable, with an area under the curve 
(AUC) of 0.749, 0.714, and 0.706 for 1-, 2-, and 3-year 

Fig. 2  Prognosis-related DEGs screened in TCGA-LIHC cohort. (A) Venn diagram illustrating the overlap of datasets. (B) Volcano plot of DEGs related to 
prognosis in metastasis and BM between tumor and normal tissues. (C) Comparative expression levels of 12 DEGs related to prognosis in metastasis 
and BM in tumor tissues versus normal tissues. (D) Forest plot demonstrating the prognostic value of 12 DEGs related to prognosis in metastasis and BM 
for HCC. (E) MAF tool analysis of 12 DEGs related to prognosis in metastasis and BM. (F) CNV analysis of 12 DEGs related to prognosis in metastasis and 
BM. Abbreviations: BM, basement membrane; CNV, copy number variable; DEG, differentially expressed gene; HCC, hepatocellular carcinoma; LIHC, liver 
hepatocellular carcinoma; MAF, mutation annotation format; TCGA, The Cancer Genome Atlas
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survival, respectively (Fig.  3B). The risk score plot and 
survival status analysis revealed that the low-risk group 
exhibited favorable survival outcomes with an extended 
OS duration. Furthermore, all the risk genes were upreg-
ulated in the high-risk subgroup (Fig.  3C). PCA and 
t-SNE analysis showed that the patients in the two sub-
groups were further divided into two distribution pat-
terns (Fig.  3D). These findings reveal that the MBRGs 
prognostic model can be used to accurately forecast the 
clinical trajectories of patients with HCC.

Validation of the MBRGs prognostic model in the ICGC 
database
The LIHC-JP cohort from the ICGC database was used 
as the validation group to evaluate the universality of 
the MBRGs prognostic model in the training cohort. 
The same formula used for TCGA cohort was used to 
calculate the risk score for each patient in the valida-
tion cohorts. The results revealed that patients in the 
high-risk group had a significantly poorer survival status 
than those in the low-risk group (p = 0.001) (Fig. 3E). Fur-
thermore, ROC analysis demonstrated that the MBRGs 
prognostic model had AUC values of 0.728, 0.731, and 
0.683 for 1-, 2-, and 3-year survival, respectively (Fig. 3F). 
The distribution plot depicting the risk score, survival 

Fig. 3  Construction and validation of the MBRGs prognostic model. (A) Kaplan-Meier curve displaying OS of TCGA dataset. (B) ROC curve for TCGA 
dataset. (C) Risk curve and survival status for TCGA dataset. (D) PCA and t-SNE graph for TCGA dataset. (E) Kaplan-Meier curve displaying OS of the ICGC 
dataset. (F) ROC curve for the ICGC dataset. (G) Risk curve and survival status for the ICGC dataset. (H) PCA and t-SNE graph for the ICGC dataset. Ab-
breviations: AUC, area under the curve; ICGC, International Cancer Genome Consortium; MBRGs, metastasis and basement membrane-related genes; OS, 
overall survival; PCA, principal component analysis; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas; t-SNE, t-distributed stochastic 
neighbor embedding
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status, and expression of the 12 genes indicated a corre-
lation between an increased risk score and higher mor-
tality rates (Fig.  3G). PCA and t-SNE revealed distinct 
directional distributions between the two risk subgroups 
(Fig. 3H).

Analysis of the correlation between the MBRGs prognostic 
model and clinical features
We conducted further analyses to assess the value of 
the MRBGs prognostic model in different groups strati-
fied by clinical factors in TCGA cohort. Patients with 
advanced tumor grade, stage and T stage exhibited 
higher risk scores (all p < 0.05) (Fig.  4A–C). In addition, 
we found that the high-risk group was more prone to vas-
cular invasion (p < 0.05) (Fig.  4D) and observed a trend 
towards increased risk scores in patients with positive 
lymph nodes and distant metastasis (Fig. 4E, F).

