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Abstract
Introduction  Hepatocellular carcinoma (HCC) is characterized by the complex pathogenesis, limited therapeutic 
methods, and poor prognosis. Endoplasmic reticulum stress (ERS) plays an important role in the development of 
HCC, therefore, we still need further study of molecular mechanism of HCC and ERS for early diagnosis and promising 
treatment targets.

Method  The GEO datasets (GSE25097, GSE62232, and GSE65372) were integrated to identify differentially expressed 
genes related to HCC (ERSRGs). Random Forest (RF) and Support Vector Machine (SVM) machine learning techniques 
were applied to screen ERSRGs associated with endoplasmic reticulum stress, and an artificial neural network (ANN) 
diagnostic prediction model was constructed. The ESTIMATE algorithm was utilized to analyze the correlation 
between ERSRGs and the immune microenvironment. The potential therapeutic agents for ERSRGs were explored 
using the Drug Signature Database (DSigDB). The immunological landscape of the ERSRGs central gene PPP1R16A 
was assessed through single-cell sequencing and cell communication, and its biological function was validated using 
cytological experiments.

Results  An ANN related to the ERS model was constructed based on SRPX, THBS4, CTH, PPP1R16A, CLGN, and THBS1. 
The area under the curve (AUC) of the model in the training set was 0.979, and the AUC values in three validation sets 
were 0.958, 0.936, and 0.970, respectively, indicating high reliability and effectiveness. Spearman correlation analysis 
suggests that the expression levels of ERSRGs are significantly correlated with immune cell infiltration and immune-
related pathways, indicating their potential as important targets for immunotherapy. Mometasone was predicted to 
be the most promising treatment drug based on its highest binding score. Among the six ERSRGs, PPP1R16A had the 
highest mutation rate, predominantly copy number mutations, which may be the core gene of the ERSRGs model. 
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Introduction
As one of the most commonly primary malignancies, 
liver cancer has become one of the top five causes of 
cancer-related death around the world according to the 
World Health Organization [1]. Approximately 90% of 
liver cancer patients die from hepatocellular carcinoma 
(HCC) which is the most common pathological type [2]. 
Surgical treatment remains the most effective way to 
HCC. However, due to the insidious onset and rapid pro-
gression of HCC, patients frequently fail to avail them-
selves of the surgical option because of delayed medical 
consultation [3]. Moreover, HCC patients often face the 
daunting challenge of high prevalence in chemotherapy 
drug resistance, distant metastasis and recurrences, con-
sequently resulting in an unfavorable prognosis [3, 4]. 
Therefore, it is vital to deeply investigate the underlying 
mechanism of HCC occurrence and development, so that 
we can find new and promising targets for diagnosis and 
treatment of HCC patients.

Endoplasmic reticulum (ER) involved in lipid and car-
bohydrate metabolism and calcium strorage [5, 6]. More-
over, as the largest and the most powerful organelle in 
eukaryotic cells, ER is also mainly responsible for the 
synthesis, transportation and folding of protein [5, 6]. 
Endoplasmic reticulum stress (ERS) refers to the protein 
folding disorder in ER under pathological or physiological 
stimuli, such as activation of oncogenes, oxidative stress, 
hypoxia, and infection [7, 8]. ERS regulate three main 
pathway of unfolded protein response (UPR), including 
PRKR-like ER kinase, activated transcription factor 6, 
and inositol requirement Enzyme 1 which alleviate the 
load of unfolded proteins load, and maintain cell homeo-
stasis and function [9]. UPR pathways are activated in 
most cancer types because protein synthesis increases 
dramatically during the rapid proliferation of tumor cells 
[10, 11]. As the initiating factor of UPR, ERS plays a cru-
cial role in the therapy response and prognosis of cancer. 
At the beginning of chemotherapy, drugs cause deficien-
cies in nutrients and hypoxia of tumor cells, which lead 
to the ERS followed by UPR [12, 13]. Once the UPR is 
activated, tumor cells release pro-survival components 

including cytokines, growth factors, and other factors, 
which induce cancer cell growth and proliferation and 
suppressing anti-tumor immune response [14, 15], It 
is reported that when HCC mice were treated with the 
IRE1α-inhibitor, alleviation of tumor load and collagen 
accumulation were observed, which indicate that regulat-
ing ERS and UPR is an effective way to inhibit drug resis-
tance to HCC.

