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Polygenic risk score of metabolic 
dysfunction-associated steatotic liver disease 
amplifies the health impact on severe liver 
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Abstract 

Background Although the inherited risk factors associated with fatty liver disease are well understood, little is known 
about the genetic background of metabolic dysfunction-associated steatotic liver disease (MASLD) and its related 
health impacts. Compared to non-alcoholic fatty liver disease (NAFLD), MASLD presents significantly distinct diagnos-
tic criteria, and epidemiological and clinical features, but the related genetic variants are yet to be investigated. There-
fore, we conducted this study to assess the genetic background of MASLD and interactions between MASLD-related 
genetic variants and metabolism-related outcomes.

Methods Participants from the UK Biobank were grouped into discovery and replication cohorts for an MASLD 
genome-wide association study (GWAS), and base and target cohorts for polygenic risk score (PRS) analysis. Autoso-
mal genetic variants associated with NAFLD were compared with the MASLD GWAS results. Kaplan–Meier and Cox 
regression analyses were used to assess associations between MASLD and metabolism-related outcomes.

Results Sixteen single-nucleotide polymorphisms (SNPs) were identified at genome-wide significance lev-
els for MASLD and duplicated in the replication cohort. Differences were found after comparing these SNPs 
with the results of NAFLD-related genetic variants. MASLD cases with high PRS had a multivariate-adjusted hazard 
ratio of 3.15 (95% confidence interval, 2.54–3.90) for severe liver disease (SLD), and 2.81 (2.60–3.03) for type 2 diabetes 
mellitus. The high PRS amplified the impact of MASLD on SLD and extrahepatic outcomes.

Conclusions High PRS of MASLD GWAS amplified the impact of MASLD on SLD and metabolism-related outcomes, 
thereby refining the process of identification of individuals at high risk of MASLD. Supplementation of this process 
with relevant genetic backgrounds may lead to more effective MASLD prevention and management.

Keywords Metabolic dysfunction-associated steatotic liver disease, Non-alcoholic fatty liver disease, Genome-wide 
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Background
Non-alcoholic fatty liver disease (NAFLD) is the leading 
cause of cirrhosis and hepatocellular carcinoma  (HCC), 
occurring in 25% of the global population [1]. Over the 
past ten years, significant conceptual advances have been 
made in understanding the complex pathophysiological 
mechanisms of this highly prevalent liver condition [2]. 
It has been progressively recognized that NAFLD is a 
multisystem disease where insulin resistance and related 
metabolic dysfunction play a critical pathogenic role [3]. 
NAFLD is associated with several liver-related morbidi-
ties, including cirrhosis, liver failure and HCC and extra-
hepatic complications, such as cardiovascular disease 
(CVD), type 2 diabetes mellitus (T2DM), chronic kidney 
disease (CKD) [4–6]. Recently, after a Delphi consensus 
process engaged global experts, the new term “metabolic 
dysfunction-associated steatotic liver disease” (MASLD) 
was proposed to redefine NAFLD [7]. As interpreted in 
the Delphi consensus, the clinical characteristics and 
diagnostic methods of MASLD performed differently 
from those of NAFLD, with no stigmatization. Com-
pared to NAFLD, which is diagnosed by exclusion crite-
ria, MASLD defined by the presence of hepatic steatosis 
in the context of co-existing cardiometabolic risk factors 
like elevated body mass index (BMI), insulin resistance, 
hypertension or dyslipidaemia [8].

In addition to clinical factors [9–12], genetic back-
ground profoundly influences fatty liver disease (FLD) 
and its related outcomes, as previous studies have 
revealed the associations between inherited risk factors 
and FLD [13, 14]. One such study demonstrated that 
FLD-related genetic variants amplified the health impact 
of metabolic dysfunction-associated fatty liver disease 
(MAFLD) [4]. However, this study applied the genetic 
variants from previous genome-wide association studies 
(GWAS) of FLD directly. Additionally, over the past few 
years, GWAS have revealed more than five single-nucle-
otide polymorphisms (SNPs) linked to the occurrence 
and development of NAFLD (e.g., PNPLA3, TM6SF2, 
MBOAT7, and GCKR); these are classic SNPs that have 
been well-explored in several independent studies [15, 
16].

