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Abstract 

Background The incidence of early-stage lung adenocarcinoma (ES-LUAD) is steadily increasing among non-smok-
ers. Previous research has identified dysbiosis in the gut microbiota of patients with lung cancer. However, the local 
microbial profile of non-smokers with ES-LUAD remains largely unknown. In this study, we systematically character-
ized the local microbial community and its associated features to enable early intervention.

Methods A prospective collection of ES-LUAD samples (46 cases) and their corresponding normal tissues adja-
cent to the tumor (41 cases), along with normal lung tissue samples adjacent to pulmonary bullae in patients 
with spontaneous pneumothorax (42 cases), were subjected to ultra-deep metagenomic sequencing, host transcrip-
tomic sequencing, and proteomic sequencing. The obtained omics data were subjected to both individual and inte-
grated analysis using Spearman correlation coefficients.

Results We concurrently detected the presence of bacteria, fungi, and viruses in the lung tissues. The microbial profile of ES-
LUAD exhibited similarities to NAT but demonstrated significant differences from the healthy controls (HCs), characterized 
by an overall reduction in species diversity. Patients with ES-LUAD exhibited local microbial dysbiosis, suggesting the poten-
tial pathogenicity of certain microbial species. Through multi-omics correlations, intricate local crosstalk between the host 
and local microbial communities was observed. Additionally, we identified a significant positive correlation (rho > 0.6) 
between Methyloversatilis discipulorum and GOLM1 at both the transcriptional and protein levels using multi-omics data. This 
correlated axis may be associated with prognosis. Finally, a diagnostic model composed of six bacterial markers successfully 
achieved precise differentiation between patients with ES-LUAD and HCs.

Conclusions Our study depicts the microbial spectrum in patients with ES-LUAD and provides evidence of altera-
tions in lung microbiota and their interplay with the host, enhancing comprehension of the pathogenic mechanisms 
that underlie ES-LUAD. The specific model incorporating lung microbiota can serve as a potential diagnostic tool 
for distinguishing between ES-LUAD and HCs.

Keywords ES-LUAD, Intratumoral microbiome, Multi-omics, Correlation analysis, Non-invasive diagnosis

*Correspondence:
Zhixiang Yan
yanzhx3@mail.sysu.edu.cn
Qingdong Cao
caoqd@mail.sysu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-024-05485-0&domain=pdf
http://orcid.org/0000-0001-8863-3678


Page 2 of 21Sun et al. Journal of Translational Medicine          (2024) 22:652 

Introduction
The escalating incidence of early-stage tumors has 
become a global concern [1], particularly with the 
increasing detection rates of early-stage lung adenocar-
cinoma (ES-LUAD) over the past decade. Smoking is 
recognized as a risk factor for lung cancer; however, a 
significant proportion of patients with lung cancer have 
never been exposed to cigarette smoke, particularly 
among the younger population [2, 3]. Aside from recog-
nized risk factors such as genetic susceptibility, second-
hand smoke, and occupational exposure, recent reports 
suggest a potential association between the etiology of 
lung cancer and kitchen fumes and microplastics. How-
ever, these factors alone cannot entirely account for the 
disease burden [4–6]. Although tumor development 
may involve various factors, including environmental 
influences, it remains unclear whether patients with ES-
LUAD exhibit specific molecular characteristics.

Microbiomes are understood as the overlooked “invis-
ible organ” of the human body, serving as a communica-
tion medium that links various organs [7]. The microbial 
composition of the human lung has received far less 
attention than the extensively discussed gut microbiota, 
primarily due to the historical perception of its “ster-
ile” nature [8, 9]. The advancement of high-throughput 
sequencing technologies in recent years has progressively 
revealed a close association between local pulmonary 
ecological imbalances and various diseases [10]. How-
ever, as a regulator of the immune system, its impact on 
host health is significant and cannot be overlooked. Jin 
et  al. established a germ-free mouse model and discov-
ered that respiratory local microbiota can directly modu-
late the immune microenvironment, particularly γδ T 
cells. Consequently, this modulation stimulates inflam-
mation and enhances the proliferative potential of tumor 
cells [11]. Recent studies have predominantly demon-
strated the crosstalk between intestinal microbiota and 
lung tumorigenesis, indicating that the “gut–lung axis” 
may impact tumor initiation, progression, and response 
to treatments [12, 13]. Qian et  al. identified gut micro-
biota dysbiosis in patients with non-small-cell lung can-
cer (NSCLC) through multi-omics analysis, revealing 
the contribution of the Prevotella copri-nervonic acid/
all-trans-retinoic acid axis to the cancer phenotype in 
mice [14]. Tsay et  al. provided evidence indicating the 
upregulation of the ERK and PI3K signaling pathways 
associated with the enrichment of the lower respiratory 
microbiota [15]. Although specific fluid-based models 
for early lung cancer diagnosis are continuously advanc-
ing, many established diagnostic models lack the requi-
site specificity and sensitivity, significantly limiting their 
potentiality as biomarkers [16–18]. Moreover, the heter-
ogeneity of the lung microbiota among different cancer 

subtypes (adenocarcinoma vs. squamous cell carcinoma 
[SCC]) implies distinct microbial features [19]. Although 
a limited number of studies have revealed the microbial 
composition of lung tissue, they lack multi-omics evi-
dence [18, 20, 21]. Current research predominantly relies 
on 16S rRNA sequencing, which presents challenges in 
providing an in-depth characterization of the inherently 
low biomass in the lung microbiota.

The microbial habitat better reflects its local micro-
environment; however, due to the anatomical distance 
within the gut-lung axis, the direct interaction between 
local tumors and microbiota better represents the host’s 
internal homeostatic regulation. Hence, intraoperative 
lower respiratory tumor tissue samples, compared to 
feces, sputum, and bronchoalveolar lavage fluid (BALF), 
more directly reflect the microbiota–environment inter-
action with the host while minimizing environmental 
contamination. We observed that primary spontaneous 
pneumothorax (PSP), commonly prevalent among young 
adults, is typically instigated by congenital lung bullae. 
These bullae often stem from developmental anomalies 
in specific lung tissue regions during fetal stages but gen-
erally do not affect the surrounding normal lung tissue 
[22]. Hence, in patients undergoing surgical resection 
of bullae associated with spontaneous PSP, the adjacent 
normal lung tissue is considered clinically most akin to 
healthy lung samples.

The limitation in studying lung microbiota lies in the 
substantially lower biomass compared to the gut micro-
biome. Thus, our research employs ultra-deep metagen-
omics for comprehensive genomic and functional 
characterization [23]. The average tissue metagenomic 
sequencing depth per sample is 40 Gbp, ensuring ade-
quate microbial coverage even in the presence of excess 
host genomic DNA. Furthermore, the NovaSeq 6000, for 
the transcriptome, and liquid chromatography-tandem 
mass spectrometry (LC–MS/MS), for the proteome, were 
integrated with the metagenome to complement single-
omics analysis and reveal the dynamic changes in the ES-
LUAD biological system. This prospective cohort study 
serves to identify the microbial spectrum in patients with 
ES-LUAD and partially elucidates the local tumor micro-
environment’s interaction with the host.