In our study, machine learning techniques such as Ran-
dom Forest (RF) and Support Vector Machine (SVM) 
algorithms were applied to screen for key genes associ-
ated with hepatocellular carcinoma (HCC). Subsequently, 
by integrating these genes, an artificial neural network 
was utilized to construct an ERS-related HCC diagnostic 
model. On the training set and three validation sets, the 
diagnostic model exhibited satisfactory predictive perfor-
mance. We also conducted a comprehensive analysis of 
the expression levels, immune infiltration, methylation, 
and mutation status of ERSRGs. Our research offers a 
novel perspective on understanding the molecular mech-
anisms of HCC and identifies potential targets for devel-
oping new diagnostic and therapeutic strategies for HCC.

Methods
Data sources used for analysis
The author first integrated gene expression matrices 
from GSE25097, GSE62232, and GSE65372, analyzed the 
gene expression differences between normal and liver 
cancer tissues, and conducted functional enrichment 
analysis. By comparing the intersection of differentially 
expressed genes with genes related to endoplasmic retic-
ulum stress, and employing two machine learning meth-
ods, six candidate biomarkers were identified, including 
SRPX, THBS4, CTH, PPP1R16A, CLGN, and THBS1. 
Based on these genes, an artificial neural network (ANN) 
algorithm was utilized to construct a diagnostic model. 
Subsequently, the diagnostic performance of these can-
didate genes was validated in three independent vali-
dation sets (GSE121248, GSE45267, and GSE84005). 
Moreover, molecular docking was employed to screen 
potential target drugs, and the immune cell infiltration 

Single-cell analysis and cell communication indicated that PPP1R16A is predominantly distributed in liver malignant 
parenchymal cells and may reshape the tumor microenvironment by enhancing macrophage migration inhibitory 
factor (MIF)/CD74 + CXCR4 signaling pathways. Functional experiments revealed that after siRNA knockdown, the 
expression of PPP1R16A was downregulated, which inhibited the proliferation, migration, and invasion capabilities of 
HCCLM3 and Hep3B cells in vitro.

Conclusion  The consensus of various machine learning algorithms and artificial intelligence neural networks has 
established a novel predictive model for the diagnosis of liver cancer associated with ERS. This study offers a new 
direction for the diagnosis and treatment of HCC.

Keywords  Hepatocellular carcinoma, Endoplasmic reticulum stress, Artificial neural network, Prognosis, Immune 
infiltration
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rate, methylation level, and mutation rate of the marker 
genes were assessed. It was found that PPP1R16A exhib-
ited a high copy mutation rate and was significantly 
correlated with the level of immune cell infiltration. To 
further identify PPP1R16A as a core gene in the endo-
plasmic reticulum stress model, single-cell sequenc-
ing and cell communication analyses were conducted 
to study its expression and distribution patterns in the 
tumor microenvironment. Finally, the biological func-
tion of the PPP1R16A gene was validated through in vitro 
experiments. The overall design of this study is illustrated 
in Fig. 1.

Data collection and preprocessing
Transcriptome data and clinical information of HCC 
patients and normal tissue donors were from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/). Three 
datasets were obtained, including GSE25097 (249 nor-
mal tissues and 268 tumor tissues), GSE62232 (10 normal 
tissues and 81 tumor tissues), and GSE65372 (15 nor-
mal tissues and 39 tumor tissues). These datasets were 
combined and removed repeating tissues using “sva” R 
package. A total of 662 samples were obtained, and the 
expression matrix of 14,738 genes was used as the train-
ing set. Besides, validation sets consisted of three datasets 
including GSE121248 (37 normal tissues and 70 tumor 
tissues), GSE45267 (39 normal tissues and 48 tumor tis-
sues), and GSE84005 (38 normal tissues and 38 tumor 
tissues). All data is standardized and log-transformed 
by using the R “limma” software package for subsequent 
analysis [16].