However, phenotypic variations may lead to differ-
ences in genetics, and differences in diagnostic criteria 
and clinical features exist between NAFLD and MASLD 
[7]. Although previous studies have identified genetic 
variants related to NAFLD [17], hepatic lipid accumula-
tion [18, 19], liver enzymes, and various forms of liver 
diseases [20, 21], little is known regarding the genetic 
background of MASLD and its health impacts. There-
fore, to further explore the progression of MASLD and 
its impact on severe health outcomes such as severe liver 
diseases (SLD), coronary artery disease (CAD), and other 

extrahepatic outcomes, it is necessary to understand the 
related genetic determinants.

Thus, in this study, we aimed to report a large MASLD 
GWAS by analyzing the epidemiological and genetic data 
of the UK Biobank (UKBB) to further assess the genetic 
background of MASLD and the interactions between 
MASLD-related gene variants and metabolism-related 
outcomes.

Methods
Study population
This investigation was conducted using the UKBB 
resource (application number: 92668). The UKBB is a 
prospective population-based cohort study that con-
tains data from over 0.5 million participants aged 
40–69  years. This data was collected between 2006 and 
2010 and contains combined extensive measurements 
of baseline and genotype data. To assess the genetic 
background of MASLD, and the interactions between 
MASLD-related genetic variants and metabolism-related 
outcomes, we conducted a GWAS for 165,984 MASLD 
cases and 269,322 controls. Participants were randomly 
grouped into two cohorts for the GWAS: the discovery 
(n = 304,714) and replication cohorts (n = 130,592). For 
polygenic risk score (PRS) analysis, the discovery cohort 
was assigned as the base cohort, and the replication 
cohort served as the targeted cohort (Table 1).

Diagnosis of MASLD
For the UKBB MASLD cohort, we calculated the fatty 
liver index (FLI) for each participant and defined hepatic 
steatosis as FLI ≥ 60 [22], as imaging or histological data 
of liver were not available. The diagnostic criteria of 
MASLD were set with reference to the Delphi consensus. 
Briefly, MASLD was diagnosed based on FLI-diagnosed 
hepatic steatosis and presence of one of the following 
four criteria: (1) overweight or obesity, (2) diagnosis of 
T2DM or prediabetes, (3) hypertension, or (4) dyslipi-
demia [7, 23].

Diagnosis of NAFLD
NAFLD was defined based on the International Clas-
sification of Diseases (ICD) Ninth and Tenth Revision 
codes from in-patient hospital diagnoses (Table S1). The 
diagnostic criteria required evidence of hepatic steatosis 
in the absence of significant alcohol consumption (< 30 g 
per day for men and < 20  g per day for women). Addi-
tional exclusion criteria included other causes of liver fat 
accumulation such as viral hepatitis, medication use, or 
other chronic liver diseases.
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GWAS and PRS analyses
In the discovery cohort, a total of 304,714 Caucasian 
British individuals (165,182 females and 139,532 males) 
with genotype data meeting MASLD diagnosis criteria 
were analyzed for GWAS, comprising 116,509 MASLD 
cases. In the replication cohort, a total of 130,592 Cauca-
sian British individuals comprising 50,041 MASLD cases 
were analyzed for GWAS (Fig. S1). For NAFLD, 301,846 
Caucasian British individuals comprising 3881 NAFLD 
cases were analyzed.

Two very similar genotyping arrays (Affymetrix UK 
BiLEVE and UK Biobank Axiom arrays) were used for 
genotyping participants in the UK Biobank, and impu-
tation was performed using the merged UK10K and 
1000 Genomes phase 3 reference panels [24]. Variants 
was restricted to high-quality autosomal variants with 
a minor allele frequency > 0.1%, minor allele count > 5%, 
info score > 0.3, genotype hard call rate > 0.95, and Hardy–
Weinberg P > 1 ×  10–6. Finally, a total of 12,250,143 and 
12,248,938 SNPs were included in the GWAS in the dis-
covery and replication cohorts, respectively. We tested 
autosomal genetic variants for association with MASLD, 
assuming an additive allelic effect and using FastGWA-
GLMM [25] implemented in Genome-wide Complex 
Trait Analysis software to account for population struc-
ture and cryptic relatedness. All models included the 

following covariates as fixed effects: sex, age, genotyping 
array, and principal components 1–20. The genome-wide 
significance threshold was set as 5 ×  10−8. The genome-
wide significant variants in the discovery cohort were 
extracted and analyzed in the replication cohort.