Materials and methods
Patient recruitment and sample collection
A total of 42 HCs (adjacent normal lung tissue to PSP), 
and 46 ES-LUAD tumor tissues, and 41 paired normal 
tissues adjacent to the tumor (NATs) from patients who 
underwent thoracoscopic surgery were recruited from 
the Fifth Affiliated Hospital of Sun Yat-Sen University 
(Guangdong, China) from July 2021 to August 2022. 
Before enrollment, samples were gathered following the 
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protocol sanctioned by the local ethics committee (No. 
K41-1, 2021), and written consent was obtained from 
each participant. Upon admission, interviews were con-
ducted to gather demographic, medical history, lifestyle, 
and other characteristic information, followed by com-
prehensive evaluations through laboratory tests and 
imaging studies. All subjects were required to meet the 
following criteria: no respiratory infections, no history 
of smoking, and no use of antibiotics, steroids, or pro-
biotic treatment within the past 3 months. All diagnosis 
and treatment procedures followed international guide-
lines [24, 25]. According to the 8th edition standards set 
by the International Association for the Study of Lung 
Cancer (IASLC) regarding lung cancer TNM staging, 
only patients with stage I and stage II were included. All 
patients were newly diagnosed with ES-LUAD or PSP on 
the basis of postoperative pathological examination. The 
sampling procedure was controlled within 20  min and 
strictly adhered to aseptic techniques, ensuring that the 
cancer-adjacent tissue was at least 2  cm away from the 
tumor. As a result, 305 lung tissue samples were collected 
and stored at − 80  °C until multi-omics sequencing. The 
comprehensive clinical characteristics of the enrolled 
subjects are summarized in Table  1. Ultimately, after 
excluding 12 samples because of transcriptome quality 
control failure, 293 samples were included for subsequent 
analysis.

Genomic DNA extraction, library preparation, 
and metagenomic sequencing
The samples were transported under cold chain condi-
tions to Macro & Micro-Test Med-Tech Co., Ltd. (Bei-
jing), commissioning them for the sequencing process. 
Briefly, 0.2  μg of DNA per sample was used for DNA 
library preparations. The  NEBNext® UltraTM DNA 
Library Prep Kit for Illumina (NEB, USA, Catalog #: 
E7370L) was employed to generate sequencing librar-
ies in accordance with the manufacturer’s guidelines. 
Initially, genomic DNA was sonicated to achieve 350-
bp fragments, which were then subjected to end-pol-
ishing, A-tailing, and ligation with full-length Illumina 
sequencing adapters, followed by PCR amplification. 
PCR products were purified using the AMPure XP sys-
tem (Beckman Coulter, Brea, CA). The library quality was 
assessed using the Agilent 5400 system, and quantifica-
tion was performed via qPCR (1.5 nM). Pools of qualified 
libraries, determined by their effective concentrations, 
were sequenced on the NovaSeq 6000 platform with 
PE150 (Illumina), resulting in a total sequencing data vol-
ume of 40 Gbp.

Metagenomic classification and functional annotation, 
and analysis pipeline
The raw data underwent a series of operations using 
Fastp [26] software, including quality analysis, read filter-
ing, trimming, adapter removal, polyG/polyX tail trim-
ming, and UMI preprocessing. In an effort to eliminate 
low-quality reads and exclude those containing a specific 
proportion of N bases, human-derived sequences were 
removed using HISAT2 [27] software. Subsequently, 
Kraken2 [28] software, in conjunction with a microbial 
database, was employed to identify the species present 
in the sample. Bracken [29] was then used to classify the 
results obtained from Kraken2, enabling Bayesian re-
estimation of abundance to determine the composition 
and abundance of species. The “Decontam” package [30] 
was employed to eliminate contaminant DNA sequences, 
thereby enhancing the sequencing quality. The clean 
reads after filtering are depicted in Additional file 1: Fig. 
S1A. To enhance clarity and mitigate the possibility of 
microbial presence in only a limited number of samples, 
microbes that were present in < 20% of the single group 
were excluded, leaving 2088 species, which constituted 
8.0% of the initial quantity. For functional annotation, 
HUMAnN 3.0 [31] was used to accurately and efficiently 
profile the abundance of microbial functional genes and 
pathways matching UniRef90 IDs and functional data-
bases within the metagenomic sequencing data (clean 
data).

The species accumulation curve and rarefaction curve 
were generated to assess the adequacy of the sample size 
and the reasonableness of the metagenomic sequencing 
data volume in the patients with ES-LUAD and HCs, 
respectively (Additional file 1: Fig. S1B, C). We annotated 
all sequenced species and showed that the intrapulmo-
nary microbiota mainly consisted of bacteria, followed 
by fungi, while archaea and viruses accounted for only a 
small part of the total (Additional file 1: Fig. S1D). Alpha-
diversity analysis and Permutational Multivariate Analy-
sis of Variance (PERMANOVA) were performed using 
the R package “vegan.” Group-specific biomarkers were 
identified through linear discriminant analysis (LDA) 
scores obtained from the LDA effect size (LEfSe) analysis 
(LDA > 2.0 and p < 0.05).

RNA extraction, RNA‑sequencing, and transcriptomic 
analysis
Frozen lung tissue RNA sample preparations used total 
RNA as the input material. Sequencing libraries were 
created according to the manufacturer’s recommen-
dations using the NEBNext Ultra RNA Library Prep 
Kit for Illumina (NEB, USA, Catalog #: E7530L). Puri-
fied double-stranded cDNA underwent end repair, 
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A-tailing, and sequencing adapter ligation. AMPure XP 
beads were employed for isolating cDNA with a pre-
ferred length of 370–420  bp, which was subsequently 
amplified by PCR. The resulting PCR products were 
re-purified using AMPure XP beads to construct the 
library, ensuring an effective concentration greater than 
2 nM. Pooled qualified libraries were sequenced on the 

NovaSeq 6000 platform with PE150 (Illumina), generat-
ing a sequencing data volume of 7 Gbp.

The data were initially subjected to quality control 
using Fastp software to eliminate low-quality reads and 
remove adapters. Subsequently, Bowtie2 was used to 
mitigate the impact of rRNA. Next, HISAT2 was used 
to align the sequencing reads with the human reference 

Table 1 Clinical baseline features of sample data

Data are presented as the mean ± SD or frequency (%)

P values calculated by Wilcoxon rank-sum test or Pearson’s Chi-square test

p < 0.05 considered statistically significant

AIS, Adenocarcinoma in situ; MIA, Minimally invasive adenocarcinoma; IA, Invasive adenocarcinoma; pGGN, Pure ground glass nodules; mGGN, Mixed ground glass 
nodules; SN, Solid nodule; N/A, not available

Clinical features Total(n = 129) p value
(HC vs LUAD)

p value
(HC vs NAT)

HC(n = 42) LUAD(n = 46) NAT(n = 41)

Age (years) 31.8 ± 14.4 55.4 ± 11.2 55.2 ± 11.8 p < 0.0001 p < 0.0001

  < 19 9(21.4%) 0(0.0%) 0(0.0%)

 19–45 24(57.1%) 8(17.4%) 8(19.5%)

  > 45 9(21.4%) 38(82.6%) 33(80.5%)

Sex p < 0.0001 p < 0.0001

 Male 33(78.6%) 11(23.9%) 10(24.4%)

 Female 9(21.4%) 35(76.1%) 31(75.6%)

T stage N/A N/A

 Tis N/A 7(15.2%) 6(14.6%)

 T1 N/A 32(69.6%) 28(68.3%)

 T2 N/A 7(15.2%) 7(17.1%)

N stage N/A N/A

 N0 N/A 42(91.3%) 37(90.2%)

 N1 N/A 4(8.7%) 4(9.8%)

Clinical stage N/A N/A

 I N/A 41(89.1%) 36(87.8%)

 II N/A 5(10.9%) 5(12.2%)

Tumor infiltration N/A N/A

 AIS N/A 5(10.9%) 4(9.8%)

 MIA N/A 16(34.8%) 13(31.7%)

 IA N/A 25(54.3%) 24(58.5%)