The identification of differential expressed genes and 
ERSRGs
The “limma” R package was used to detect differential 
expressed genes (DEGs) between HCC and normal tis-
sues in the training set with |log2 fold change (FC)|> 
1.5 and adjusted p < 0.05 as cutoff value. The volcano 
plot and heat map showing the differential expression 
of genes between HCC and normal tissue were made 
using the “ggplot2” and “heatmap” R packages. The Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) functional enrichment analysis were 
conducted among DEGs using “clustersProfiler”, “enrich-
plot”, “limma”, “ggplot2” and “org.Hs.eg.db” R pack-
age. The hallmark gene set “h.all.v7.4.symbols.gmt” was 
downloaded from MSigDB datasets (https://www.gsea-
msigdb.org/)17 and used for gene set variance analysis 
(GSVA) analysis with the p < 0.05 and false discovery rate 
(FDR) < 0.25. In addition, 15 hallmark gene sets includ-
ing 312 ERSRGs were also downloaded from the MSigDB 
database.

The construction and validation of artificial neural network 
(ANN) prediction model using artificial intelligence 
algorithms
With “random Forest” R package, we established the RF 
model using fivefold cross-validation method to iterate 
on the variables’ number at each split and tree. When the 
number of branches was 125, we got the minimum resid-
ual error. We ranked genes according to Gini coefficient 
score and those genes with score > 20 were finally selected 
[18, 19]. Using the “e1071” and “caret” R package, the 

Fig. 1  The overall flow of this study
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SVM algorithm is applied to delete the SVM-generated 
feature vectors and identify the optimal variables. We 
fitted a linear SVM model, sorted the variables by their 
weights and eliminated the variables with low weights. 
Through the cross validation, the number of selected 
genes was determined when root mean square error is 
minimal [20]. ERSRG with RF and SVM algorithms, the 
ANN predictive model was established. The ANN model 
was constructed based on a multilayer perceptron net-
work using R package “neuralnet” and “NeuralNetTools”. 
This ANN model include input layers, hidden layers, and 
output layers, and was tested using back-propagation 
algorithms. The first layer through input layers, neurons 
transmit the weighted data to neural groups, and then 
the hidden layers was applied to randomly select bias. 
Once the hidden nodes’ net sums is validated, the output 
responses were provided through transfer function [21]. 
In our study, six ERSRG were selected as the input nodes, 
as well as HCC and normal tissues were used as the out-
put nodes. Besides, the predictive performance of ANN 
prognostic models was evaluated through the area under 
curve (AUC) of time-dependent receiver operating char-
acteristics (ROC) curves using R package “pROC”.

Survival and methylation analysis of HCC patients
Survival analysis for six ERSRG was performed using the 
gene expression profiling interactive analysis (GEPIA) 
website (http://gepia.cancer-pku.cn/index.html). The 
Kaplan–Meier (K-M) survival analysis was performed 
to compare patient differences between high and low 
expression of ERSRG group in conjunction with the 
log-rank test. Obtain the methylation levels of the six 
ERSRGs from the UALCAN website (https://ualcan.path.
uab.edu/)

Immune, co-mutation and genetic alterations analysis of 
six ERSRG in HCC patients
The infiltration of 29 type of immune cells and immune-
related pathways were analyzed in HCC patients through 
ssGSEA analysis using the “GSVA” and “GSEABase” R 
package [22, 23]. The relationship of ERSRG expression 
with immune cell infiltration and pathway enrichment 
was identified through Spearman analysis for coeffi-
cient calculation. Genomic data of six ERSRG including 
somatic mutations and DNA copy-number alterations 
was obtained from cBioPortal website (https://www.cbio-
portal.org/). Besides, co-mutation analysis of six ERSRG 
was applied with “corplot” R package to explore the 
expression correlation among them.

Single-cell RNA-seq analysis
GSE149614, liver cancer single cell data set, which 
includes 10 liver cancer samples. Seurat package (ver-
sion 4) is used for single cell data processing and analy-
sis. Specifically, 3,4411 cells are obtained by preliminary 
screening according to the data of genes expressed in at 
least 3 cells and cells expressing at least 200 genes. Fur-
ther, according to the secondary screening conditions of 
500 < nfeature < 5000 and mitochondrial gene ratio < 10%, 
cell populations retained in each sample is shown in 
Table 1.