Independent prognostic analyses of risk scores and 
construction of a predictive nomogram model
Univariate and multivariate Cox analyses were used to 
explore the independent prognostic factors for LIHC. The 
results showed that the risk score and stage were signifi-
cantly associated with OS, suggesting that the risk score 
of the MRBG prognostic model constructed using the 
TCGA-LIHC cohort was an independent prognostic fac-
tor for patients with HCC (p < 0.01) (Fig. 5A, B). There-
fore, we created a nomogram to assess patient prognosis 

more accurately based on independent predictive indica-
tors of HCC (Fig. 5C). In addition, the calibration curves 
(1, 2, and 3 years) demonstrated favorable performance 
during the internal validation of the nomogram (Fig. 5D). 
As shown in Fig. 5E, F, the nomogram had a better pre-
dictive ability when combined with clinical information, 
with an AUC of 0.790. Overall, using an MBRGs-based 
prognostic model for patients with HCC integrated with 
clinical information, a nomogram with superior credibil-
ity and accuracy was successfully constructed.

MBRGs score of HCC is positively correlated with EMT 
activity
Loss of the BM, which occurs during EMT, is believed to 
be a crucial step in the development of tumor metasta-
sis and malignancy and led us to investigate the correla-
tion between MBRGs score and the EMT pathway. Both 
KEGG and GO enrichment analyses revealed that the 
previously identified DEGs were significantly enriched 
in numerous pathways related to immunity and tumor 
metastasis (Fig.  6A-B). In the GSEA, the high-risk sub-
group was mainly enriched in cell proliferation-related 
pathways and the low-risk group was mainly enriched 
in cell metabolism-related pathways (Fig. 6C) (Table S2). 
These results provide insights into the importance of the 
BM in HCC progression and metastasis. Notably, GSEA 
results suggested that the poor prognosis of the high-risk 
subgroup was mainly due to cell proliferation.

Fig. 4  Analysis of the correlation between the MBRGs prognostic model and clinical features. (A) Correlation analysis between tumor grade and risk 
score. (B) Correlation analysis between overall cancer stage and risk score. (C) Correlation analysis between T stage and risk score. (D) Analysis of vascular 
invasion. (E) Correlation analysis between M stage and risk score. (F) Correlation analysis between N stage and risk score. *p < 0.05, **p < 0.01, ***p < 0.001. 
Abbreviations: M, metastasis (stage); MBRGs, metastasis and basement membrane-related genes; N, node (stage); T, tumor (stage)
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Finally, correlation analysis of scatter plots revealed a 
strong positive correlation between the EMT pathway 
and expression of the MBRG ITGA3 (Fig. 6D).

Immunological analysis of patients with LIHC in various 
risk groups
To further explore the correlation between risk score 
and immune status, we evaluated the enrichment scores 
of 16 immune cell types using ssGSEA in the high- and 
low-risk groups in TCGA. The results showed significant 

differences in immune cell infiltration between the two 
subgroups. For example, activated dendritic cells, imma-
ture dendritic cells, macrophages, and Tregs were sig-
nificantly enriched in the high-risk subgroup, whereas 
B cells, mast cells, natural killer (NK) cells, and other 
immune cells were mainly enriched in the low-risk sub-
group (p < 0.05) (Fig.  7A). Besides, in immune function, 
MHC_class_I had higher levels in the high-risk group, 
while Cytolytic_activity and Type_II_IFN_Reponse had 
higher levels in the low-risk group (p < 0.05) (Fig.  7B). 

Fig. 5  Independent prognostic analyses of risk scores and construction of a predictive nomogram model. (A) Univariate analysis of TCGA cohort. (B) 
Multivariate analysis of TCGA cohort. (C) Nomogram for predicting survival. (D) Calibration curve of the nomogram to assess accuracy. (E) Multivariate 
ROC curve for tumor grade, age, stage, gender, nomogram and risk score. (F) Concordance index in the model performance evaluation. Abbreviations: 
AUC, area under the curve; M, metastasis (stage); N, node (stage); OS, overall survival; ROC, receiver operating characteristic; T, tumor (stage); TCGA, The 
Cancer Genome Atlas
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In addition, ITGA3 expression was positively correlated 
with a variety of immune cells and immune functions, 
such as macrophages and Tregs (p < 0.05) (Fig.  7C–E). 
These results revealed a similar immune status between 
the ICGC and TCGA cohorts and suggest that the poor 
prognosis of patients in the high-risk group could be 
caused by high tumor-associated macrophages (TAMs) 
status and Treg levels and low levels of NK cells.