Location p < 0.001 p < 0.001

 Left upper lobe 25(59.5%) 13(28.3%) 11(26.8%)

 Left lower lobe 0(%) 9(19.6%) 8(19.5%)

 Right upper lobe 15(35.7%) 14(30.4%) 12(29.3%)

 Right middle lobe 0(%) 4(8.7%) 4(9.8%)

 Right lower lobe 2(4.8%) 6(13.0%) 6(14.6%)

Nodules N/A N/A

 Single N/A 28(60.9%) 28(68.3%)

 Multiple N/A 18(39.1%) 13(31.7%)

Component N/A N/A

 pGGN N/A 17(37.0%) 14(34.1%)

 mGGN N/A 13(28.3%) 13(31.7%)

 SN N/A 16(34.8%) 14(34.1%)
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sequence (GRCh38.p12). Finally, transcriptional quan-
tification at the transcript level was performed using 
featuresCounts software [32]. The clean reads after fil-
tering are depicted in Additional file 1: Fig. S5A. Differ-
ential expression analysis was conducted using DESeq2 
to identify differentially expressed genes (DEGs). Func-
tional enrichment analysis was performed and visualized 
using the OmicShare tools online platform (https:// www. 
omics hare. com). Weighted Gene Co-expression Network 
Analysis (WGCNA) of mRNAs was constructed using 
OECloud tools (https:// cloud. oebio tech. com).

Peptide extraction and LC–MS/MS analysis
The ES-LUAD and HC lung tissue samples (∼  10  mg) 
were homogenized and lysed in lysis buffer (6 M Guani-
dinium hydrochloride (GdmCl), 10  mM tris(2-carbox-
yethyl)phosphine (TCEP), 40  mM 2-Chloroacetamide, 
and 100 mM Tris, at a pH of 8.5). The samples were then 
centrifuged at 16,000g for 15 min to remove tissue debris. 
The lysate was then collected, and the protein concentra-
tion was measured using a NanoDrop 2000. The crude 
protein extract was diluted at a ratio of 1:10 with dilu-
tion buffer (10% (v/v) acetonitrile (ACN), and 25  mM 
Tris, pH 8.5) containing 1  μg sequencing-grade trypsin 
(1/50, w/w), and it was then digested overnight at 37 °C. 
The digested sample was acidified to a final concentra-
tion of 0.375% trifluoroacetic acid (TFA), and debris 
was removed after centrifugation at 16,000g for 15 min. 
Finally, the peptides were desalted on StageTips assem-
bled using an Empore C18 disk, dried using a SpeedVac 
centrifuge at 45 °C, suspended in 2% ACN and 0.1% for-
mic acid (FA), and loaded on Evosep tips.

The ES-LUAD and HC lung tissue samples were meas-
ured using an EvosepOne system coupled with Orbitrap 
Fusion Lumos Tribrid mass spectrometer. Chromato-
graphic analysis was performed on a 15 cm × 150 μm cap-
illary column packed with 1.9  μm C18 porous beads. 
Solvent A was 0.1% (v/v) FA in water, and solvent B was 
0.1% (v/v) FA in ACN. Peptides were loaded onto the 
Evotip and eluted using a standard gradient at a rate of 30 
samples per day, after which they were introduced into 
the mass spectrometer via a spray voltage of 2200 V. MS 
data were acquired using the data-dependent acquisition 
(DDA) mode, and for fragmentation, the higher energy 
collision dissociation (HCD) mode was used.

The proteomic raw data were processed using Pro-
teome Discoverer 2.5 software [33] (PD2.5, Thermo Sci-
entific) with the Sequest HT search engine, which allowed 
for peptide identification against the reference human 
database in UniProt (2017.06). The minimum peptide 
length was set to 6 amino acids, and enzyme specificity 
was configured to allow for three missed trypsin cleavage 
sites. The precursor and fragment mass tolerance were 

maintained at 10  ppm and 0.02  Da. Dynamic modifica-
tions were configured to include the acetylation of the 
protein N-terminus, the carbamidomethylation of Cys, 
the oxidation of Met, the deamidation of Asn and Gln, 
and the deamidation of Pyro-glu from Gln; there was a 
maximum allowance of three modifications. The False 
Discovery Rate (FDR) for both protein and peptide levels 
was set to 0.01 to ensure a high confidence level for pep-
tide spectrum matching. The stability and repeatability of 
sample detection were assessed using a correlation heat-
map (Additional file 1: Fig. S7A). Differentially expressed 
proteins (DEPs) were identified by Wilcoxon rank-sum 
test, and functional enrichment analysis was performed 
on the DEPs.

Establishing random forest models to identify biomarkers
We explored the predictive and diagnostic value of multi-
omics biomarkers in ES-LUAD using the random forest 
model (R package: randomForest [34]). Initially, individ-
ual omics-based random forest models were constructed 
using machine learning methods. These single-omic 
models were then integrated to explore their combined 
application value. Variables in all models were prioritized 
on the basis of their contribution scores, and an optimal 
feature count was selected following the principle of min-
imal cross-validation error. The model’s performance was 
validated by employing tenfold cross-validation to deter-
mine the best biomarkers through averaged validation 
results. Finally, the efficacy of the models was tested in an 
independent test set (splitting into a ratio of 75% and 25% 
for training and validation sets), and receiver operating 
characteristic curves (ROC) [35] were plotted.

Validation and prognostic analysis based on public 
databases
We further validated our transcriptome data results 
using a public dataset. Gene Expression Profiling Interac-
tive Analysis 2 [36] (GEPIA2) (http:// gepia2. cancer- pku. 
cn/) incorporates transcriptome expression data from 
9,736 tumors and 8,587 normal samples sourced from 
The Cancer Genome Atlas (TCGA) and Genotype-Tissue 
Expression (GTEx) projects, allowing for online visuali-
zation of results. Initially, we validated the DEGs against 
the database’s results (|log2 fold change|> 1; p < 0.05). We 
further assessed the correlation between DEGs and over-
all survival (OS) and disease-free survival (DFS) (Man-
tel–Cox test), and visually represented the correlation 
through survival maps and Kaplan–Meier curves to sup-
plement prognostic data.

Integrating multi‑omics analysis
Spearman correlation was employed to explore the 
associations between multi-omics. Correlation pairs 

https://www.omicshare.com
https://www.omicshare.com
https://cloud.oebiotech.com
http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
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were assessed using the correlation coefficient values. 
The software Cytoscape [37] (version 3.9.1) was used 
to visualize the correlation networks.

Statistical analysis
Unless otherwise specified, all analysis were performed 
using the software R (version: 4.1.2). Statistical analysis 
of clinical data was conducted using SPSS 26.0, with 
count data presented as frequencies and percentages 
(%). Two-group continuous variables (measured data) 
are presented as the mean ± standard deviation (X ± S). 
Comparisons were conducted for normally distributed 
and homoscedastic metrics between groups using the 
independent samples t-test (Student’s t-test), while cat-
egorical variables are evaluated using the Chi-square 
test or Fisher’s exact test. The comparison of non-
normally distributed continuous variables between 
the two groups was conducted via two-sided Wilcoxon 
rank-sum tests, and the Kruskal–Wallis test was used 
for multiple groups. Results with a p-value < 0.05 were 
deemed statistically significant.

