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Radiomic analysis reveals diverse prognostic 
and molecular insights into the response 
of breast cancer to neoadjuvant chemotherapy: 
a multicohort study
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Abstract 

Background  Breast cancer patients exhibit various response patterns to neoadjuvant chemotherapy (NAC). How-
ever, it is uncertain whether diverse tumor response patterns to NAC in breast cancer patients can predict survival 
outcomes. We aimed to develop and validate radiomic signatures indicative of tumor shrinkage and therapeutic 
response for improved survival analysis.

Methods  This retrospective, multicohort study included three datasets. The development dataset, consisting of pre-
operative and early NAC DCE-MRI data from 255 patients, was used to create an imaging signature-based multitask 
model for predicting tumor shrinkage patterns and pathological complete response (pCR). Patients were categorized 
as pCR, nonpCR with concentric shrinkage (CS), or nonpCR with non-CS, with prediction performance measured 
by the area under the curve (AUC). The prognostic validation dataset (n = 174) was used to assess the prognostic value 
of the imaging signatures for overall survival (OS) and recurrence-free survival (RFS) using a multivariate Cox model. 
The gene expression data (genomic validation dataset, n = 112) were analyzed to determine the biological basis 
of the response patterns.

Results  The multitask learning model, utilizing 17 radiomic signatures, achieved AUCs of 0.886 for predicting tumor 
shrinkage and 0.760 for predicting pCR. Patients who achieved pCR had the best survival outcomes, while nonpCR 
patients with a CS pattern had better survival than non-CS patients did, with significant differences in OS and RFS 
(p = 0.00012 and p = 0.00063, respectively). Gene expression analysis highlighted the involvement of the IL-17 
and estrogen signaling pathways in response variability.

Conclusions  Radiomic signatures effectively predict NAC response patterns in breast cancer patients and are associ-
ated with specific survival outcomes. The CS pattern in nonpCR patients indicates better survival.
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Introduction
Neoadjuvant chemotherapy (NAC) is a fundamental 
component of treatment for early-stage breast can-
cer. Achieving a pathological complete response (pCR) 
after NAC has been consistently linked with superior 
long-term clinical outcomes, as evidenced by numerous 
studies [1–3]. In addition to serving as a treatment end-
point, early assessment during NAC is crucial for guiding 
clinical decisions and tailoring treatment strategies [4]. 
NAC generally involves several cycles, leading to vari-
ous patterns of tumor shrinkage. Among these, concen-
tric shrinkage (CS) is associated with a better prognosis 
and, in addition to pCR, may serve as an independent 
predictive factor for patient outcomes [5]. Nonethe-
less, the relationship between specific response patterns 
and prognosis, particularly among patients who do not 
achieve a pCR, is still not well understood. Elucidating 
the heterogeneity of these responses is essential for eval-
uating their prognostic value and improving treatment 
approaches for breast cancer patients.

Dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI) is a highly specific and sensitive [6, 7] for 
effectively predicting NAC responses in patients with 
breast cancer [8–10]. Radiogenomic analysis based on 
preoperative DCE-MRI has revealed imaging signatures 
associated with recurrence in estrogen receptor-positive 
breast cancer patients, and these signatures can serve as 
prognostic biomarkers for survival and NAC responsive-
ness [11]. Recent research has developed a prognostic 
model that combines radiomic data from multiparamet-
ric MR images with clinicopathological factors to predict 
tumor regression in NAC-treated breast cancer patients 
[12]. Given these insights, preoperative DCE-MRI signa-
tures constitute a comprehensive approach for predict-
ing NAC response and tailoring personalized treatment 
plans for breast cancer patients.

In addition to initial preoperative evaluations, longitu-
dinal imaging plays an integral role at several points dur-
ing NAC to both monitor shrinkage patterns during NAC 
and predict treatment responses in breast cancer patients 
[13, 14]. By examining changes in tumor heterogeneity 
prior to and at the onset of NAC, DCE-MRI has proven 
effective in predicting therapeutic outcomes [15]. Studies 
have consistently shown that temporal changes in phar-
macokinetic parameters, tumor dimensions, and MRI 
texture features correlate with breast cancer patients’ 
responses to NAC [16, 17].