In the TIMER, CIBERSORT-ABS, QUANTISEQ, and 
MCP counter algorithms, immune cells, particularly T 
cells, were more abundant in the high-risk group (Fig. 
S3), indicating that immunotherapy is more beneficial in 
the high-risk category.

Fig. 6  Functional enrichment analyses and correlation of MBRGs expression levels with the EMT pathway. (A) GO enrichment pathway analysis plot. (B) 
KEGG enrichment pathway analysis plot. (C) GSEA. (D) Scatterplots illustrating the expression correlation between the 10 signature genes and the EMT 
pathway in the hallmark gene set. Abbreviations: EMT, epithelial-mesenchymal transition; GO, Gene Ontology; GSEA, gene set enrichment analysis; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; MBRGs, metastasis and basement membrane-related genes
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MBRGs mutations and immunotherapeutic response: TMD, 
tumor immune dysfunction and exclusion, and immune 
checkpoint profiling in different risk groups
Considering that TMB values, tumor immune dysfunc-
tion and exclusion (TIDE) score, mutation frequency, 
and expression of immune checkpoint genes are closely 
related to the efficacy of immunotherapy, they were all 
estimated based on MRBGs in the high- and low-risk 
groups. TMB quantification analyses demonstrated that 
the high-risk group had a higher TMB value (Fig. 8A). As 
shown in Fig. 8B, the TIDE score was lower in the high-
risk group, indicating a lower likelihood of immune eva-
sion. Subsequently, we used the “mafTools” R package 
to further investigate the distribution pattern of the top 
15 TCGA-based somatic mutations between the high- 
and low-risk groups (p < 0.01). TP53 was identified as 
the most frequently mutated gene in both subgroups, 
with the high-risk group exhibiting an 18% higher muta-
tion frequency than the low-risk group (Fig.  8C, D). In 
addition, TTN, LRR1B and OBSCN were significantly 
upregulated in the high risk group and CTNNB1 was 
significantly downregulated in the low-risk group. Over-
all, the high-risk group had higher mutation frequencies 
across all factors, indicating that immunotherapy had 

a greater impact. Moreover, additional investigation of 
the differences in the expression of immune checkpoint 
blockage factors between the high- and low-risk groups 
revealed that PD-1, CTLA4, and PD-L1 were highly 
expressed in the high-risk group (p < 0.05) (Fig.  8E). 
In summary, the high-risk group had a higher TMB 
value, a higher mutation frequency, increased immune 
checkpoint gene expression, and a lower TIDE score, 
suggesting that the high-risk group may have better 
immunotherapy outcomes.

Drug sensitivity analysis
To identify potential therapeutic drugs for patients with 
HCC, we used the pRophetic algorithm to explore the 
correlation between the MBRG risk scores of patients 
with HCC and their response to four commonly used 
anticancer drugs (axitinib, anlotinib, sorafenib, and suni-
tinib). By calculating the IC50 values for these drugs 
in both the low- and high-risk groups, patients in the 
low-risk group were found to exhibit greater sensitiv-
ity to axitinib, erlotinib, and sorafenib whereas patients 
in the high-risk group showed increased sensitivity to 
sunitinib (Fig.  9A). These trends were supported by the 
positive correlation between the IC50 values for axitinib, 