To detect multiple independent association signals 
at each genome-wide significant MASLD locus, we 
applied approximate conditional and joint genome-wide 
association analysis using the software package GCTA 
v1.91.14. Variants with high collinearity (multiple regres-
sion  R2 > 0.9) were ignored, and those situated more than 
1000 Kbp away were assumed to be independent. A refer-
ence sample of 50,000 unrelated White British individu-
als randomly selected from the UK Biobank was used 
to model linkage disequilibrium (LD) patterns between 
variants. The reference genotyping dataset comprised the 
same variants as those assessed in the GWAS. Condition-
ally independent variants reaching genome-wide signifi-
cance were annotated to the physically closest gene using 
3DSNPv1.0 [26].

We used LD score regression (LDSC) [27] to estimate 
the amount of genomic inflation present in the data due 
to residual population stratification, cryptic relatedness, 
and other latent sources of bias. PRSice-2 software (ver-
sion 2.3.3 for R) was used to estimate the PRS using odds 
ratios (ORs) from GWAS data in the base cohort, and we 

Table 1 Study participants’ characteristics in the GWAS

GWAS genome wide association study, MASLD metabolic dysfunction-associated steatotic liver disease, BMI body mass index, WC waist circumference, HbA1c glycated 
hemoglobin, TG plasma triglycerides, CHO plasma total cholesterol, LDL plasma low-density lipoprotein cholesterol, HDL plasma high-density lipoprotein cholesterol, 
GGT  gamma-glutamyl transferase, CRP C-reactive protein

Characteristic Total (n = 435,306) Discovery cohort 
(n = 304,714)

Replication cohort 
(n = 130,592)

P

Age, years 58 (50, 63) 58 (50, 63) 58 (50, 63) 0.254

Sex, n (%) 0.307

 Female 236,195 (54.26) 165,182 (54.21) 71,013 (54.38)

 Male 199,111 (45.74) 139,532 (45.79) 59,579 (45.62)

MASLD, n (%) 166,550 (38.26) 116,509 (38.24) 50,041 (38.32) 0.608

BMI, kg/m2 26.71 (24.13, 29.86) 26.72 (24.12, 29.85) 26.71 (24.13, 29.86) 0.703

WC, cm 90 (80, 99) 90 (80, 99) 90 (80, 99) 0.990

Glucose, mmol/L 4.93 (4.60, 5.31) 4.93 (4.60, 5.31) 4.93 (4.60, 5.31) 0.080

HBA1c, mmol/mol 35.1 (32.7, 37.7) 35.1 (32.7, 37.7) 35.1 (32.7, 37.7) 0.556

TG, mmol/L 1.49 (1.05, 2.15) 1.49 (1.05, 2.15) 1.49 (1.05, 2.16) 0.101

CHO, mmol/L 5.67 (4.93, 6.44) 5.67 (4.93, 6.44) 5.67 (4.92, 6.44) 0.765

LDL, mmol/L 3.53 (2.96, 4.13) 3.53 (2.96, 4.13) 3.53 (2.96, 4.13) 0.503

HDL, mmol/L 1.4 (1.18, 1.68) 1.4 (1.18, 1.68) 1.4 (1.17, 1.68) 0.734

GGT, U/L 26.2 (18.4, 40.8) 26.1 (18.4, 40.8) 26.2 (18.5, 40.9) 0.231

CRP, mg/L 1.32 (0.66, 2.74) 1.32 (0.65, 2.74) 1.33 (0.66, 2.76) 0.208

Medication usage

 Antihypertensive drugs, n (%) 97,873 (22.48) 68,266 (22.4) 29,607 (22.67) 0.053

 Hypoglycemic drugs, n (%) 14,737 (3.39) 10,286 (3.38) 4451 (3.41) 0.591

 Statins, n (%) 77,376 (17.78) 54,187 (17.78) 23,189 (17.76) 0.840
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estimated the individual PRS of MASLD phenotypes for 
the target cohort.