Despite these advances, the relationship between 
tumor response patterns and patient prognosis has not 
been fully explored. Although achieving a pCR is widely 
accepted as a favorable prognostic indicator, the clini-
cal outcomes of patients who exhibit diverse patterns of 
tumor regression without achieving a pCR have not been 

fully delineated. Our study aimed to shed light on the 
prognostic significance of various tumor response pat-
terns and their biological underpinnings, particularly in 
the context of pCR and the dynamic changes observed 
during therapy. By integrating radiological evaluations 
with an analysis of response kinetics, we endeavored to 
enhance the precision of survival prognostications for 
patients with breast cancer.

Materials and methods
Dataset
This study received approval from the Institutional 
Review Board, and informed consent was obtained from 
all participants. We consecutively included women who 
underwent NAC and preoperative MRI. The develop-
ment dataset included 259 patients who received NAC. 
All patients underwent the standard NAC protocol, 
which included six to eight cycles of the taxotere–epi-
rubicin–cyclophosphamide (TEC) regimen. The entire 
NACT course lasted approximately 4 to 5 months, with 
each cycle administered at intervals of approximately 
20 days. This dataset included longitudinal imaging data, 
including preoperative and early NAC DCE-MRI data, 
which facilitated the construction of a model to assess 
tumor shrinkage patterns during early NAC.

For prognostic validation, we used a separate dataset 
of women from the ISPY1 trial available in The Can-
cer Imaging Archive (TCIA) [18]. This dataset contains 
DCE-MRI, clinical and follow-up information, which 
serves to validate the prognostic relevance of the imag-
ing biomarkers. To interpret the molecular context of the 
imaging features, the genomic validation dataset utilized 
in this study consisted of MRI data from the prognostic 
validation dataset, while the gene expression data were 
sourced from the GSE32063 and GPL14668 datasets [19].

The exclusion criteria were as follows: patients lack-
ing preoperative DCE-MRI or incomplete DCE-MRI 
data, patients missing pathology reports, patients whose 
tumors were not clearly visible or could not be confi-
dently described or annotated by an experienced radiolo-
gist, and patients with diffuse tumors. The data collection 
framework is depicted in Fig. 1.

Framework overview
Figure  2 shows an overview of the framework. In the 
development dataset, multitask learning was imple-
mented to jointly predict pCR and shrinkage status in 
breast cancer patients. The dataset was randomly parti-
tioned into a training set, constituting 66% of the samples 
for model construction, and an inner validation set, com-
prising the remaining 33%, was used for model valida-
tion. The imaging features and trained model parameters 
of the patients in the development dataset were applied 
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to the DCE-MRI data in the prognostic validation set to 
simultaneously predict the likelihood of CS and pCR fol-
lowing NAC. Patients were stratified into three categories 
according to the predicted response patterns: Group 1 
(nonpCR and non-CS), Group 2 (nonpCR and CS), and 
Group 3 (pCR). We assessed survival differences among 
the three groups with distinct response patterns. Fur-
thermore, the biological relevance of the differentially 
expressed genes (DEGs) identified across these groups 
was elucidated to reveal the molecular implications 
underlying the response patterns.

Imaging protocol
For the development dataset, DCE-MRIs were acquired 
using a Siemens 3.0 T scanner in the prone position. This 
involved capturing a precontrast image and a series of 
five postcontrast images. The protocol specified a TR of 
4.5 ms, a TE of 1.56 ms, a 10° flip angle, a field of view of 
384 × 384, a 2.2 mm slice thickness, and an in-plane reso-
lution of 0.9375 mm. The time intervals between the sub-
sequent postcontrast phases were 60 s.

For prognostic evaluation, data were collected from 
I-SPY1 in the TCIA, and a detailed imaging protocol has 
been described elsewhere [20]. DCE-MR images were 
acquired using a Siemens or GE 1.5 scan system. The 
imaging protocol was as follows: TR, 20 ms or less; TE, 
4.5 ms; flip angle, 45° or less; field of view, ranging from 
16 to 18  mm; and a 256 × 192 matrix. Each image con-
sisted of up to 64 slices, each no more than 2.5 mm thick, 

and an in-plane resolution not exceeding 1 mm. Follow-
ing contrast agent injection, early postcontrast series 
were acquired at approximately 2-min intervals. The 
patient data included in both datasets were breast sagittal 
plane images.