Results
Participant information
All samples were collected from Han Chinese individuals 
residing in the southern region of China who shared sim-
ilar dietary habits. Following a rigorous screening process 
that excluded any unsuitable samples, 129 tissue samples 
were incorporated into the study, with 41 paired samples 
originating from the same individuals. It was ensured 
that a minimum of three replicates were retained for each 
sample to facilitate multi-omics sequencing. Potential 
factors capable of influencing the composition of lung 
microbiota, such as smoking, hormone nebulization, 
and antibiotic use, were systematically excluded from the 
analysis. The study design is visually depicted in Fig. 1A. 
However, the demographic data highlighted significant 
distinctions among the groups in terms of age, sex, and 
lesion location (Table 1), which are primarily influenced 
by the epidemiological characteristics of ES-LUAD and 
PSP. Based on ultra-deep metagenome shotgun sequenc-
ing, a total of 129 samples generated 4848.2 Gbp of high-
quality data, encompassing 140 million microbial reads.

Microbial diversity and taxonomic composition in ES‑LUAD
Initial evaluation of the species diversity of the tumor, 
NAT, and HC samples revealed significant differences 

Fig. 1 Overview of the study design and the number of samples for the metagenome, transcriptome, and proteome
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between them. Compared to the HCs, the lung micro-
biota of patients with ES-LUAD showed a notable 
reduction in the Chao1 index (p < 0.001), coupled with a 
pronounced elevation in the Shannon index (p < 0.001) 
(Fig.  2A, B). However, no significant variation was 
observed in the Simpson index across the three cohorts 
(Fig. 2C).

Further analysis of the intrapulmonary micro-
biota through beta diversity comparison using PER-
MANOVA and principal coordinate analysis (PCoA) 
with the Bray–Curtis distance metric confirmed a 
marked divergence in the bacterial community struc-
ture between patients with ES-LUAD and HCs (PER-
MANOVA test, p < 0.01) (Fig.  2D). These observations 

Fig. 2 Characterization of the microbial diversity and taxonomic composition in patients with ES-LUAD and HCs. A–C Comparison of alpha 
diversity (Chao1/Shannon/Simpson index) at the species level in lung tissue of patients with ES-LUAD and HCs. D Comparison of beta diversity 
(Bray–Curtis distance) at the species level in the lung tissue of patients with ES-LUAD and HCs. E The average distribution of tumor, NAT, and HC 
groups in the phylum. F The ratio of Firmicutes and Bacteroidetes. G Venn diagram depicting shared and unique taxa for the tumor, NAT, and HC 
groups at the species level. H The average distribution of microbial species in the tumor, NAT, and HC groups. Box plots show the median ± quartiles, 
and the whiskers extend from the hinge to the largest or smallest value no further than 1.5-fold of the inter-quartile range. ns: Not significant, 
**p < 0.01, ***p < 0.001 as determined by Wilcoxon rank-sum test
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underscore the dysbiosis of intrapulmonary microbiota 
in patients with ES-LUAD.

At the taxonomic level, an average of three bacterial 
phyla, including Proteobacteria, Firmicutes, and Act-
inobacteria, accounted for more than 90% of the total 
microbial abundance. Notably, patients with ES-LUAD 
exhibited a diminished presence of Proteobacteria and 
an increased presence of Actinobacteria relative to HCs 
(Fig. 2E). A significant decrease in the Firmicutes to Bac-
teroidetes ratio was observed in patients with ES-LUAD 
(p < 0.001, Fig. 2F), which is indicative of a shift towards 
a less healthy state; this could potentially be linked to 
heightened pathogenicity [38, 39]. At the genus and 
species levels, a total of 1029 and 2088 classified taxa 
were identified, respectively. The predominant micro-
bial communities across HC, tumor, and NAT tissues 
were remarkably similar (Fig. 2G, Additional File 1: Fig. 
S2A–C). The major bacterial genera across all tissue sam-
ples were Bacillus, Acinetobacter, Mycobacterium, and 
Escherichia, collectively comprising approximately half of 
the total abundance (Additional File 1: Fig. S2B). At the 
species level, Bacillus thuringiensis, Acinetobacter bau-
mannii, Mycobacterium tuberculosis, and Escherichia coli 
were the most abundant taxa in both patients with ES-
LUAD and HCs (Fig. 2H). The species composition of the 
corresponding single sample is shown in Additional File 
1: Fig. S2A–C. Collectively, these data suggest that the 
microbial profiles of individuals with ES-LUAD showed 
similar microbial compositions.

Taxonomic alterations of microbiota in patients 
with ES‑LUAD
To ensure the identification of active bacterial taxa, we 
meticulously curated our dataset by excluding those with 
less than 50 reads per sample. This stringent criterion led 
to the retention of 398 species for further analysis. Utiliz-
ing LEfSe, we discerned robust taxonomic signatures dis-
tinguishing HCs from ES-LUAD/NAT groups (Fig.  3A). 
A total of 75 differentially abundant species were iden-
tified between tumor and HC groups, and 73 species 
between NAT and HC groups (LDA score > 2.0 and 
p < 0.05). Additionally, the Wilcoxon rank-sum test iden-
tified 44 differentially abundant species in the ES-LUAD 
versus HC comparison and 45 in the NAT versus HC 
comparison (|log2FC|> 1, Fig.  3B). By integrating these 
two methodologies, we identified 16 distinct species in 
the HC and ES-LUAD groups and 18 unique species in 
the HC and ES-LUAD groups, all of which are considered 
to possess high confidence (Fig.  3C). Among these, 16 
features corresponded to the same species, with 15 show-
ing reduced abundance in patients with ES-LUAD (Addi-
tional file 1: Fig. S3). A subset of these enriched microbial 
communities in HCs included common gut bacteria, such 

as Enterococcus faecium and Helicobacter pylori, which 
may be associated with oral-nasal inhalation or micro-
bial exchange. Notably, a heightened abundance of M. 
discipulorum was observed in the lung tissue of patients 
with ES-LUAD, contrasting with its near absence in HCs 
(LDA = 2.78, Fig. 3D, E). These signature microbial abun-
dances were similar in the tumor and NAT samples, sug-
gesting a similarity in their sources due to local microbial 
flow within the same individual [40].

Correlation analysis between intrapulmonary microbi-
ota and critical clinical features further showed no signif-
icant association between the degree of tumor infiltration 
(p > 0.05, Additional file 1: Fig. S4A, D) and the diversity 
composition of the microbiota. Similar findings were 
observed in the context of the tumor’s solid component 
(p > 0.05, Additional file 1: Fig. S4B, E) and the presence 
of multiple primary nodules (p > 0.05, Additional file  1: 
Fig. S4C, F). While these clinical features may impact the 
prognosis in ES-LUAD, our data suggest that they are not 
significantly influenced by the pulmonary microbiota.