Outcome data
ICD codes were used to define incident diseases 
(Table  S1), and associations between MASLD and SLD, 
hypertension, CAD, stroke, heart failure (HF), CKD, 
T2DM, and overall survival were examined. SLD was 
defined as a composite diagnosis of cirrhosis, decom-
pensated liver disease (i.e., esophageal varices with or 
without bleeding, portal hypertension, hepatorenal syn-
drome, and liver failure), HCC, and/or liver transplanta-
tion in any of the aforementioned records.

Statistical analysis
Continuous data were summarized as means and stand-
ard deviations (SD) when normally distributed and as 
median and interquartile range when skewed; categorical 
data were summarized as frequencies and percentages. 
For comparison between groups, continuous data were 
assessed using the independent t-test or Mann–Whitney 
U test. In contrast, categorical data were evaluated using 
the chi-square or Fisher’s exact tests.

Cox proportional hazards models were used to assess 
the health impact of MASLD, and the hazard ratio (HR) 
derived from the three models was used to quantify the 
health impact. Model 1 was unadjusted. Model 2 was 
adjusted for sex, age at recruitment, genotyping chips, 
and BMI. Model 3 was further adjusted for hypoglyce-
mic drugs, antihypertensive drugs and statins, based on 
model2 (Table  S2). The hypoglycemic drugs included 
PPAR agonists, biguanides, alpha-glucosidase inhibi-
tors, benzoic acid derivatives, sulfonylureas, and insulin 
[28]. The antihypertensive drugs include ACE inhibitors, 
calcium channel blockers, beta-blockers, thiazides, and 
angiotensin II receptor blockers [29].

We categorized the participants into low- and high-
PRS groups using the midpoint of the PRS as the cut-off. 
The associations between MASLD and morbidities were 
reassessed by considering the PRS. All analyses were per-
formed using R software (version 4.0.2; R Foundation for 
Statistical Computing, Vienna, Austria). For the GWAS, 
significance was set at P < 5 ×  10−8; for other analyses, it 
was set at P < 0.05.

Ethics statement
All participants provided informed consent via electronic 
signature at the baseline assessment. Ethical approval 
was granted for the use of the UK Biobank by the North 
West-Haydock Research Ethics Committee (REC refer-
ence: 16/NW/0274). The study protocol conformed to 
the ethical guidelines of the 1975 Declaration of Helsinki.

Results
Characteristics of study participants
A total of 435,306 participants of White British descent 
from the UK Biobank were selected for a GWAS of 
MASLD, which comprised 166,550 subjects diagnosed 
with MASLD (Table 1, Fig. S1). Table 1 presents the basic 
characteristics of the study participants. In the discov-
ery cohorts, over half of the participants were women, 
and the median BMI indicated an overweight status 
(BMI ≥ 25  kg/m2). The demographic, clinical and bio-
chemical parameters were similar between the discovery 
and replication cohorts (P > 0.05).

MASLD case–control GWAS
To explore the genetic association of SNPs with phe-
notypes, we analyzed autosomal SNPs and identified 
114 conditionally independent signals associated with 
MASLD mapping to loci at P < 5 ×  10–8 (Table  S3). The 
MASLD of the discovery cohort case–control analy-
sis is presented as a Manhattan plot in Fig.  1A and a 
QQ plot of the association results is shown in Fig.  1B. 
Although there was substantial inflation of the test statis-
tics (λ = 1.57), LD score regression indicated most of the 
inflation to be a result of polygenicity rather than popula-
tion stratification (LD score regression intercept, 1.0598 
(0.0142); ratio, 0.077). After OR analysis in the replication 
cohort for variants significantly related to MASLD found 
in the discovery, 16 conditionally independent SNPs were 
replicated as significantly related (P < 5 ×  10–8; Table  2), 
located in the genes GCKR, LOC124905962, MON1A, 
MLXIPL, LPL, ZPR1, BDNF, FAIM2, EXOC3L4, FTO, 
APOBR, BP11-795H16.2, GGT1, and BCRP3.

To further explore the 16 independent SNPs, we ana-
lyzed their association with survival, as well as their cell-
specific differential effects. After adjusting for sex, age at 
recruitment, genotyping chips, and BMI, the independ-
ent SNPs were not associated with OS (Table  S4–6). 
Additionally, MASLD GWAS was conducted within sub-
groups based on sex (male and female) and BMI catego-
ries (normal weight, overweight, and obese; Table S7–11, 
Fig. S2–3).