Normalize data + find variable features + scale data 
function pipeline was used to standardize and normalize 
the data, and runpca function was used to calculate the 
top 50 principal components. According to the results 
of jackstraw and elbow plot, the top 20 principal compo-
nents are the most appropriate. The find clusters function 
identifies 31 clusters with a resolution of 0.4 to 30, and 
umap performs dimensionality reduction clustering.

Cell-cell interaction analysis
The cell communication was analyzed using the R pack-
age ‘cell chat’. First, according to the expression of the pro-
tein phosphatase 1 regulatory subunit 16 A (PPP1R16A), 
the presence or absence of hepatocytes was divided into 
PPP1R16A positive and negative groups, and they were 
analyzed together with other cells. Additionally, the 
netAnalysis_compute Centrality function compared the 
outgoing signals and incoming signals among different 
cells to determine the core pathways mediating cell-cell 
interactions, and the hierarchy plot visualization was 
performed for some selected pathways. The netAnalysis_
contribution function calculated the contribution of the 
receptor-ligand pairs in specific pathways and displayed 
the ligand-receptor pairs with the highest contribution.

Cell culture and transfection
The liver cancer cell lines HCCLM3, HepG2, Hep3B, 
and the normal liver cell line LO2 were all purchased 
from Shanghai Fuheng Cell Biology Co., Ltd. and cul-
tured according to standard procedures. Lipid-mediated 
siRNA transfection was performed using the lipo3000 
reagent (Invitrogen, USA) according to the siRNA prod-
uct instructions (Ribio, China). The siRNA sequences tar-
geting PPP1R16A are as follows: siRNA#1 - ​T​G​C​C​C​G​A​A​
A​T​G​A​C​C​T​G​G​A​A; siRNA#2 - ​T​G​C​G​G​C​A​T​C​T​A​T​A​C​T​C​
C​A​A; siRNA#3 - ​C​C​A​A​C​A​T​C​A​A​T​G​C​C​T​G​T​G​A.

Table 1  Cell populations retained in each sample of single-cell RNA-seq analysis
Cancer sample HCC01T HCC02T HCC03T HCC04T HCC05T HCC06T HCC07T HCC08T HCC09T HCC10T
Cell population 2720 3352 4269 2117 2652 4086 460 4058 2446 2494

http://gepia.cancer-pku.cn/index.html
https://ualcan.path.uab.edu/
https://ualcan.path.uab.edu/
https://www.cbioportal.org/
https://www.cbioportal.org/
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Real-time quantitative qRT-PCR
Total RNA from HCC cells was extracted using the 
TRIzol reagent (Invitrogen) and reverse transcribed into 
cDNA using PrimeScript Reverse Transcriptase (Takara, 
Japan) before qRT-PCR. Quantitative PCR was per-
formed using SYBR Premix EX TaqTM II (Takara, Japan) 
and the LightCycler 480 real-time PCR system (Roche, 
Shanghai, China). GAPDH was used as an endogenous 
control gene to normalize the expression of the target 
gene. Each sample was analyzed in triplicate. The thermal 
cycling program included holding for 10 s at 95 °C, 30 s 
at 60 °C, and 60 s at 72 °C. Then, melt curve data was col-
lected. The primer sequences are shown in Table 2.

Cell proliferation, migration and invasion assay
After transfecting cells with siRNA for 48  h, 3,000 cells 
per well were seeded into 96-well plates. Each well was 
contained 100  µl complete growth medium and 10µL 
CCK-8 was added and mixed in each well. After 2 h, the 
absorbance at 450 nm was measured. Cell migration and 
invasion were determined using a Transwell chamber. 
In the migration assay, cells (5*103) after 48 h of siRNA 
transfection were seeded into the upper chamber (Corn-
ing) of serum-free medium, and the lower chamber was 
filled with medium containing 20% FBS. After approxi-
mately 24  h, they were fixed with 4% paraformalde-
hyde for 20 min and stained with 0.1% crystal violet for 
15 min. The invasion assay followed the same procedure 
as the migration assay, except that the lower chamber of 
the invasion experiment was coated with Matrigel (BD 
Biosciences).