Fig. 7  Immunological analysis of LIHC patients in respective risk groups. (A, B) ssGSEA scores for immune cells and immune function in TCGA cohort. 
(C) Correlation between ITGA3 expression and enrichment of immune cells. (D) Correlation between ITGA3 expression and macrophage enrichment. (E) 
Correlation between ITGA3 expression and Treg enrichment. ns = p > 0.05 (not significant), *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: APC, antigen-
presenting cell; aDC, activated dendritic cell; CCR, chemokine receptor; DC, dendritic cell; HLA, human leukocyte antigen; iDC, immature dendritic cell; INF, 
interferon; ITGA3, integrin subunit alpha 3; LIHC, liver hepatocellular carcinoma; MHC, major histocompatibility complex; NK, natural killer; pDC, plasma-
cytoid dendritic cell; ssGSEA, single-sample gene set enrichment analysis; TCGA, The Cancer Genome Atlas; Tfh, T follicular helper; TIL, tumor-infiltrating; 
Treg, regulatory T cell
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erlotinib, and sorafenib and risk scores and the negative 
correlation between the IC50 values for sunitinib and risk 
scores (p < 0.001). Furthermore, we obtained target genes 
from the Drugbank database and assessed their expres-
sion in both risk groups based on targeted therapy. Nota-
bly, the expression of all target genes was significantly 
different between the two groups (p < 0.05) (Fig.  9B). 

These findings suggest that risk scores may distinguish 
patients who are more suitable for appropriate treatment.

ScRNA-seq analysis and construction of a PPI network
To explore the role of ITGA3 in HCC at the single-
cell level, we performed scRNA-seq analysis using the 
TISCH 2.0 database. Figure 10A–F illustrates the high 
expression of ITGA3 in malignant liver cells. Notably, 

Fig. 8  Mutations in MBRGs and immunotherapeutic response. (A) TMB analysis. (B) TIDE analysis. (C, D) Differences in mutation incidence between the 
high- and low-risk groups. (E) Differences in the expression of immune checkpoint genes between the high- and low-risk groups. *p < 0.05, **p < 0.01, 
***p < 0.001. Abbreviations: DEL, deletion; INS, insertion; TIDE, tumor immune dysfunction and exclusion; TMB, tumor mutation burden
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we found a significantly higher level of ITGA3 expres-
sion in malignant cells compared to hepatocytes in 
LIHC_GSE146409. We concluded that the high expres-
sion of ITGA3 in HCC cells likely contributes to the 
poor prognosis of HCC.

To elucidate the co-expression of and interaction 
between proteins, we selected the highly prognostic gene 
ITGA3 for further analysis and built a PPI network using 
the GeneMAINA database centered on this factor. The 
resulting PPI network showed that 20 proteins interact 
with ITGA3, with ITGB1 showing the highest correlation 
with ITGA3 (Fig. 10G).

ITGA3 plays a crucial role in the migration and invasion of 
HCC cells
Our study revealed a strong positive correlation between 
the MBRGs and EMT pathway, with ITGA3 being the 
most strongly correlated MBRG. However, the effect 
of this gene on the proliferation and migration of HCC 
has not yet been reported. Because ITGA3 is expressed 
at low levels in HepG2 cells (Fig. 11A), an overexpression 
vector was used to analyze its potential role in HCC. RT-
qPCR results showed that ITGA3 expression was signifi-
cantly upregulated after transfection with the ITGA3-OE 
lentivirus (Fig.  11B). The CCK-8 assay results suggested 
that overexpressing ITGA3 did not affect HepG2 cell pro-
liferation (Fig. 11C). Next, we performed in vitro wound 
healing and transwell migration assays and found that 

Fig. 9  Drug sensitivity analysis. (A) Sensitivity analyses of axitinib, erlotinib, sorafenib, and sunitinib in the high- and low-risk patient groups. (B) Differ-
ences in target gene expression between the low- and high-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: IC50, half-maximal inhibitor 
concentration
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overexpressing ITGA3 enhanced the migratory ability 
of HepG2 cells and significantly increased the number 
of invasive cells (Fig. 11D-G). In addition, immunohisto-
chemistry results from the HPA database demonstrated 
that ITGA3 expression was higher in tumors compared 
to that in normal tissues (Fig. 11H). These results indicate 
that ITGA3 plays a crucial role in the migration and inva-
sion of HCC cells.