Comparison of GWAS results between MASLD and NAFLD
We conducted a GWAS of NAFLD in the discovery 
cohort to compare the significant SNPs between MASLD 
and NAFLD, as well as a GWAS of NAFLD in the discov-
ery cohort. In addition, we extracted previously reported 
SNPs associated with NAFLD diagnosed using biopsy 
[20] or imaging [30]. The details of the three NAFLD 
cohorts are shown in Table S12. The effects of 83 inter-
sectional significant SNPs that reached genome-wide 
significance for the NAFLD imaging and NAFLD UKBB 
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cohorts were identified; however, only 18 and 24 effect 
sizes estimated from the GWAS variants for these two 
cohorts were found in our discovery cohort of MASLD 
UKBB, respectively (Fig. S4A).

To further explore the distinction of significant genetic 
variants between MASLD and NAFLD, we annotated 
the significant SNPs among the GWAS results and com-
pared them between the MASLD UKBB cohort and three 
NAFLD cohorts using various diagnostic methods. The 
results showed that the effect at PNPLA3, SAMM50, 
and PARVB loci reached genome-wide significance only 

in the NAFLD cohort but not in MASLD. However, 
other chromosomal loci including TM6SF2, SUGP1, 
PBX4, ZNF101, ZNF512, LOC124904656, HAPLN4, 
GATAD2A, C2orf16, and TRIB1 that were identified as 
associated with NAFLD in various NAFLD cohorts were 
significantly associated with MASLD (Fig. S4).

Polygenic risk score for MASLD
We used a base cohort to estimate the OR related to 
MASLD and subsequently applied the OR to estimate 
PRS in the target cohort (n = 130,592) recruited from the 
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replication cohort. The median PRS of all participants in 
the target cohort was 1.476e−05 (8.805e−07, 2.871e−05), 
and we identified 65,296 participants with a high PRS. 
As shown in Fig. 1C, the MASLD-PRS was normally dis-
tributed in both the MASLD and non-MASLD groups. 
The mean PRS was higher in the MASLD group than the 
non-MASLD group (P < 0.05), and the mean MASLD-
PRS percentile (SD) in the non-MASLD group was 47.97 
(11.06) vs 51.15 (11.11) in the MASLD group (P < 0.05; 
Fig.  1D). In addition, we generated receiver operating 
characteristic (ROC) curves of the PRS derived from 
different GWAS results in the target cohort, which pro-
vided a measure of their diagnostic power for MASLD. 
MASLD-PRS outperformed NAFLD-PRS in estimating 
MASLD status and show that MASLD-PRS achieved 
the highest area under the ROC curve (AUC = 0.581, 
95% confidence interval (CI): 0.577–0.584). (Fig. S4C, 
D) External validation was performed using the Finngen 
dataset to calculate the NAFLD-PRS.

PRS amplified the health impact of MASLD
During a median follow-up of 13.8  years, we identi-
fied 779, 9083, 2869, 3939, 15,512, 5192, 6508, and 9893 
incident events of SLD, CAD, stroke, HF, hypertension, 
CKD, T2DM, and death, respectively in the replication 
cohort. MASLD was associated with an increased risk 
of both SLD and extrahepatic comorbidities. To further 
verify the amplified effect of high PRS, we conducted 
Kaplan–Meier and Cox regression analyses. The impact 
of MASLD on SLD and extrahepatic morbidities was 

amplified by a high PRS, especially for SLD and T2DM 
(Figs.  2 and 3). In model 2, compared with those who 
were non-MASLD, MASLD participants and those with 
high PRS had a multivariate-adjusted HR for SLD of 3.15 
(95% CI 2.54–3.90); for CAD, it was 1.36 (95% CI 1.28–
1.44); for stroke, it was 1.24 (95% CI 1.11–1.39); for HF, 
it was 1.24 (95% CI 1.13–1.36); for hypertension, it was 
1.41 (95% CI 1.35–1.48); for CKD, it was 1.41 (95% CI 
1.30–1.52); for T2DM, it was 2.81 (95% CI 2.60–3.03); 
and for overall survival, it was 1.26 (95% CI 1.19–1.34; 
Table S2, Fig. 3). After further adjustment for medication 
usage, including hypoglycemic drugs, antihypertensive 
drugs, and statins for adjustment, these associations were 
unchanged (Model 3). 