Functional alteration of the lung tissue metagenome 
in ES‑LUAD
To explore the microbial biological pathway alterations in 
ES-LUAD, microbial genes from metagenomic analysis 
were annotated to the KEGG Orthology (KO) and Gene 
Ontology (GO) databases. A total of 197 KO genes and 
2960 GO terms were identified after filtering for subse-
quent analysis. Compared to HCs, GO biological pro-
cess analysis revealed significant enrichment in pathways 
such as regulation of cell adhesion mediated by integrins, 
chromatin organization, and extracellular matrix disas-
sembly in ES-LUAD, while the processes of regulation 
of DNA-templated transcription and meiotic spindle 
organization were markedly suppressed (Fig. 4A, E). Cor-
relation analysis revealed complex associations between 
signature microbial communities and pathways, while 
M. discipulorum potentially exhibited significant positive 
regulatory relationships (Fig. 4B). Additionally, 14 KEGG 
functional genes showed significant differences between 
tumor and HC samples, which were predominantly char-
acterized by the upregulation of large subunit ribosomal 
proteins (RPs) such as L10e, RP-L6e, RP-L5e, and RP-
L18Ae in the tumor samples, together with the depletion 
of RP-L40e and RP-L30e. This supports the notion that 
ribosomal activity is a pivotal molecular event in ES-
LUAD [39]. Epigenetic changes in histones are known to 
modulate transcription at various gene loci, influencing 
tumor progression, metastasis, and drug resistance in 
NSCLC [40]. Our dataset showed that histone H2A and 
histone H3 were upregulated in the ES-LUAD group, 
which was accompanied by the downregulation of [his-
tone H4]-lysine20 N-methyltransferase SETD8 (Fig.  4C, 
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Fig. 3 Intrapulmonary microbiota signatures of patients with ES-LUAD. A LEfSe analysis of differentially abundant intrapulmonary microbiota 
among tumor, NAT and HC groups. B Volcano diagram shows the different species among tumor, NAT and HC groups. C Venn diagram 
depicting shared and unique species for LEfSe analysis and Wilcoxon rank-sum test. D Boxplot showed representative microbial (M. discipulorum) 
that significantly changed among three groups, ***p < 0.001 as determined by Kruskal–Wallis test. E PCoA similar to Fig. 2D, with samples colored 
according to the abundance of M. discipulorum 
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Fig. 4 Microbiota-mediated functional gene alterations in patients with ES-LUAD. A, C The Bar plots show the significant GOs (A) and KO genes 
(C) between patients with ES-LUAD and HCs. (Wilcoxon rank-sum test, |log2FC|> 0.25, p < 0.05). B, D Correlation heatmap of microbial functions 
and signature microbial taxa. Correlations with |rho|> 0.3 and p < 0.05 were visualized. E Boxplot showing representative functional genes 
that significantly changed between patients with ES-LUAD and HCs. *p < 0.05, **p < 0.01 as determined by Wilcoxon rank-sum test
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E). Correlation analysis suggested a significant negative 
correlation between signature microbial communities 
and histone H2A (Fig. 4D). Additionally, we found indi-
cations suggesting that M. discipulorum may be involved 
in the modification of histone H4 by the N-methyltrans-
ferase SETD8 (Fig.  4D). Taken together, these findings 
suggest that the functional alterations of microbiota play 
a specific role in the etiology of ES-LUAD.

Associations between ES‑LUAD‑linked microbiota and host 
mRNAs
To further identify dynamic interactions among signa-
ture microbiota, KO genes, and host characteristics, we 
performed high-throughput transcriptome sequencing of 
paired ES-LUAD and HC tissues. A total of 76 samples 
were included in the analysis after quality control (HC: 
39; ES-LUAD: 37). The principal component analysis 
(PCA) revealed a distinct distribution pattern between 
patients with ES-LUAD and HCs (Additional file 1: Fig. 
S5C). We identified 1452 DEGs between patients with 
ES-LUAD and HCs (|log2FC|> 1), comprising 811 upreg-
ulated and 641 downregulated DEGs in ES-LUAD (Addi-
tional file 1: Fig. S5B, D). Functional enrichment analysis 
of DEGs in the KEGG database revealed significant dys-
regulation of cytokine-cytokine receptor interaction, cell 
adhesion molecules, tyrosine metabolism, ECM-receptor 
interaction, mucin-type o-glycan biosynthesis, and glu-
tathione metabolism in patients with ES-LUAD. Simulta-
neously, GO functional analysis indicated that there were 
changes in categories such as extracellular matrix, cell 
communication, and collagen-containing extracellular 
matrix (Fig. 5A). Thus, while biological processes across 
different functional databases may vary, the regulation 
of cell adhesion, extracellular matrix, and interactions 
among cytokines appear to be key pathways of concur-
rent changes in microbial and host functional genes 
(Figs. 4A, 5A).

The dynamic interactions were established to illus-
trate the relationship between all host DEGs, significant 
microbiota, and KO genes to assess the multi-omics sig-
natures. First, we utilized WGCNA to conduct feature 
selection on DEGs for screening clinically relevant genes. 
Nine modules were identified with a soft threshold power 

of 8, suggesting a guaranteed of a scale-free network 
(R2 = 0.85) (Additional file 1: Fig. S6A–E). As a result, a 
strong positive correlation (rho: 0.42–0.9, p < 0.001) was 
observed within the brown module, concurrently identi-
fying 277 genes (Additional file 1: Fig. S6F). The heatmap 
depicts the characteristics of the brown module (Addi-
tional file 1: Fig. S6G). We next used Spearman rank cor-
relation analysis to assess the correlation between the 
microbiome and host transcription factors, showcas-
ing representative significant microbiota, microbiota-
related KO genes, and DEGs. The network primarily 
comprises three main nodes (M. discipulorum, [histone 
H4]-lysine20 N-methyltransferase SETD8, histone H2A), 
with the nodes containing M. discipulorum and [histone 
H4]-lysine20 N-methyltransferase SETD8 respectively 
associated with 59 and 35 transcription factors, showing 
significant positive and negative correlations with tran-
scription factors, respectively (Fig. 5B). Previous studies 
have reported that the glycosyltransferase ST6GALNAC1 
can promote the synthesis of various tumor-associated 
MUC1-sialyl-Tn glycans [41, 42]. Our results show a sig-
nificant positive correlation between ST6GALNAC1 and 
MUC1 (rho: 0.66, Fig.  5C). Additionally, we observed 
significant positive and negative correlations between 
ST6GALNAC1 and MUC1 with M. discipulorum and 
[histone H4]-lysine20 N-methyltransferase SETD8, 
respectively (Fig. 5B, C). These results suggest that M. dis-
cipulorum and microbiota-related histone modifications 
may be involved in the regulation of mucosal homeosta-
sis mediated by ST6GALNAC1 and MUC1, potentially 
contributing to tumorigenesis. This evidence supports an 
association between changes in lung microbiota and host 
transcriptional profiles, highlighting a crucial direction 
for future research to elucidate the mechanistic role of 
these key microbial species in host physiology.

Validation of multi‑omics signatures to identify prognostic 
biomarkers
Gene expression is regulated by transcriptional and 
translational processes, which may be influenced by 
post-transcriptional regulation, mRNA stability, and the 
translation rate [43]. To complement the transcriptomic 
differences and gain a comprehensive understanding, we 

Fig. 5 Host transcriptome alterations and their association with intrapulmonary microbiota. A KEGG and GO pathway enrichment analysis of gene 
sets with significant transcriptional differences between tumor and HC tissues. B Network diagram depicting correlations among signature 
microbial, microbial-related KO genes, and DEGs (p < 0.05). Microbes, KO genes, and DEGs are represented by orange circles, blue diamonds, 
and green squares respectively. The size of the shapes represents the number of nodes. The color scale represents the Spearman correlation 
coefficient. Only correlation pairs containing KO genes with |rho|> 0.35 and p < 0.05 were visualized, while correlation pairs containing microbes 
with |rho|> 0.6 and p < 0.05 were visualized. C Scatter plot representing the correlation between M. discipulorum, ST6GALNAC1, and MUC1 
at the transcription level

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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conducted proteomic analysis on samples corresponding 
to the metagenomics sequencing. A partial but signifi-
cant distinction was observed between the patients with 

ES-LUAD and HCs (Additional file 1: Fig. S6C). We iden-
tified 896 significantly changed DEPs, including 467 that 
are upregulated and 429 that are downregulated, between 