Image preprocessing
The DCE-MRI images were initially subjected to a stand-
ardization process to ensure uniform spatial resolution 
across the dataset, with all images being resampled to a 
consistent voxel size of 0.8 mm. Intensity normalization 
was performed to reduce variations in the differing imag-
ing protocols. This was achieved by scaling the grayscale 
values of the images such that the normalization factor 
was the mean intensity derived from the interquartile 
range (IQR), specifically between the upper and lower 
quartiles of the grayscale intensity distribution. Subse-
quently, the tumor regions of interest (ROIs) were iden-
tified on the intermediate postcontrast series using a 
spatial fuzzy C-means (FCM) algorithm. The parenchy-
mal area, inclusive of a peripheral margin approximately 
20 mm wide encircling the tumor, was segmented for fea-
ture analysis. Image features were extracted from three 
distinct sequences: the precontrast image (S0), the inter-
mediate postcontrast image (SM), and the subtraction 
image (SM0). The SM, typically captured approximately 
2 min following the injection of the contrast agent, rep-
resents the phase of peak enhancement in the time-series 
MRI. SM0 was generated by subtracting S0 from SM, 

Fig. 1  Data overview
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thereby enhancing the visualization of contrast agent 
accumulation.

Histopathological analysis
Experienced pathologists with more than 15 years of pro-
fessional experience who were blinded to the MRI results 
performed comprehensive histopathological analyses on 
full-face sections of breast tissue specimens. The Elston–
Ellis modification of the Scarff–Bloom–Richardson grad-
ing system [21] was used to determine the histological 
grade of the tumors. Based on the recommendations of 
the St. Gallen International Breast Cancer Conference 
[22], a Ki-67 labeling index exceeding 14% was consid-
ered positive, whereas the other indices were considered 
negative. Histological grades 1 and 2 were amalgamated 
into a low-grade category, whereas grade 3 was indica-
tive of a high-grade malignancy. Immunohistochemical 

examination of estrogen receptor (ER), progesterone 
receptor (PR), and human epidermal growth factor recep-
tor 2 (HER2) status was performed via the streptavidin–
peroxidase method [23]. The luminal A breast cancer 
subtype was characterized by the coexpression of ER 
and PR with a concurrent absence of HER2 overexpres-
sion or amplification. Conversely, the luminal B subtype 
was distinguished by the presence of ER or PR com-
bined with either HER2 overexpression/amplification or 
a high Ki-67 proliferation index in the absence of HER2 
overexpression.

Feature extraction
Tumor feature extraction was performed using pre-
contrast (S0) imaging sequences, middle enhancement 
(SM) sequences, and subtraction of the middle enhance-
ment sequence and the S0 sequence (SM0). A total of 

Fig. 2  Framework overview
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102 radiomic features were extracted from each image 
sequence or map utilizing the open-source software 
package PyRadiomics [24]. The range of extracted fea-
tures encompassed diverse categories, which included 
morphological features (n = 14), first-order statistical 
features (n = 18), and texture features (n = 70). The tex-
ture features included features based on the gray level 
co-occurrence matrix (GLCM) (n = 24), the gray-level 
run-length matrix (GLRLM) (n = 16), the gray-level size-
zone matrix (GLSZM) (n = 16), and those rooted in the 
gray-level spatial dependence matrix (GLDM) (n = 14).

Assessment of therapeutic response
The response to NAC was assessed using the Miller–
Payne (MP) grading system. A score of 5 (pCR) indicated 
the responsive group, while scores ranging from 1 to 4 
indicated the nonresponsive group. pCR was defined as 
no invasive residual tumor in the breast or nodes or only 
residual ductal carcinoma in  situ. Tumor shrinkage pat-
terns were categorized into two main types after receiv-
ing NAC: CS and non-CS. The CS pattern consisted 
of three subtypes: pCR, simple CS, and CS with focal 
enhancements. Simple CS was characterized by a reduc-
tion in the maximum tumor diameter without surround-
ing enhancement and was observed only in tumors with 
prior enhancement. A CS with focal enhancement was 
defined as a primary mass enhancement lesion exhibit-
ing a CS pattern, albeit with the presence of residual foci. 
In contrast, non-CSs were divided into four subtypes: 
diffuse decrease, indicating a widespread reduction in 
tumor size; enlarged tumor, where the lesion increased in 
size; intensity decrease, where the lesion showed a reduc-
tion in density; and no change, where no alterations were 
observed.