Discussion
The GWAS in this study found 16 conditionally inde-
pendent SNPs to be associated with MASLD at genome-
wide significance levels. Differences were found when 
comparing the results of NAFLD-related genetic vari-
ants. Additionally, we constructed a MASLD PRS based 
on this GWAS and examined the association between 
the PRS and MASLD. We also revealed the impact of 
MASLD on SLD, with extrahepatic metabolism-related 
outcomes shown to be amplified by MASLD PRS.

The complexity of the MASLD phenotype is due to 
interactions between the components of metabolic syn-
drome and a genetic predisposition to environmental 
factors. Further research on the utility of MASLD as a 
sub-phenotype will strengthen its recognition within the 

Table 2 Summary of top conditionally independent SNPs in the MASLD case–control analysis

MASLD metabolic dysfunction-associated steatotic liver disease, SNP single nucleotide polymorphism, Chr chromosome, OR odds ratio, 95% CI 95% confidence interval

SNP Chr A1 Nearest gene Discovery cohort Replication cohort

OR (95% CI) P OR (95% CI) P

2:27748992:AT:A 2 A GCKR 0.938 (0.927–0.949) 1.855E−28 0.945 (0.929–0.961) 1.443E−10

rs6731688 2 C – 1.079 (1.064–1.095) 8.908E−25 1.071 (1.047–1.095) 1.438E−09

rs62106258 2 C LOC124905962 0.876 (0.854–0.898) 1.985E−24 0.856 (0.824–0.890) 4.093E−15

3:49959570:CA:C 3 C MON1A 1.045 (1.034–1.057) 6.808E−15 1.049 (1.032–1.067) 2.696E−08

rs17145750 7 T MLXIPL 0.927 (0.913–0.941) 2.859E−23 0.924 (0.903–0.945) 5.749E−12

rs2119690 8 A LPL 0.932 (0.920–0.943) 1.332E−30 0.940 (0.923–0.957) 4.202E−11

rs11030108 11 G BDNF/BDNF-AS 0.949 (0.938–0.960) 2.624E−18 0.948 (0.932–0.966) 6.171E−09

rs964184 11 C ZPR1 0.887 (0.873–0.902) 4.245E−48 0.885 (0.863–0.907) 8.474E−23

rs7132908 12 A FAIM2 1.036 (1.025–1.048) 5.292E−10 1.053 (1.035–1.071) 4.429E−09

rs2274685 14 G EXOC3L4 1.044 (1.033–1.056) 3.529E−14 1.053 (1.035–1.071) 3.337E−09

rs11075985 16 A FTO 1.097 (1.084–1.109) 8.278E−60 1.090 (1.072–1.109) 8.896E−24

rs40831 16 G APOBR 1.040 (1.029–1.052) 4.192E−12 1.050 (1.033–1.068) 1.491E−08

18:57850927:GTCT:G 18 G RP11-795H16.2 1.077 (1.063–1.091) 6.304E−29 1.085 (1.064–1.107) 3.038E−16

rs538303513 18 GAT – 0.868 (0.835–0.902) 1.038E−12 0.831 (0.782–0.882) 1.143E−09

rs116946885 22 C BCRP3 0.856 (0.826–0.886) 2.379E−18 0.840 (0.796–0.886) 1.769E−10

rs3859862 22 G GGT1 1.099 (1.087–1.112) 3.364E−58 1.095 (1.076–1.114) 3.977E−24
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field of fatty liver [31]. However, to our knowledge, few 
previous studies have explored the genetics of MASLD. 
He et  al. explored the Mendelian randomization of 
MAFLD and iron status but did so by directly using the 
results of a previous GWAS of NAFLD [32]. This study’s 
results identified 16 variants primarily located in genes 
such as GCKR, MON1A, and LPL that were indepen-
dently associated with MASLD at genome-wide sig-
nificance levels and determined differences in genetic 
variants between MASLD and NAFLD.