Fig. 6 Integrating metagenomics, transcriptomics, and proteomics to identify biomarkers. A KEGG and GO pathway enrichment analysis 
of DEPs between tumor and HC tissues. B Venn diagram illustrating the intersection between DEGs and DEPs after filtering by WGCNA signature. 
C Network diagram depicting correlations among signature microbial, DEGs, and DEPs (p < 0.05). Microbes, DEGs, and DEPs are represented 
by orange circles, blue squares, and green diamonds respectively. Color scale represents the Spearman correlation coefficient. Only correlation pairs 
containing microbes with |rho|> 0.6 and p < 0.05 were visualized. D Scatter plot representing the correlation between M. discipulorum and GOLM1 
at the transcriptional and protein levels
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the patients with ES-LUAD and HCs (|log2FC|> 1), as 
illustrated in the volcano plot and heatmap (Additional 
file 1: Fig. S6B, D). Furthermore, KEGG analysis revealed 
that the DEPs were enriched in ECM–receptor interac-
tion, focal adhesion, and the PPAR signaling pathway. 
Significantly enriched GO terms included extracellular 
matrix structural constituent, cell adhesion molecule 
binding, small molecule metabolic process, and cadherin 
binding (Fig.  6A). Regarding the functional enrichment 
results of the metagenome and transcriptome, we found 
that the multi-omics datasets revealed key pathways 
alterations in pathways or components related to ECM–
receptor interaction, focal adhesion, and the extracellular 
matrix (Figs. 4A, 5A, 6A).

Next, we employed proteomics to further validate the 
findings of the transcriptomics. Twenty-nine DEGs/
DEPs exhibited differences concurrently in both the tran-
scriptome and proteome, although some may have dis-
played opposing expression trends (Fig.  6B, Additional 
file  1: Fig. S8). We then constructed a network to illus-
trate the co-occurrence correlation among metagenome, 

transcriptome, and proteome features. These strong cor-
relations mostly appear as positive associations between 
metagenome and transcriptome features, with negative 
associations between the transcriptome and proteome 
(Fig. 6C). Among the strong correlations in M. discipulo-
rum, we observed a prominent trend where the increase 
in the abundance of M. discipulorum was accompanied 
by the expression of GOLM1 at both the transcript and 
protein levels (Fig.  6C). Crucially, all three exhibited a 
significant positive correlation. Golgi membrane protein 
1 (GOLM1) has been reported to participate in modu-
lating the immunosuppressive microenvironment and 
it has been implicated in the onset and progression of 
hepatocellular carcinoma, glioblastoma, and melanoma 
[44–46]. The expression of GOLM1 in transcriptom-
ics and proteomics is depicted in Fig.  7A, showing sig-
nificant differences between patients with ES-LUAD and 
HCs. As expected, both GOLM1 (AUC: 0.972) and M. 
discipulorum (AUC: 0.907) could be used to effectively 
differentiate between ES-LUAD and HCs (Fig.  7B). To 
mitigate the limitations arising from small sample sizes, 
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the results from GEPIA data also validated our findings 
(Fig.  7C). Furthermore, Cox hazard models based on 
GEPIA indicated that high GOLM1 expression was asso-
ciated with shorter OS and DFS (Fig. 7D). Thus, the bio-
logical processes involving M. discipulorum and GOLM1 
may be crucial components of ES-LUAD initiation, while 
GOLM1 could also guide the prognosis of patients with 
ES-LUAD.

Discrimination of patients with ES‑LUAD using machine 
learning
To assess the potential value of signature microbiota, 
microbial KO genes, mRNA, and protein features as diag-
nostic markers, random forest (RF) classifier models with 
10 repeats of tenfold cross-validation were constructed to 
distinguish patients with ES-LUAD and HCs. A total of 
46 patients with ES-LUAD and 42 HCs were divided into 
training and validation sets at a ratio of 75% and 25%, 
respectively. Initially, we constructed an RF model using 
all microbial features, which yielded an area under the 
curve (AUC) value of 0.901 in the validation set (Fig. 8A). 
After tenfold cross-validation, the minimum cross-val-
idation error occurred with six features (Fig.  8B). The 
priority order of these six bacteria was as follows: M. 
discipulorum, Aliidiomarina sp. B3213, Acinetobacter 
sp. KU 013TH, Streptococcus oralis, Streptococcus san-
guinis, and Paracoccidioides brasiliensis (Fig. 8C). Further 
testing of this RF model composed of these six bacte-
ria demonstrated excellent diagnostic performance in 
the training and validation sets (Fig. 8D, E). This model 
exhibited superior discrimination ability between patiens 
with ES-LUAD and HCs compared to models based on 
all microbial features (AUC: 1.000) (Fig. 8F).

The models based on protein and mRNA features were 
also well performed, with AUC values of 0.934 and 0.967, 
respectively. However, the feature selection results indi-
cated lower cross-validation errors and better discrimi-
nation abilities with 150 proteins or 500 mRNAs, which 
contradicted the principle of constructing simple models 
(Additional file 1: Fig. S10A, B). The RF model based on 
KOs showed an AUC of 0.694, with a high cross-valida-
tion error (Additional file 1: Fig. S10C).

Next, we aimed to establish a multi-omics classifier 
to achieve optimal ES-LUAD diagnostic results. Since 
mRNAs and KOs performed poorly in model classifi-
cation, we chose microbial and protein features to con-
struct a multi-omics classifier, which demonstrated 
excellent diagnostic efficacy (AUC: 0.942). However, the 
lowest cross-validation error occurred with 45 features, 
and after tenfold cross-validation, the AUC in the valida-
tion set was 0.909 (Additional file 1: Fig. S10D). In com-
parison, the RF model based on six bacterial features 
proved to be more accurate in distinguishing between 

HCs and patients with ES-LUAD than the combined 
model. Therefore, as a promising non-invasive tool, the 
bacterial marker panel holds great potential for detecting 
and distinguishing patients with ES-LUAD and healthy 
individuals.

Discussion
Our prospective study results revealed a significant 
association between local microbiota in lower respira-
tory tissues and dynamic changes in host transcription 
and translation, which may be relevant to the patho-
genesis of ES-LUAD. To the best of our knowledge, this 
is the first comprehensive study employing ultra-deep 
metagenomics, host transcriptomics, and proteomics to 
identify the ES-LUAD lung tissues microbiota, includ-
ing bacteria, fungi, and viruses. The limited biomass in 
lung tissue together with our limited knowledge has led 
us to overlook the role of microbiota in maintaining the 
mucosal immune balance in the lower respiratory tract. 
In our study, we systematically eliminated all potential 
confounding factors that might affect the lung micro-
biota, including environmental habitat, smoking, alcohol 
consumption, antibiotic use, inhaled steroid nebulization, 
and lung infection. Moreover, our samples were isolated 
from any contamination from oral and upper respira-
tory microbiota and swiftly collected under sterile and 
dust-free conditions, ensuring an exceptionally high level 
of confidence in our data. We observed that the micro-
bial load in tumor tissues was similar to that in NAT 
but significantly lower than that in HC, providing simi-
lar evidence from previous research [40]. Owing to ana-
tomical proximity, bacteria within the tumor may also 
originate from the NAT, providing an explanation for the 
observed high similarity between the microbial compo-
sitions of the tumor and paired NAT samples. Previous 
studies using 16S rRNA profiling identified predominant 
lung tissue microbiota within the phyla Proteobacteria, 
Actinobacteria, Firmicutes, and Bacteroidetes [18]. Simi-
larly, our research confirmed these findings, although we 
observed a higher abundance of Ascomycota than Bacte-
roidetes, a consistent pattern observed across almost all 
samples. Notably, compared to HCs, patients with ES-
LUAD exhibit a reduced species abundance but a high 
prevalence of rare species with low individual counts yet 
high diversity. Moreover, the decreased ratio between 
Firmicutes and Bacteroidetes signifies an imbalance in 
the local microbiota of ES-LUAD [39, 47].