Survival analysis
Kaplan–Meier curves were used to compare survival 
among different patient groups. Univariate Cox propor-
tional hazards regression models were used to analyze 
the relationships between imaging signatures and recur-
rence-free survival (RFS) and overall survival (OS) rates. 
The log-rank test was used to evaluate the significance of 
disparities observed among the survival curves; deline-
ation of the cutoff point was established through iden-
tification of an optimal threshold, which corresponded 
to the minimum log-rank p value obtained. Multivari-
ate Cox regression analysis was conducted to assess the 
independent correlation between the imaging signatures 
and OS or RFS, controlling for clinical variables, includ-
ing age, ER status, PR status, HER2 status, and tumor 
size. Patients who remained event-free at the conclusion 
of the 10-year period were censored at this juncture. To 
determine the prognostic value of the imaging signatures, 

we applied a likelihood ratio test. The hazard ratio (HR) 
was employed as a measure in the survival analysis.

Statistical analysis
To address the collinearity among the collective imag-
ing features in the model, those with a Pearson correla-
tion coefficient greater than 0.9 were excluded if they also 
demonstrated a high average correlation coefficient with 
other features.

Building upon our previous work [25], we used a mul-
titask random forest model to identify a common fea-
ture subset relevant to all tasks. Initially, a random forest 
model was constructed using data from all tasks. Each 
tree in the forest was trained on a randomly sampled 
subset of the combined dataset, fostering diversity and 
robustness in our feature selection. During each node 
split, features were evaluated based on their collective 
impact on the accuracy of all tasks. This process resulted 
in a feature importance ranking that captured the rel-
evance of each feature to all tasks simultaneously. We 
then selected the top-ranked features to form a common 
feature subset that yielded the best average performance 
on leave-one-out cross-validation (LOOCV) using the 
area under the receiver operating characteristic curve 
(AUC) as the model evaluation criterion. We employed 
a random grid search method to determine the hyperpa-
rameters of the random forest models. By incorporating 
this multitask feature selection approach, we were able 
to identify a set of features that were not only predic-
tive of individual tasks but also captured the underlying 
commonalities between the tasks of predicting pCR and 
shrinkage patterns. Finally, we used the trained models 
for prediction on the testing set and calculated the AUC 
to evaluate the model performance.

The differences in the AUC between the models were 
evaluated using the bootstrap method. Additionally, anal-
ysis of variance (ANOVA) was used to assess the differ-
ences in gene expression between the groups.

Genomic interpretability analysis
To explore the molecular foundations underlying 
patient variability in CS or pCR responses to treatment, 
we conducted a genomic analysis focused on gene func-
tion. We excluded genes that were expressed in only 
20% of patients as well as those lacking expression val-
ues. Furthermore, we narrowed our focus by eliminat-
ing genes with minimal variance in their expression 
patterns across patients, ultimately selecting the top 
2000 genes with the greatest variance. This approach 
ensured that only the most significant genetic features 
were retained for subsequent analysis. The associa-
tions of these genes with response status were subse-
quently analyzed (i.e., pCR, CS and nonpCR, non-CS 
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and nonpCR). Furthermore, genes that demonstrated 
a significant association were analyzed using gene set 
enrichment analysis (GSEA) with reference to the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) to assess 
the influence of particular pathways on the response 
categories. To assess the correlation between gene 
expression and treatment response or tumor shrinkage 
patterns, we employed a regression model. Our com-
prehensive approach provides a detailed understanding 

of how genetic factors correlate with patient treatment 
responses.

Results
Patient characteristics
Table 1 presents the clinical characteristics of the patients 
from the two datasets, which included age, family history, 
menopausal status, maximum tumor diameter, hormone 
receptor status, HER2 status, recurrence, death, the MP 

Table 1  Patient characteristics

Characteristics Development dataset (n = 255) Prognostic 
validation dataset 
(n = 174)

Age (y)

 Range 27.0–79.0 26.7–68.8

 Median 49.0 48.2

 Mean ± std 48.9 ± 10.4 47.8 ± 8.7

Family history

 No 194 (76.1%) N/A

 Yes 57 (22.4%) N/A

 Unknown 4 (1.5%) N/A

Menopausal status

 Pre 104 (40.8%) N/A

 Post 144 (56.5%) N/A

 Unknown 7 (2.7%) N/A

Maximum tumor diameter (cm)

 Range 10–92 19–184

 Median 35 68

 Mean ± std 37.6 ± 17.0 68.5 ± 31.1

Progesterone receptor

 Positive 117 (45.9%) 82 (47.1%)

 Negative 138 (54.1%) 92 (52.9%)

Estrogen receptor

 Positive 149 (58.4%) 100 (57.5%)

 Negative 106 (41.6%) 74 (42.5%)

Human epidermal growth factor receptor 2

 Positive 111 (43.5%) 51 (29.3%)

 Negative 144 (56.5%) 123 (70.7%)