Drug prediction and molecular docking
The drug prediction for the core genes of the endoplas-
mic reticulum stress model was conducted using the 
DSigDB database from Enrichr (https://maayanlab.
cloud/Enrichr/). Subsequently, the small molecules were 
docked with the aforementioned central targets using 
AutoDock Vina (Scripps Research, San Diego, CA). The 
docking results were evaluated and analyzed using the 
PLIP system (https://plip-tool.biotec.tu-dresden.de/plip-
web/plip/index). Finally, the molecular docking (MD) 
results in two-dimensional structure were visualized 
using LIGPLOT software version 4.5.3, and the MD dia-
grams were generated using PyMOL. Protein structures 
were obtained from the PDB (https://www.pdb.org/) or 
AlphaFold (https://alphafold.com/), and drug-related 

data were retrieved from PubChem (https://pubchem.
ncbi.nlm.nih.gov/).

Cell scratch
Cells were seeded equably in 6-wll plate, and then trans-
fected for 48 h. Approximately 5*105 cells were added to 
each well, and 10uL needles were used to scrape three 
horizontal lines on the surface of plate. Following this, 
the cells were cultured in a 2% serum medium for 24 h. 
Optical microscopy was used to collect images of cells at 
after 0 and 24 hours.

Statistical analysis
Version R 4.1.3 was used for all statistical studies. Dif-
ferences between two groups were compared through 
Mann–Whitney test for non-normally distributed 
variables and unpaired t-test for normally distributed 
variables. Spearman analysis was used for correlation 
analysis and coefficient calculation. We analyzed the RT-
qPCR results using paired t-tests and drew a Venn dia-
gram using funrich software. P value < 0.05 was defined 
as statistically significant.

Results
The identification of DEGs between HCC and normal 
tissues
We performed principal component analysis (PCA) of 
genes of datasets GSE25097, GSE62232 and GSE65372, 
under both non-batch remove and batch remove condi-
tion respectively, and results were presented in Fig.  2A 
and B. The results show that we successfully removed 
batch effects from different data sets. The volcano plot in 
Fig. 2C showed the 763 DEGs between HCC and normal 
tissues, of which 215 genes were up-regulated and 548 
genes were down-regulated. The heatmap in Fig. 2D also 
presented the expression level of DEGs between HCC 
and normal tissues.

GO and KEGG as well as GESA enrichment analysis
The functional enrichment of DEGs between HCC and 
normal tissues was analyzed. The biological process in 
GO analysis of DEGs mainly included the alpha-amino 
acid metabolism, small molecule catabolism, carboxylic 
acid catabolism, organic acid catabolism, cellular amino 
acid metabolism. The cellular component in GO analysis 
was enriched in collagen-containing extracellular matrix, 
collagen trimers, blood microparticles, mitotic spindle 
and chromosomal regions. The molecular function in GO 
analysis was mainly involved in monooxygenase activity, 
iron ion binding, oxidoreductase activity acting on paired 
donors, with incorporation or reduction of molecular 
oxygen, heme binding, and steroid hydroxylase activ-
ity (Fig. 3A-C). Besides, the KEGG analysis showed that 
the DEGs mainly contributed to tryptophan metabolism, 

Table 2  Primer sequences
Primer sequences

PPP1R16A-F 5’-​T​T​G​A​T​G​A​T​T​T​C​C​G​A​G​A​G​A​T​G​G​T​G​C-3’
PPP1R16A-R 5’-​G​T​G​T​T​G​A​C​C​G​C​C​A​G​G​A​G​A​T​T​G-3’
GAPDH-F 5’-​A​T​C​C​C​T​C​C​A​A​A​A​T​C​A​A​G​T​G​G​G​G-3’
GAPDH-R 5’-​G​G​G​C​A​G​A​G​A​T​G​A​T​G​A​C​C​C​T​T​T​T-3’

https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
https://www.pdb.org/
https://alphafold.com/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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complement and coagulation cascades, PPAR signaling 
pathway, cell cycle, and tyrosine metabolism in Fig.  3D. 
Furthermore, the GSVA analysis of DEGs was conducted 
to explore the molecular pathway enrichment of DEGs. 
The results showed that DEGs were mainly abundant in 
hallmark MYC targets V1, hallmark E2F targets, hall-
mark inflammatory response, hallmark TNF-α signal via 
NF-κB and hallmark interferon-γ response (Fig. 3E).