The microenvironment of ES-LUAD involves shared 
alterations in multiple distinct taxonomic groups and 
microbial functional genes. M. discipulorum is predomi-
nantly isolated from natural environments [48]; how-
ever, our data indicate its significant involvement in the 
modulation of diverse microenvironments, although its 
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Fig. 8 ES-LUAD classifier based on the signatures of tissue microbiome. A Validation queue ROC curve for establishing a random forest model 
based on 398 microbes (training AUC = 1). B Selection of optimal feature count based on tenfold cross-validation. C Feature ranking based 
on importance values. D Performance of the RF model in the training queue. E Performance of the RF model in the validation queue. F Validation 
queue ROC curves of the top six bacteria (training AUC = 1)
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pathogenic potential remains unknown. E. faecium has 
garnered significant attention in tumor immunotherapy 
recently due to its ability to enhance T-cell responses and 
improve the efficacy of anti-PD-L1 antitumor treatments 
[49, 50]. Although H. pylori is widely recognized as a risk 
factor for gastric cancer, emerging evidence suggests an 
association between H. pylori infection and an increased 
risk of lung cancer [51]. Intriguingly, our dataset revealed 
a lower abundance of E. faecium and H. pylori in the 
group with cancer than HC. Indeed, as these species may 
demonstrate varying degrees of pathogenicity in different 
diseases, the correlation with lung cancer remains to be 
explored further.

Significant correlations were also observed between 
characteristic changes in microbial abundance, particu-
larly in ES-LUAD and NAT samples, and the regulation 
of ribosomal and histone genes. Aberrant ribosomes may 
undergo degradation by quality control mechanisms, 
leading to an overall reduction in protein synthesis rates. 
Should aberrant ribosomes escape quality control mech-
anisms, they may facilitate decreased translation fidelity 
or altered mRNA translation patterns, potentially con-
tributing to tumorigenesis [52, 53]. Furthermore, these 
abnormalities may induce host inflammatory responses, 
influencing gene expression by modifying the cellular 
environment, impacting signaling pathways, and activat-
ing immune cells, or by suppressing the host’s immune 
response to facilitate tumor escape and progression [54]. 
Epigenetic modifications, particularly alterations in his-
tone proteins, play a crucial role in gene expression regu-
lation and cancer development [55, 56]. The study found 
upregulation of histone H2A and histone H3, accompa-
nied by downregulation of histone H4 lysine20 N-meth-
yltransferase SETD8 in ES-LUAD. This suggests a shift 
in the epigenetic landscape favoring tumor progression. 
Correlation analysis also indicated potential interactions 
between microbial communities and histone modifica-
tions, highlighting the intricate interplay between the 
microbiota and epigenetic regulation in cancer. The find-
ings suggest that functional alterations in the lung tissue 
metagenome, driven by dysbiosis and microbial dys-
regulation, may play a specific role in the etiology of ES-
LUAD [57].

In this study, we have uncovered intriguing connec-
tions between M. discipulorum, ST6GALNAC1, MUC1, 
and host physiology, particularly in the context of tum-
origenesis. Our findings reveal a significant positive 
correlation between ST6GALNAC1, an enzyme impli-
cated in the synthesis of tumor-associated glycans, and 
MUC1, a mucin glycoprotein frequently dysregulated 
in cancer. Chronic inflammation promotes abnormal 
MUC1 glycosylation in epithelial cells, while the inflam-
matory microenvironment can also induce changes in 

cell polysaccharide composition by regulating glycosyl-
transferases [58, 59]. During chronic inflammation and 
carcinogenesis, M2 macrophages induce the expression 
of ST6GALNAC1, thereby promoting abnormal glyco-
sylation of MUC1, leading to the formation of tumor-
associated sialyl-Tn (sTn) O-glycans, exacerbating 
disease progression [42]. Additionally, ST6GALNAC1 
and MUC1 collectively participate in the expression of 
tumor-associated glycan antigen STn in cancer cells, 
potentially affecting dendritic cell maturation and thus 
influencing immune responses [41]. Furthermore, our 
analysis highlights the involvement of M. discipulorum 
and microbiota-related histone modifications in this 
regulatory network. Specifically, we observe significant 
correlations between M. discipulorum, ST6GALNAC1, 
MUC1, and specific microbiota-related function genes, 
underscoring the intricate interplay between microbial 
species and host gene expression profiles. Notably, the 
presence of M. discipulorum and specific microbiota-
related histone modifications appears to modulate the 
relationship between ST6GALNAC1, MUC1, and host 
transcriptional activity. Thus, exploring how alterations 
in the lung microbiota influence the expression and activ-
ity of key oncogenic pathways, such as those involving 
ST6GALNAC1 and MUC1, may unveil novel targets for 
therapeutic intervention.

The integration of multi-omics data, including 
metagenomics, transcriptomics, and proteomics, pro-
vides a comprehensive understanding of the molecular 
landscape underlying disease processes. Our findings 
revealed a notable convergence of differential expres-
sion patterns between M. discipulorum and GOLM1 
across both transcriptomic and proteomic levels. Pre-
vious research has shown that abnormal regulation of 
GOLM1 plays a significant role in the development and 
metastasis of colorectal cancer, potentially promoting 
tumor immune evasion and metastasis by recruiting 
myeloid-derived suppressor cells [60]. However, GOLM1 
also maintains the homeostasis of intestinal epithelial 
cells by regulating the Notch signaling pathway, protect-
ing the intestine from damage caused by colitis and colo-
rectal cancer [61]. In Crohn’s disease, there is abnormal 
interaction between microbiota and host proteins such 
as GOLM1, which may be related to the development 
of intestinal inflammation and bacterial translocation 
[62]. In hepatocellular carcinoma, GOLM1 promotes 
the stability of PD-L1 and transports PD-L1 into tumor-
associated macrophage-derived exosomes, leading to 
suppression of CD8 + T cells, revealing its role in regu-
lating the immunosuppressive environment [44]. Addi-
tionally, GOLM1 can also be used for early diagnosis of 
hepatocellular carcinoma [63, 64]. Therefore, GOLM1 
has a diverse role in various malignancies, including 
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maintenance of inflammation, tumor initiation and 
metastasis, as well as early diagnosis. Our study extends 
this understanding by elucidating its potential relevance 
in ES-LUAD. Furthermore, the association between 
high GOLM1 expression and unfavorable clinical out-
comes, as indicated by shorter OS and DFS, underscores 
its prognostic significance in ES-LUAD. This highlights 
GOLM1 as a potential biomarker for risk stratification 
and therapeutic decision-making in patients with ES-
LUAD. Moreover, the identification of M. discipulorum 
as a co-occurring factor further emphasizes the intricate 
crosstalk between the microbiome and host biology in 
cancer development. The observed associations suggest 
a potential mechanistic link between microbial dysbiosis 
and GOLM1-mediated immune modulation, contribut-
ing to the pathogenesis of ES-LUAD.

The results of our study underscore the potential of uti-
lizing microbial, microbial-associated KO genes, mRNA, 
and protein features as diagnostic markers for discrimi-
nating between patients with ES-LUAD and HCs. Using 
cross-validated random forest classifier models, we suc-
cessfully distinguished patients with ES-LUAD and HCs, 
particularly highlighting the efficacy of a model incorpo-
rating six specific bacterial features. Interestingly, the RF 
model based on microbial features outperformed those 
based on protein and mRNA features, highlighting the 
potential superiority of microbial signatures in ES-LUAD 
diagnosis. We further aimed to establish a multi-omics 
classifier combining microbial and protein features to 
optimize diagnostic accuracy. While this multi-omics 
approach showed promising diagnostic efficacy, it 
became evident that the RF model based on six bacterial 
features outperformed the multi-omics classifier com-
posed of 45 features in distinguishing between patients 
with ES-LUAD and HCs. However, further validation of 
our findings in larger cohorts and across diverse popula-
tions is warranted to confirm the robustness and general-
izability of the microbial marker panel.