Discussion
In this study, a novel prognostic model for HCC based 
on MBRGs was developed and served as an effective 
indicator for predicting the prognosis and response of 
patients with HCC to immunotherapy. An external data-
set containing 240 cases from the ICGC database was 
used for validation. As expected, the resulting nomogram 
showed strong reliability, and the ROC curves for each 
cohort showed the robustness of the MBRGs prognostic 

model. Furthermore, GO and KEGG analyses and GSEA 
were performed on patients in the high- and low-risk 
groups to obtain enrichment pathways. In addition, five 
immune-related algorithms (CIBERSORT, QUANTISEQ, 
MCP counter, ssGSEA, and TIMER) were used to exam-
ine the immune landscape and activity across the risk 
groups. The efficacy of immunotherapy in the high- and 
low-risk groups was assessed by estimating TMB val-
ues, TIDE scores, mutation frequencies, and expression 
of immune checkpoint genes. Subsequently, drug sen-
sitivity analyses were performed on the high- and low-
risk groups to predict potential therapeutic agents for 
patients with HCC. Finally, wound healing and transwell 
assays were conducted to elucidate the role of ITGA3 in 
tumor metastasis.

According to previous studies, all MBRGs play essential 
roles in tumor etiology. Twelve genes were involved in the 
proposed model, six of which (ITGB5, ITGAV, ITGAM, 

Fig. 10  Single cell RNA sequencing analysis and construction of a PPI network. (A-C) T-SNE projection of all cells and ITGA3 expression from LIHC-
GSE146409. (D-F) T-SNE projection of all cells and ITGA3 expression from LIHC-GSE166635. (G) PPI network centered on ITGA3.Abbreviations: ITGA3, 
integrin subunit alpha 3; PPI, protein-protein interaction;
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ITGA5, ITGA3, and ITGA2) belong to the integrin family. 
Integrins are cell adhesion and signaling proteins that are 
essential for a wide range of biological functions and have 
been strongly implicated in both tumor metastasis- and 
BM-related functions [47]. In fact, integrin expression is 
strongly associated with the progression and prognosis 
of HCC [4], and numerous studies have shown that inte-
grin genes are overexpressed in HCC tissues and medi-
ate HCC cell invasion and metastasis [48, 49]. MMP14 
and MMP1, members of the MMP family, can directly 
cleave almost all extracellular matrix components and 
participate in the degradation of BM and extracellular 
matrices, thus promoting tumor invasion and metastasis 
[50–52]. Overexpression of both MMP14 and MMP1 is 
also closely associated with invasive metastasis and poor 
prognosis in HCC [50, 51]. According to earlier research, 
MMP14 increases the secretion of pre-MMP-2 and pre-
MMP-9, degrades the extracellular matrix, and interacts 
with TIMP-2 to promote metastasis. [50]. Furthermore, 
MMP14 can act as a key molecule in the CXCL10/
TLR4/MMP14 signaling pathway to mobilize myeloid-
derived suppressor cells and promote post-transplant 
HCC recurrence [53]. The MBRG ROBO1, a member of 
the Ig receptor superfamily, is overexpressed in HCC. It 

can promote angiogenesis in HCC through the guano-
sine triphosphatase Rho family and Slit-ROBO signal-
ing pathways and facilitate HCC metastasis by activating 
the Slit2-ROBO1 signaling pathway [54–56], indicating 
that the Silt/ROBO signaling pathway may be an effec-
tive therapeutic target for HCC. The MBRG CD151 is 
a member of the tetraspanin family associated with the 
promotion of metastasis and plays a pro-metastatic role 
in various cancers [57]. Several studies have shown that 
CD151 upregulation may be a sensitive predictor of HCC 
metastasis [58] and may induce metastasis in an integrin 
β1-dependent manner [59]. CD151 also induces MMP9 
expression and promotes extracellular matrix degrada-
tion and cancer cell migration, which contribute to HCC 
metastasis [60, 61]. Furthermore, CD151 is positively cor-
related with the aggressiveness of HCC and is a marker 
and potential therapeutic target for predicting HCC 
prognosis [57]. The final MBRG identified in this study 
was ADAM9. Overexpression of ADAM9, a zinc metallo-
proteinase expressed on the cell surface, is thought to be 
associated with the clinicopathological features of HCC 
leading to tumorigenesis, invasion, metastasis, and poor 
prognosis [62]. Although these genes are closely related 
to hepatocellular pathogenesis, our study is the first to 