The identification of ERS-related DEGs
The 11 ERS-related DEGs were obtained through the 
intersection of 312 ERSRGs and 763 DEGs in Fig. 4A.A 

RF analysis further screened 11 ERSRGs. The residual 
graph in Fig. 4B showed that the residual was the small-
est when the number of branches was 125. As presented 
in Figs. 4C and 11 ERSRGs were scored in this RF tree, 
and 7 of them with a score of > 20 were finally selected 
according to the descending Gini coefficient. Addi-
tionally, SVM analysis was also applied to screening 
the 11 ERSRGs. As depicted in Fig.  4D, the root mean 
square error was the smallest when 6 of 11 ERSRGs 
were retained. Through the intersection of 7 ERSRGs in 
RF analysis and 6 ERSRGs in SVM analysis, 6 ERSRGs 
including SRPX, THBS4, CTH, PPP1R16A, CLGN, and 

Fig. 2  Differential gene expression analysis between liver cancer and normal tissues.(A) Principal component analysis (PCA) of genes without batch 
removal for datasets including GSE25097, GSE62232, and GSE65372. (B) PCA of genes with batch removal for datasets including GSE25097, GSE62232, 
and GSE65372. (C) A volcano plot representing 763 differentially expressed genes (DEGs) between liver cancer tissues and normal tissues. (D) A heatmap 
showing the 763 DEGs between HCC and normal tissues
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THBS1 were finally determined for the construction of 
the ANN below (Fig. 4E).

Construction and validation of ANN prediction model in 
HCC
The ANN was established including 6 neurons (SRPX, 
THBS4, CTH, PPP1R16A, CLGN, and THBS1) as the 
input layer and 2 neurons (HCC and normal tissues, 
respectively) as the output layer (Fig. 5A). When the hid-
den layer included 5 neurons, the predictive performance 
of the model was the highest with the AUC value of 0.979 
(95% CI: 0.968–0.989) in the training group (Fig. 5B). The 
efficiency of this ANN predictive model was also assessed 
in the other 3 validation groups. The AUC value of the 
ANN model was 0.958 (95% CI: 0.914–0.992), 0.936 
(95% CI: 0.852-1.000) and 0.970 (95% CI: 0.920-1.000) 
in GSE121248, GSE45267 and GSE84005, respectively 
(Fig. 5C-E). Above all, this ANN prediction model based 

on the ER is a potentially powerful tool to predict HCC 
diagnosis.

The impact of endoplasmic reticulum stress core genes on 
immune infiltration deserves attention
The expression of six ERSRGs between HCC and nor-
mal tissues was deeply investigated in Fig.  6A. The 
results showed that there were significantly higher 
expression levels of CLGN, PPP1R16A and THBS4 and 
lower expression levels of CTH, SRPX and THBS1 in 
HCC tissues compared with normal tissues, imply-
ing that CLGN, PPP1R16A and THBS4 as oncogenic 
genes played an important role in HCC development 
and progression while CTH, SRPX and THBS1 as onco-
suppressor genes may play an inhibitory role in HCC. 
The interaction of 6 ERSRGs were further analyzed to 
identify the co-occurrence or mutually exclusive rela-
tionship of them in Fig.  6B. There was an intense co-
occurrence relationship between THBS1 and SRPX with 