Our study corroborated some previous identified vari-
ants associated with FLD, such as GCKR, LPL, FTO [17], 
and MLXIPL [33], which indicated the good validity of 
the data sources used in the current analysis. Addition-
ally, it is essential to elucidate the variants found in our 
GWAS of MASLD. GWAS and multiple candidate gene 
studies have identified GCKR variants as being linked 
to several metabolic parameters, including triglyceride 
(TG) levels, insulin resistance, and fasting plasma glucose 
levels [34–36], as well as metabolic disorders like T2DM 
and dyslipidemia [37, 38]. While previous research has 
reported GCKR as a disease-predisposing variant for 
NAFLD [16], this study found an association between 
GCKR and a decreased risk of MASLD (OR = 0.938 [95% 
CI 0.927–0.949]. This association could be attributed to 
the stronger relationship between GCKR variants and 
improved glucose metabolism. A previous study found 
that the association between rs3812316 (MLXIPL) and 

alpha-linolenic acid intake as well as TG levels in Mexi-
can Mestizo women [39], and Hehl et  al. highlighted 
the link between MLXIPL variants and lower serum TG 
and apolipoprotein-B levels [33]. LPL variants have also 
been shown to significantly contribute to dyslipidemia, 
being associated with several conditions including obe-
sity, metabolic syndrome, and atherosclerosis [40–43]. 
Additionally, the rs964184 (ZPR1) has been reported to 
be associated with variations in lipid levels [44], as well 
as metabolic disorders such as NAFLD, T2DM, and CVD 
[45–47]. Notably, after stratified analysis of the MASLD 
GWAS by BMI categories or sex, rs964184 (ZPR1) 
remained significant across all subgroups, highlighting 
its potential as a biomarker and therapeutic target for 
effective MASLD management. The rs7132908 (FAIM2) 
was found to be significantly associated with obesity [48, 
49], and FTO was the first GWAS-identified obesity gene 
[50]. Therefore, these variants might be potential phar-
macological targets for treatment of hyperlipidemia and 
MASLD, especially for high-risk patients.

Moreover, although there have been fewer studies 
exploring the relationship between BDNF and metabolic 
disorders, there is evidence of an association between 
BDNF and the reduction in BMI, waist circumference, 
glucose, insulin, and risk for T2DM, mainly in Asian pop-
ulations [51, 52]. MON1A has been identified as having a 
critical role in controlling macrophage iron metabolism 
[53], and a growing body of evidence has suggested that 

Fig. 2 The cumulative risks of developing incident outcomes among the replication cohort, by MASLD and PRS. A SLD: severe liver disease, B CAD: 
coronary artery disease; C stroke; D HF: heart failure; E hypertension; F CKD: chronic kidney disease; G T2DM: type 2 diabetes mellitus; H death. 
Non-MASLD patients with low PRS were set as the reference group. MASLD metabolic dysfunction-associated steatotic liver disease, PRS polygenetic 
risk score
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macrophage infiltration in adipose tissue causes inflam-
mation and cytokine production and contributes to the 
development of metabolic decompensation, insulin 
resistance, and T2DM [54, 55]. GWAS revealed an associ-
ation between GGT1 and plasma levels of liver enzymes, 
as well as alcohol-associated liver disease [56, 57]. The 
role of LOC124905962, EXOC3L4, BP11-795H16.2, and 
BCRP3 in metabolic disorders has not been well-docu-
mented yet. To further investigate the underlying mech-
anisms, we explored the cell-type-specific expression 
patterns of these genes using single-cell RNA sequenc-
ing data from liver cells in metabolic syndrome mouse 
models (Fig. S5) [58]. This analysis was conducted using 
online tools available at the Single Cell Portal (SCP1404). 
The findings revealed that GCKR and MLXIPL are highly 
expressed in pericentral and periportal hepatocytes, LPL 
is specific to Kupffer cells, and MON1A is predominantly 
expressed in T/NK cells. Currently, there is no MASLD-
specific single-cell RNA sequencing dataset available, 
which underscores a potential area for future research. 

Overall, more mechanistic studies are necessary to gain 
a deeper understanding of the role of these variants in 
metabolic pathways and in the development of steatosis.