The highlights of this study lie in the use of ultra-deep 
metagenomics in conjunction with transcriptomics and 
proteomics to explore the microbial changes in ES-LUAD 
and assess the feasibility of these changes as a non-
invasive diagnostic method. Furthermore, this research 
represents one of the few investigations into the micro-
biome of ES-LUAD, specifically among non-smokers. 
Despite the careful design and rigorous sample inclusion, 
our study still has several limitations. First, as a cross-
sectional study, our sample size is relatively limited, and 
there is a lack of external cohort validation. Validation of 
our conclusions requires a multicenter approach with a 
large sample size. Second, despite efforts to mitigate dif-
ferences related to sex and age, confounding factors such 
as individual variations remain unavoidable. Third, our 

detection techniques are primarily designed for microbial 
communities and may not be universally applicable when 
identifying lower abundance classifications such as fungi, 
viruses, or archaea. Future work will involve mechanistic 
experiments to elucidate specific causal relationships.

Conclusions
In summary, our study elucidates distinctive changes in 
the local microbiome of ES-LUAD and its dynamic inter-
play with the host, contributing to an enhanced under-
standing of its pathogenic mechanisms. The potential 
biomarkers identified through multi-omics approaches 
offer promising avenues for the development of non-
invasive tools to assist in the screening of ES-LUAD. In 
the long term, our study lays the foundation for larger-
scale validation experiments, contributing to the identifi-
cation of novel microbial diagnostic targets for ES-LUAD.
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GdmCl  Guanidinium hydrochloride
TCEP  Tris(2-carboxyethyl)phosphine
ACN  Acetonitrile
TFA  Trifluoroacetic acid
FA  Formic acid
DDA  Data-dependent acquisition
HCD  Higher energy collision dissociation
FDR  False discovery rate
DEP  Differentially expressed protein
ROC  Receiver operating characteristic curves
GEPIA2  Gene expression profiling interactive analysis 2
TCGA   The cancer genome atlas
GTEx  Genotype-tissue expression
OS  Overall survival
DFS  Disease-free survival
PCoA  Principal coordinate analysis
KO  Kegg orthology
GO  Gene ontology
RP  Ribosomal protein
PCA  Principal component analysis
GOLM1  Golgi membrane protein 1
AUC   Under the curve
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established based on 398 microbes and 3000 proteins (training AUC = 1). 
The middle panel depicts the selection of optimal feature count based on 
10-fold cross-validation. The right panel shows the ROC curve for the top 
45 microbes and proteins in the validation queue (training AUC = 1).
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D Overall taxa distribution of the microbiome kingdom in three groups. 
Figure S2. Microbial compositions in the cohort. Microbial compositions 
of the patients with ESLUAD and HCs at the phylum (A), genus (B), and 
species (C) levels. The top 10/20 abundant microbial taxa are shown with 
different gradient colors. The microbial composition is arranged in order of 
the mostabundant taxonomic ranks. Figure S3. Representative microbes 
exhibiting significant alterations between patients with ESLUAD and HCs. 
*** p < 0.001 as determined by Kruskal–Wallis test. Figure S4. Correlation 
between intrapulmonary microbiota and clinical features. A, D Compari-
son of the alpha diversity (Chao1/Shannon/Simpson index) and beta 
diversity (Bray–Curtis distance) at the species level with tumor infiltration 
in patients with ES-LUAD. B, E Comparison of the alpha diversity (Chao1/
Shannon/Simpson index) and beta diversity (Bray–Curtis distance) at the 
species level with solid component of tumor in patients with ES-LUAD. C, 
F Comparison of the alpha diversity (Chao1/Shannon/Simpson index) and 
beta diversity (Bray–Curtis distance) at the species level with multiple-
primary nodules in patients with ES-LUAD. Box plots show median ± quar-
tiles, and the whiskers extend from the hinge to the largest or smallest 
value no further than 1.5-fold of the interquartile range. ns: Not significant, 
p-value as determined by Wilcoxon rank-sum test. AIS: Adenocarcinoma 
in situ, MIA: Minimally invasive adenocarcinoma, IA: Invasive adenocar-
cinoma, pGGN: Pure ground glass nodules, mGGN: Mixed ground glass 
nodules, SN: Solid nodule. Figure S5. Overview of transcriptome data. A 
RNA-Seq passed reads sequenced by Illumina NoveSeq 6000 Nanopore 
platforms (Wilcoxon rank-sum test). B Clustering heatmap of the DEGs 
between patients with ES-LUAD and HCs (DESeq2, |log2FC| > 1). C PCA 
analysis reveals differences in the transcriptomes of patients with ES-LUAD 
and HCs. D Volcano diagram shows the significant DEGs between patients 
with ES-LUAD and HCs (DESeq2, |log2FC| > 1). Figure S6. Identification of 
ES-LUAD-related mRNAs in the transcriptome dataset through WGCNA. 
A–D Network fitting calculations with fitted curves for selected network 
construction parameters. A Correlation coefficient corresponding to differ-
ent power. B Average connectivity of the network constructed with differ-
ent power values. When the power is taken as 8, the correlation coefficient 
is higher, and the average connectivity of the network is also higher, so 
the value of power used in the construction of the subsequent module is 
8. C The distribution of network connectivity when the power is 8; D The 
test result of the power law distribution. As can be seen from the figure, k 
and p(k) are negatively correlated (correlation coefficient: 0.85), indicating 
that the selected power value enables the establishment of a scale-free 
network of genes. E The result of weighted co-expression network con-
struction. F Heatmap of correlation analysis between modules and clinical 
traits. G Gene expression information statistics within modules. Figure 
S7. Overview of proteomic data. A QC sample correlation represents the 
process stability. B Clustering heatmap of the DEPs between patients with 
ES-LUAD and HCs (Wilcoxon rank-sum test, log2 fold change > 1). C PCA 
reveals differences in the proteome of patients with ES-LUAD and HCs. 
D Volcano diagram shows the significant DEPs between patients with 
ES-LUAD and HCs (Wilcoxon rank-sum test, log2 fold change > 1). Figure 
S8. Validation and prognostic information of DEGs and DEPs in public 
databases. The top represents the expression of DEGs, and the bottom 
represents the expression of DEPs. The middle represents the OS and 
DFS. Solid lines indicate significance at p < 0.05 (Mantel–Cox test). Figure 
S9. Random forest model based on multi-omics data. A The left panel 
represents the validation queue ROC curve for the random forest model 
established based on 3000 proteins (training AUC = 1). The middle panel 
depicts the selection of optimal feature count based on 10-fold cross-
validation. The right panel shows the ROC curve for the top 150 proteins 
in the validation queue (training AUC = 1). B The left panel represents 
the validation queue ROC curve for the random forest model established 
based on 13846 mRNAs (training AUC = 1). The middle panel depicts the 
selection of optimal feature count based on 10-fold cross-validation. The 
right panel shows the ROC curve for the top 500 mRNAs in the valida-
tion queue (training AUC = 1). C The left panel represents the validation 
queue ROC curve for the random forest model established based on 196 
KO genes (training AUC = 1). The middle panel depicts the selection of 
optimal feature count based on 10-fold cross-validation. D The left panel 
represents the validation queue ROC curve for the random forest model 
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