 Recurrence N/A

 Event N/A 46 (57.5%)

 No event N/A 128 (42.5%)

 Death N/A

 Event N/A 30 (17.2%)

 No event N/A 144 (82.8%)

Miller–Payne score

 Nonresponse (1–4) 187 (73.3%) N/A

 Response (5) 68 (26.7%) N/A

Pattern of tumor shrinkage

 Non-CS 58 (22.7%) N/A

 CS 197 (77.3%) N/A
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score, and tumor shrinkage patterns. The development 
dataset included 255 female patients ranging in age from 
25.0 to 79.0  years, with a mean age of 48.9 ± 10.4  years 
(standard deviation). The prognostic validation data-
set included 174 female patients aged between 26.7 and 
68.8 years, with a mean age of 47.8 ± 8.7 years (standard 
deviation). The genomic validation dataset included a 
gene expression set (n = 112).

Multitask model for jointly predicting pCR and shrinkage 
patterns in breast cancer patients
Table  2 provides a comparative analysis of the perfor-
mance of single-task learning models and multitask 
learning models in predicting response patterns to NAC. 
A detailed illustration of the imaging signatures (n = 17) 
used is provided in Table  S1. The findings indicate that 
multitask learning models outperform their single-task 
counterparts in predicting both CS and pCR. Specifically, 
the multitask learning model demonstrated superior pre-
diction accuracy, achieving an AUC of 0.886 for CS and 
0.760 for pCR, in contrast to the single-task learning 
models, which exhibited AUCs of 0.876 for CS and 0.753 
for pCR.

Figure  3 shows the individual imaging feature val-
ues and sphericities for stratifying patients into spe-
cific response patterns. Tumor sphericity increased 
from 0.438 in the pretreatment image to 0.532 in the 
early NAC image, which was correlated with patients 
who achieved a pCR. In contrast, patients who did not 
achieve a pCR but did achieve a CS exhibited a reduc-
tion in tumor sphericity from 0.487 to 0.457. Remarkably, 
for patients who were nonpCR or non-CS, a substantial 
increase in tumor sphericity was observed, with the value 
increasing from 0.365 in the preoperative images to 0.766 
in the early-NAC images.

Validation of the imaging signatures of shrinkage pattern 
and pathological complete response for survival prediction
The clinical significance of the imaging signatures was 
further validated through survival analysis using a prog-
nostic validation dataset to assess the impact of shrink-
age pattern status on breast cancer prognosis (Fig.  4 
and Table  S2). A predicted CS showed a positive cor-
relation (threshold value of 0.6708) with improved OS 

(p = 0.0057) and RFS (p = 0.029) (Fig. 4a, b, respectively). 
Moreover, positive correlations were found between 
imaging-predicted pCR and improved OS (p = 0.0067) 
and RFS (p = 0.0044) (Fig.  4c, d, respectively) under a 
threshold of 0.2444. Overall, the predicted tumor shrink-
age pattern demonstrated marginally superior prognostic 
performance compared to the predicted pCR status, as 
evidenced by more statistically significant p values in the 
prognostic model.

Survival validation of the imaging signature‑generated 
response pattern
Patients were separated into three groups based on the 
imaging signature-generated CS and pCR status (i.e., 

Table 2  Performance for single-task and multitask prediction of pathological response and shrinkage patterns

AUC (95% CI) Sensitivity Specificity Precision F1

CS-multitask 0.886 (0.817–0.957) 0.836 0.800 0.933 0.882

CS-single task 0.876 (0.796–0.956) 0.731 0.900 0.961 0.831

pCR multitask 0.760 (0.652–0.871) 0.826 0.656 0.463 0.594

pCR single task 0.753 (0.651–0.856) 1 0.438 0.390 0.561

Fig. 3  Illustrative cases depicting diverse tumor shrinkage 
and pathologic response patterns. A A 33-year-old patient 
with breast cancer who achieved a pathological complete response 
(pCR) and concentric shrinkage (CS) following neoadjuvant 
chemotherapy (NAC). The sphericity values pre- and posttreatment 
were 0.438 and 0.532, respectively. B A 52-year-old breast cancer 
patient who did not achieve pCR yet demonstrated CS after NAC. 
The pre- and early-NAC sphericity values were 0.487 and 0.457, 
respectively. C A 46-year-old patient with breast cancer who 
neither achieved pCR nor exhibited CS following NAC. The sphericity 
values recorded before and after treatment were 0.365 and 0.766, 
respectively
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pCR, nonpCR and CS, and nonpCR and non-CS). Among 
these groups, significant differences in OS and RFS were 
observed, with p values of 0.00012 and 0.00063, respec-
tively. As anticipated, patients who achieved pCR had 
more favorable survival outcomes than did those who did 
not. Moreover, within the nonpCR population, individu-
als exhibiting a CS pattern had improved survival com-
pared to those exhibiting a non-CS pattern (Fig. 5a, b).