Sex and BMI were found to be strongly correlated 
with the incidence of MASLD [10, 59, 60]. Therefore, we 
conducted MASLD GWAS within subgroups stratified 
by sex and BMI categories. In the sex subgroup analy-
sis, SNPs such as rs10889356 (DOCK7) and rs72836561 
(CD300LG) showed significant associations exclusively in 
males, highlighting the roles of lipid and glucose metab-
olism [61, 62], while SNPs such as rs545608 (SEC16B), 
previously proven to be female-specific, was exclusively 
found in the female group [63]. The presence of these 
SNPs suggests potential gender-specific genetic influ-
ences on MASLD. For the BMI subgroups, the identifi-
cation of significant SNPs such as rs17145750 (MLXIPL) 
in the normal BMI population suggests that lipid metab-
olism is also pivotal in the development of MASLD 
among lean individuals [39]. Further research is needed 
to validate the identified specific-SNPs and explore their 
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Fig. 3 The impact of MASLD on SLD and extrahepatic outcomes. The hazard ratios were obtained from model 2 with the non-MASLD 
as the reference group. “Overall” refers to the whole MASLD participants without the consideration of PRS. “Low” and “High” denote the MASLD 
participants who had low and high PRS, respectively. MASLD metabolic dysfunction-associated steatotic liver disease, PRS polygenetic risk score, SLD 
severe liver disease, CAD coronary artery disease, HF heart failure, CKD chronic kidney disease, T2DM type 2 diabetes mellitus, OS overall survival



Page 9 of 12Xiao et al. Journal of Translational Medicine          (2024) 22:650  

functional implications. These findings underscore the 
need to consider demographic differences, particularly 
sex and BMI, in the development of personalized diag-
nostic and therapeutic strategies.

We constructed the genome-wide PRS and further 
assessed the interactions between the PRS and health 
outcomes. Previous studies have reported genetic vari-
ations associated with an increased risk of liver disease 
progression and adverse extrahepatic outcomes [64–66]. 
For example, Liu et al. demonstrated that the genetic risk 
score derived from FLD-associated variants increases the 
risk of hepatic events and extrahepatic outcomes [4]. In 
our study, the GWAS-based PRS of MASLD was shown 
to have better performance in identifying MASLD than 
that based on a GWAS of NAFLD, indicating the dif-
ference in genetic backgrounds between MASLD and 
NAFLD. Further analysis showed that PRS derived from 
GWAS of MASLD amplified the effect of MASLD on 
SLD and metabolism-related outcomes such as T2DM, 
CAD, stroke, HF, and CKD, thus complementing the 
findings from a genetic perspective. Both intrahepatic 
and extrahepatic outcomes indicate that individuals with 
MASLD in the high-PRS group are at an increased risk of 
disease progression. This finding highlights the potential 
of the PRS to predict MASLD progression. These find-
ings are essential for preventing and managing metab-
olism-related diseases in patients with MASLD. Future 
research should focus on longitudinal studies to validate 
these findings and establish the PRS as a reliable marker 
for disease monitoring and management. The inclusion 
of additional cohorts and extended follow-up periods will 
be essential to the constancy of the PRS across diverse 
populations.

Our study has several limitations. First, it only included 
individuals from Caucasian British ethnic backgrounds, 
compromising the generalizability of its results to other 
ethnicities. In addition, MASLD is a common pheno-
type in the European population; thus, our population 
controls cannot be considered entirely free of MASLD, 
and there is no known way of investigating this further. 
Finally, we used serum biomarkers to diagnose fatty liver, 
but not liver biopsy or imaging data. Although the diag-
nosis of steatotic liver disease requires supporting biopsy 
imaging by definition of MASLD, FLI remains a useful 
diagnostic biomarker for FLD with acceptable accuracy 
and is widely used in population-based studies.

Conclusions
This study is the first to combine GWAS and PRS to iden-
tify the genetic components of MASLD. We found that 
high PRS amplified the health of patients with MASLD, 
especially those with SLD and T2DM. Therefore, the 
construction of PRS may help identify individuals at high 

risk of MASLD and metabolism-related outcomes. Sup-
plementation of this process with MASLD-related genet-
ics information may lead to a more accurate prediction 
of disease progression and more effective management of 
MASLD.
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