Fig. 11  ITGA3 plays a crucial role in the migration and invasion of HCC cells. (A)ITGA3 mRNA expression profile in HCC cells from the HPA database. 
(B)ITGA3 expression after transfection with ITGA3-OE lentivirus. (C) Results of the CCK8 assay. (D, E) Results of wound healing assay. (G, F) Results of the 
transwell migration assay. (H) Representative immunohistochemical results of ITGA3 expression in HCC and normal liver tissues from the HPA database. 
*p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: CCK-8, cell counting kit-8; HCC, hepatocellular carcinoma; HPA, Human Protein Atlas; ITGA3, integrin sub-
unit alpha 3; OE, overexpression; RT-qPCR, reverse transcription-quantitative PCR
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combine them as prognostic markers in patients with 
HCC.

GO and KEGG functional enrichment analyses showed 
that altered risk scores were mainly associated with the 
PI3K-Akt signaling pathway and proteoglycan in can-
cer, adhesion bands, and extracellular matrix receptor 
interactions; GSEA analyses showed that the high-risk 
group was predominantly enriched in cell proliferation-
related pathways. Therefore, the poor prognosis of HCC 
may be related to the PI3K-Akt signaling pathway and 
cell proliferation. Some studies have shown that platelet-
derived growth factor (PDGF) induces MMP expression 
through PI3K-mediated signaling pathways and that 
MMP expression may promote EMT by cleaving BM 
components [63]. Additionally, activation of the PI3K sig-
naling pathway induces EMT, thereby promoting tumor 
cell endocytosis into peripheral vessels and metastasis 
to new organs [64, 65]. In addition, PI3K/Akt signaling 
can be activated upon GPCR stimulation of Ras, thereby 
regulating cancer cell proliferation and survival [66, 67]. 
Cell proliferation directly or indirectly influences tumor 
invasion, and the forces generated during cell division 
may promote cancer invasion by directly weakening the 
BM [8]. Therefore, MBRGs may induce the expression of 
MMPs by activating the PI3K/Akt signaling pathway to 
degrade the BM and extracellular matrix, promote the 
occurrence of EMT to disrupt vascular and intercellular 
connections, or weaken the BM directly, thereby promot-
ing tumor invasion and metastasis.

Over the past few years, immunotherapy has been 
established as a primary cancer therapy with signifi-
cant activity and therapeutic potential in a wide range of 
tumors [68], and a large body of preclinical and clinical 
studies has highlighted that immunotherapy strategies 
provide a survival benefit in HCC [69, 70]. Previous stud-
ies have reported that TMB values, TIDE scores, expres-
sion of immune checkpoint molecules (e.g., PD-L1 and 
PD-1), and the degree of immune cell infiltration can 
predict the response of patients with HCC to immuno-
therapy [71–73]. The results of multiple analyses regard-
ing these factors suggest that the high-risk group may 
have better immunotherapy outcomes. First, the high-
risk group had higher TMB values, possibly indicating 
that tumor cells could produce new antigens to activate T 
cells inhibited by immune checkpoints, resulting in a bet-
ter immunotherapy outcome [74, 75]. Second, the high-
risk group had lower TIDE scores, indicating a lower 
likelihood of immune escape and a greater likelihood that 
patients would benefit from immunotherapy. Third, most 
immune checkpoint genes, including PD-L1 and PD-1, 
the expression levels of which are positively correlated 
with anti-PD1 or PD-L1 immunotherapy, were highly 
expressed in the high-risk group [76]. Finally, five algo-
rithms, including ssGSEA, TIMER, CIBERSORT-ABS, 