Image feature analysis for predicting survival in patients 
with breast cancer
The findings revealed that the predicted CS label 
was independently associated with improved RFS 
(HR = 0.539; 95% CI = 0.297–0.978; P = 0.042) and OS 

(HR = 0.426; 95% CI = 0.204–0.887; P = 0.023) after con-
trolling for clinical information (Table  3). Similarly, the 
predicted pCR also emerged as an independent prog-
nostic factor for RFS (HR = 0.473; 95% CI = 0.230–0.971; 
P = 0.041) and OS (HR = 0.339; 95% CI = 0.128–0.896; 
P = 0.029) when accounting for clinical and pathological 
features. These findings reinforce the clinical relevance of 
tumor response patterns in determining the prognostic 
trajectories of patients post-NAC.

Analysis of consistency in image features
As shown in Table S3, univariate Cox regression analysis 
revealed that imaging features in the multitask learning 
model were significantly associated with CS and pCR. For 

Fig. 4  Validation of the imaging signature-predicted shrinkage patterns and pathological complete response status for survival analysis. The 
predicted concentric shrinkage (CS) was used to evaluate a overall survival (OS) and b recurrence-free survival (RFS). The pCR labels were validated 
for c OS and d RFS
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example, the sphericity feature—which reflects a tumor’s 
tendency toward a spherical conformation—was more 
frequently observed in CS-classified tumors and was pos-
itively correlated with a greater likelihood of pCR.

Six representative features that significantly contrib-
uted to the prediction of either CS status or pCR are 
shown in Fig. 6; these included flatness, small area high 
gray-level emphasis, and dependence entropy derived 

from the tumor region, as well as busyness and long-
run low gray-level emphasis features extracted from the 
parenchymal region (Fig.  6). Higher values of spheric-
ity or flatness are associated with CS and good survival. 
Conversely, higher values of busyness, small area high 
gray-level emphasis, dependence variance, and maximum 
diameter were associated with non-CSs or nonpCRs and 
poor survival outcomes. These figures demonstrate the 
consistency of the features in reflecting tumor shrinkage 
patterns and in predicting pathological response.

We evaluated imaging features among three patient 
groups categorized by their different response patterns. 
These features demonstrated a trend toward either a 
decrease or increase in expression, corresponding to 
patient outcomes ranging from complete response (pCR) 
to nonpCR with non-CSs. For instance, sphericity in 
the tumor or parenchymal region correlated with these 
groups (Fig.  7). The greatest sphericity was observed in 
patients who achieved a pCR, with moderately lower 
sphericity in nonpCR patients with CS and the lowest 
sphericity in nonpCR patients without CS.

Biological implications of imaging‑based response 
patterns
By examining gene profiles corresponding to imaging-
based response patterns in breast cancer, we identi-
fied 89 genes with significant prognostic correlations 
(p < 0.05). Subsequent pathway enrichment analysis 
revealed 12 pathways significantly associated with these 
genes (corrected p < 0.05) (Table  4). The IL-17 signal-
ing pathway, which is involved in inflammation, was 
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Fig. 5  Survival outcome prognostic validation of imaging-based response patterns. Among patients who had a nonpathologic complete response 
(nonpCR), those exhibiting concentric shrinkage (CS) demonstrated improved a overall survival (OS) and b recurrence-free survival (RFS) compared 
to patients with non-CS patterns

Table 3  Multivariate Cox regression analysis of the associations 
of the predicted response patterns and clinicopathological 
factors with survival outcomes