Fig. 3  Functional enrichment of DEGs between liver cancer tissues and normal tissues.(A-C) Gene ontology (GO) analysis of DEGs, including molecular 
function (MF), cellular component (CC), and biological process. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs. (E) Gene Set 
Variation Analysis (GSVA) of DEGs.
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a correlation coefficient of 0.67 as well as a mutually 
exclusive relationship between SRPX and THBS4 with 
a correlation coefficient of -0.53. In order to explore the 
underlying mechanism that these ERSRGs contributed 
to HCC occurrence and progression, the relationship of 
6 ERSRGs expression levels with the immune cell infil-
tration and immune-related pathways was analyzed as 
presented in Fig. 6C. We can conclude that THBS1 and 
SRPX were significantly positively associated with the 
infiltration of most immune cells and immune-related 
pathways such as neutrophils, T helper cells, tumor-infil-
trating lymphocytes (TILs), cytokines and chemokines 
receptors (CCR), and para-inflammation etc. In contrast, 
THBS4, PPP1R16A and CLGN were significantly nega-
tively associated with the infiltration of most of immune 
cells and immune related pathways such as neutrophils, 
T helper cells, TILs, CCR, checkpoint, T cell co-inhi-
bition. Above findings further demonstrated that the 
ERSRGs can regulate tumor immune micro-environment 
to expose effects on HCC prognosis.Genes related to 
the TNF family molecules and chemotactic factors have 
been collected from previous literature. The ggcor and 
ggpplot2 packages were utilized to analyze and visualize 

the expression correlations between core genes and two 
types of immune activity molecules. The results show 
green squares representing positive correlations, purple 
squares indicating negative correlations, solid lines repre-
senting positive correlations, and dashed lines depicting 
negative correlations. Notably, CLGN, SRPX, and THBS1 
exhibit positive correlations with most immune activity 
molecules, whereas PPP1R16A, CTH, and THBS4 show 
negative correlations with most immune activity mol-
ecules (Fig. 6D). This conclusion is largely consistent with 
the results of the immune cells and processes depicted in 
the preceding figure.

Drug screening and molecular docking of characteristic 
genes
The results showed the top 20 drugs with the high-
est score values, among which L-cysteine had the high-
est binding score, while Mometasone had the strongest 
binding significance (Fig.  7A). Therefore, we conducted 
further molecular docking model simulations of the 
target genes bound by these two drugs, and the results 
showed that THBS1 had the lowest binding energy with 
Mometasone compared to CTH, which was − 6.917 kcal/

Fig. 4  Identification of ERS-related differentially expressed genes. (A)ERS-related genes (n = 312) were cross-referenced with DEGs (n = 763) to identify 
ERS-related differentially expressed genes (ERSRGs) (n = 11). (B) Residual plot for the selection of ERSRGs using the Random Forest (RF) algorithm. (C) The 
11 selected ERSRGs are arranged in descending order according to the Gini coefficient. (D) Selection of ERSRGs using the Support Vector Machine (SVM) 
algorithm. (E) Identification of 6 ERSRGs through the intersection of genes selected by RF and SVM.
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mol. Therefore, Mometasone may be the most suitable 
therapeutic drug for THBS1 (Fig. 7B-D).

The six ERSRGs-related survival, mutation and methylation 
analysis
It was depicted from the Kaplan–Meier (KM) curve 
that the HCC patients with low expression levels of 
CLGN and PPP1R16A had significantly longer overall 
survival than those with high expression levels of two 
genes (Fig.  8A and C). By contrast, HCC patients with 
high expression levels of CTH statistically lived longer 
compared with those with low expression level of CTH 
(Fig.  8B). However, there was no significant difference 
in the prognosis of HCC patients between high and low 
expression of SRPX, THBS1 and THBS4 which needed 
further validation (Fig.  8D-F). In addition, gene muta-
tion and copy number variation of 6 ERSRGs in 379 
HCC patients from the cBioportal website was com-
pared in Fig. 7G. There was the highest mutation rate of 
PPP1R16A among 6 ERSRGs which was characterized by 
gene amplification. In addition to describing the survival 
and mutation status of core ERS genes, we also analyzed 
the methylation status of the promoters corresponding to 
these core genes. According to the calculation method on 
the UALCAN website (https://ualcan.path.uab.edu/), we 
found that there were significant differences in the degree 

of promoter methylation between the control group and 
the liver cancer cell group for CLGN, CTH, PPP1R16A, 
and THBS1. Among them, the promoter methylation 
level of CLGN was stronger in the tumor group, while the 
methylation levels of the other three genes were signifi-
cantly reduced in the tumor group, especially PPP1R16A 
(Fig. 8H-M).