QUANTISEQ, and MCP counter, provided collective 
evidence that immune cells were enriched and exhibited 
higher infiltration levels of macrophages and T cells in 
the high-risk group. In conclusion, these findings suggest 
that the high-risk group may benefit from immunother-
apy with improved treatment effectiveness [72]. There-
fore, our MBRGs prognostic model may provide valuable 
insights for patients in the selection of more effective 
antitumor immunotherapies. However, additional valida-
tion is needed to understand the role of our risk score in 
predicting the response of patients with HCC to immu-
notherapy. Remarkably, sex was not associated with the 
prognosis of HCC in our independent prognostic analysis 
of clinical factors, whereas Chen et al. demonstrated that 
sex is a vital prognostic factor for HCC [77]. This discrep-
ancy may be due to differences in databases, sample size 
limitations, or differences in the data analysis methods of 
our study. Future research should aim to include larger, 
multi-center cohorts and consider sex as a critical factor 
in the analysis. Understanding the interaction between 
sex hormones and immune response could lead to more 
personalized treatment strategies for HCC patients. Fur-
thermore, sex is one of the key elements in the effective-
ness and safety of immunotherapy for a wide range of 
solid tumors. For example, serum IL-1β, IL-4, IL-6, IL-10, 
GM-CSF, TNF-α, and sPD-L1 has significant sex-related 
predictive effects on OS in patients with melanoma 
or non-small cell lung cancer treated with ICIs [78]. In 
esophageal cancer, immunotherapy is associated with 
favorable outcomes in men [79]. Additionally, in a large 
real-world database, immunotherapy was associated 
with a significant OS benefit in male patients with HCCs, 
whereas female participants in phase III trials experi-
enced less OS benefit after ICI treatment for advanced 
HCC [80].

Finally, we found that the expression of 10 of the 12 
MBRGs significantly and positively correlated with the 
EMT pathway. ITGA3, one of the genes with the stron-
gest correlation with the EMT pathway in HCC; and the 
only MBRG that has not been explored in functional 
experiments, was selected for further analysis. Previous 
studies have shown that ITGA3 regulates EMT in a vari-
ety of tumors and has the potential for immunotherapy 
[81]. ITGA3 expression negatively regulates stemness 
and EMT processes in breast cancer cells [82], though it 
was reported to promote metastasis and EMT plasticity 
in pancreatic cancer [83]. However, its role in HCC cell 
migration and metastasis was previously unknown. Our 
experimental results showed that ITGA3 overexpression 
promoted HCC cell migration and invasion. To inves-
tigate the role of ITGA3 at the single-cell sequencing 
level in HCC, we analyzed ScRNA analysis utilizing two 
datasets (GSE146409 and GSE166635) from the TISCH 
2.0 database. In GSE146409, we found that ITGA3 was 
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highly expressed in tumor cells, which was the same as 
our previous results of TCGA-LIHC differential analysis. 
We concluded that the high expression of ITGA3 might 
be an important factor causing the poor prognosis of 
HCC. Therefore, the role of ITGA3 in the development 
and metastasis of HCC warrants further investigation.

In this study, a novel biomarker was constructed by 
combining two features, metastasis and the BM, which 
are effective in predicting patient metastasis, prognosis, 
and immunotherapy efficacy and are expected to lead 
to the development of new potential drugs. However, 
this study has several limitations. First, the accuracy of 
the MBRGs prognostic model in predicting prognosis 
and immune regulation in patients with HCC remains 
a crucial clinical question that requires the develop-
ment of clinical guidelines for its use. Furthermore, the 
mechanisms linking the MBRGs prognostic model to the 
therapeutic efficacy of HCC drug treatments have yet to 
be determined, and further experimental validation on a 
substantial patient cohort is required.

Conclusion
In conclusion, we developed a novel prognostic model 
based on MBRGs that serves as an effective indicator for 
predicting the prognosis and response of patients with 
HCC to immunotherapy. Therefore, our findings provide 
promising insights that should help guide physicians in 
making more accurate and personalized treatment deci-
sions for patients with HCC.
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