Category Recurrence free 
survival

Overall survival

HR p HR p

Shrinkage pattern

 PR 0.607 (0.328–1.121) 0.111 0.474 (0.214–1.047) 0.065

 HER2 1.228 (0.650–2.318) 0.527 1.202 (0.559–2.583) 0.637

 Age 0.978 (0.943–1.015) 0.244 1.004 (0.960–1.050) 0.875

 Largest diam-
eter

1.008 (1.000–1.017) 0.062 1.009 (0.998–1.020) 0.097

 Predicted CS 0.539 (0.297–0.978) 0.042 0.426 (0.204–0.887) 0.023

Pathological response

 PR 0.669 (0.362–1.235) 0.198 0.486 (0.220–1.073) 0.074

 HER2 1.344 (0.719–2.513) 0.354 1.346 (0.638–2.840) 0.436

 Age 0.979 (0.945–1.016) 0.263 1.005 (0.961–1.051) 0.834

 Largest diam-
eter

1.007 (0.998–1.015) 0.112 1.008 (0.998–1.019) 0.129

 Predicted pCR 0.473 (0.230–0.971) 0.041 0.339 (0.128–0.896) 0.029
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the most significantly enriched pathway (p = 2.88e−6). 
Elevated expression levels of genes within this path-
way have been linked to poor prognosis in breast can-
cer patients [26, 27]. Moreover, the estrogen signaling 
pathway, another pathway of significance, has been 
associated with breast cancer metastasis [28]. This pat-
tern aligns with the trends noted in the imaging signa-
ture analysis.

As illustrated in Fig. 8, genes such as BCL2, KLHDC2, 
MMP9, and PLA2G16 showed a positive correlation 
with treatment response status. In contrast, ATF6B and 
LAD1 were negatively associated with this status. Specifi-
cally, increased expression of BCL2 was associated with 
a shift from pCR to non-CS or nonpCR, indicating a less 
favorable treatment response. These findings are con-
sistent with those of a previous study in which negative 
BCL2 expression was significantly associated with pCR 
[29]. Moreover, increased expression of ATF6B has been 

correlated with a negative prognosis in patients with 
breast cancer [31], supporting our findings.

Discussion
Our study employed noninvasive imaging to simultane-
ously predict tumor shrinkage and therapeutic response 
to NAC in breast cancer patients. We confirmed that 
patients who achieved a pCR had the best OS and RFS. 
Notably, among those unlikely to achieve pCR, patients 
with predicted CS patterns had improved survival com-
pared to those without CS. This method allows early-
stage prediction of CS patterns during NAC, providing 
valuable insights for patients who are unlikely to achieve 
pCR. Additionally, our genomic analysis revealed the 
significant presence of cancer-related pathways, includ-
ing those related to IL-17 and estrogen signaling, among 
the genes whose expression varied significantly between 
the groups with distinct response groups. Overall, our 
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Fig. 6  Bar plots illustrating imaging feature analysis for a tumor shrinkage pattern evaluation, b pathological response prediction, c overall survival, 
and d recurrence-free survival. The analyzed features included sphericity and flatness, busyness from the parenchymal region in intermediate 
postcontrast images, small areas with high gray-level emphasis from the lesion region in precontrast images, dependence entropy from the lesion 
region in precontrast images, and a maximum 2D diameter slice from the parenchymal region in intermediate postcontrast images. Inverse hazard 
ratios (HRs) are presented as − 1/HR for values less than one. SAHGLE small area high gray level emphasis
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Fig. 7  Sphericity features in the nonpCR and non-CS, nonpCR and CS, and pCR groups. Analysis of the sphericity features across a tumor and b 
parenchyma with a 20 mm width surrounding a tumor in the development dataset, as well as c tumor and d parenchyma with a 20 mm width 
surrounding a tumor in the validation dataset

Table 4  Analysis of pathways related to marker genes across treatment response groups (non-CS, nonpCR, CS, and pCR)

Pathway P value Corrected p Gene markers

IL-17 signaling pathway 2.88e−06 0.00041 S100A7|MMP13|S100A9|S
100A8|MMP9

Estrogen signaling pathway 3e−4 0.0077 ATF6B|BCL2|KRT19|MMP9

Protein processing in endoplasmic reticulum 5.8e−4 0.012 OS9|ATF6B|EDEM2|BCL2

ECM-receptor interaction 0.0011 0.018 AGRN|LAMC3|ITGA6

Epstein–Barr virus infection 0.0012 0.020 OAS1|OAS3|HLA-G|BCL2

Small cell lung cancer 0.0013 0.021 LAMC3|ITGA6|BCL2

Parathyroid hormone synthesis, secretion and action 0.0019 0.026 ATF6B|MMP13|BCL2

Toxoplasmosis 0.0023 0.029 LAMC3|ITGA6|BCL2

Autophagy—animal 0.0032 0.035 WIPI1|DEPTOR|BCL2

Relaxin signaling pathway 0.0034 0.036 ATF6B|MMP13|MMP9

Dopaminergic synapse 0.0034 0.036 KIF5C|ATF6B|PPP1R1B

Measles 0.0040 0.040 OAS1|OAS3|BCL2
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research established a strong, independent link between 
imaging-based prognostic markers and survival in breast 
cancer patients.

In this study, we aimed to enhance the accuracy of 
predicting treatment responses by developing and vali-
dating a radiomic model that forecasts the patterns of 
breast cancer shrinkage during the initial two cycles 

of NAC. Previous studies have indicated that MRI-
observed tumor response patterns at the midpoint of 
the NAC can predict pathological outcomes more accu-
rately than posttreatment tumor response patterns [30]. 
Our model capitalizes on these early treatment stages to 
provide critical prognostic information. This early pre-
diction model holds promise for optimizing therapeutic 
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Fig. 8  Expression profiles of key genes associated with breast cancer status. A BCL2; B ATF6B; C KLHDC2; D LAD1; E MMP9; F PLA2G16
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regimens and advancing patient care by enabling clini-
cians to make more informed and timely decisions about 
treatment efficacy.

In our analysis, we delineated gene signaling pathways 
correlated with distinct patterns of treatment response. 
Genes such as BCL2 and ATF6B are involved in these 
pathways. Previous studies have demonstrated that 
downregulation of BCL2 correlates with improved dis-
ease-free survival (DFS) in breast cancer patients [31]. 
Additionally, the upregulation of ATF6B expression has 
been linked to favorable DFS outcomes [32]. Addition-
ally, elevated PLA2G16 gene expression has been cor-
related with improved DFS, consistent with findings in 
the literature [33]. Our investigation not only confirmed 
a gradation of expression for these genes across patients 
who achieved pCR, nonpCR with CS, and nonpCR with-
out CS but also aligned with a corresponding gradation 
in imaging feature changes observed in these groups. 
This correspondence underlines the credibility of radi-
omic signatures, such as sphericity, which is indicative of 
a tumor’s roundness and was found to be associated with 
a pCR and a CS pattern.

Our genomic analyses confirmed that survival dif-
ferences among the distinct response pattern groups, 
as predicted by our model, are underpinned by biologi-
cal variations. Notably, enrichment of the IL-17 sign-
aling pathway aligns with its known contribution to 
the invasive progression of breast cancer [34, 35]. This 
observation is corroborated by evidence showing that 
IL-1β-induced IL-17 production by γδ T cells drives 
G-CSF-dependent neutrophil expansion and polariza-
tion in breast tumor models, processes critical for dis-
ease progression [36]. The complexity of ER signaling has 
been emphasized [37], with disruptions in ER cofactors 
and nongenomic mechanisms implicated in the metasta-
sis of ER-positive breast cancer cells [28]. This discovery 
highlights the critical role of the estrogen pathway in the 
treatment of hormone-sensitive cancers and in the devel-
opment of novel drug therapies [38].

Consistent with previous research findings, the extra-
cellular matrix-receptor interaction pathway was nota-
bly prominent. This pathway included differentially 
expressed genes such as those in the THBS family, along 
with collagen and fibronectin genes, all of which are cru-
cial in breast cancer pathogenesis [39]. These insights 
provide a valuable understanding of the molecular frame-
work that dictates tumor behavior and the effectiveness 
of therapeutic interventions.

Our study has several limitations. First, the inclusion of 
diverse histopathological cancer subtypes, although rep-
resentative of the clinical spectrum, adds variability to the 
chemotherapy protocols used. This variability may affect 
the pCR rate following NAC, potentially introducing 

selection bias. Second, the use of imaging data from mul-
tiple sources with differing imaging protocols may lead to 
biases in the development of the model, possibly affect-
ing its predictive accuracy and applicability in various 
clinical settings. To mitigate these issues, future studies 
should focus on standardizing imaging protocols and 
taking histopathological variability into account. Such 
measures would enhance the validation process of the 
model, ensuring its dependability and usefulness across a 
wider range of clinical situations.

In summary, our investigation highlights the potential 
of noninvasive imaging as a prognostic tool for predict-
ing responses to NAC and tumor shrinkage patterns. 
The study indicated that CS patterns correlate with bet-
ter survival, particularly in patients who are less likely 
to reach a pCR. Additionally, gene expression analyses 
revealed distinct oncogenic pathways associated with 
various response patterns. These findings support the 
utility of imaging biomarkers in predicting therapeutic 
outcomes, emphasizing the role of radiomics in refining 
early prognosis and enabling personalized therapy.
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