Single-cell sequencing analysis of the immune landscape 
of the PPP1R16A gene
The UMAP diagram shows that all cells can be annotated 
into seven types of cells, including liver parenchymal 
cells, macrophages and so on (Fig. 9A). The bubble chart 
shows the marker genes used in seven different annota-
tion cell groups. Such as liver Parenchymal cells (CD24, 
MDK), Macrophages (CD68, CD163), Fibroblasts (PDG-
FRb), Endothelial cells (PECAM1), T/NK cells (CD3D, 
CD3E), Plasma cells (JSRP1), B cells (MS4A1) (Fig.  9B). 
Single cell analysis showed that PPP1R16A was mainly 
expressed in malignant liver parenchymal cells (Fig. 9C). 
Go enrichment analysis showed that the cells with high 
expression of PPP1R16A were mainly related to the pro-
cess of lipid metabolism, such as cholesterol metabolism, 
fatty acid metabolism and so on (Fig. 9D). KEGG enrich-
ment analysis showed that PPP1R16A was related to glu-
cose metabolism, lipid metabolism and PPAR signaling 

Fig. 5  Construction and Validation of the Artificial Neural Network (ANN) Prediction Model for Liver Cancer. (A) The ANN comprises 6 neurons as the input 
layer, 2 neurons as the output layer, and 5 neurons as the hidden layer. (B) The AUC value of the ANN prediction model in the training set. (C-E) The AUC 
values of the ANN prediction model in the validation groups
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pathway. These results suggest that PPP1R16A is highly 
enriched in liver parenchyma, which may aggravate the 
progression of liver cancer by affecting metabolism 
related pathways (Fig.  9E).To further explore the down-
stream pathways of PPP1R16A, we conducted a GSEA 
analysis of KEGG at the single-cell level. The differential 
analysis results of all genes were sorted by their logFC, 
and GSEA analysis was performed using the clusterPro-
filer package and GSVA package. The resulting KEGG 
analysis results were further clustered and visualized 

using the aPEAR package. The results showed that 
among all significant signaling pathways, seven pathways 
had clustered modular characteristics and were more 
core signaling pathways (Fig. 9F).

Exploration of the impact of the PPP1R16A gene in the 
tumor microenvironment through cellular communication
Based on the expression of PPP1R16A in malignant 
liver parenchymal cells, we can divide the liver paren-
chymal cells into PPP1R16A_pos and PPP1R16A_neg. 

Fig. 6  Expression and Immune infiltration Analysis of Six ERSRGs. (A) The expression of six ERSRGs between HCC and normal tissues. (B) The Co-mutation 
analysis of six ERSRGs. (C) The relationship of six ERSRGs expression levels with the immune cell infiltration and immune-related pathway. (D)Correlation 
between the expression levels of 6 ERSRGs and immune-related molecules
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Using the Cellchat package to calculate the cell com-
munication between these two types of cells and other 
cell types, we found that fibroblasts, endothelial cells, 
and PPP1R16A_pos cells are the core cells in the com-
munication network, with fibroblasts being the cell with 
the strongest output signals. From the perspective of 
PPP1R16A_pos as the signal sender, it has more commu-
nication numbers and intensities with endothelial cells 
and macrophages (Fig. 10A-B). PPP1R16A_pos cells had 
more communication with VTN, PARs, complement, 
CD46, PROS, CADM, GDF, CDH, and OCLN compared 
to other cells. When looking only at PPP1R16A_pos cells 
themselves, the strongest output signaling pathway was 
the macrophage migration inhibitory factor (MIF) path-
way. In a lateral comparison, PPP1R16A_pos cells had 
more communication with MK, FN1, ANGPTL, THBS, 
PTN, CADM, EGF, CDH, and OCLN. When looking 
only at PPP1R16A_pos cells themselves, the strongest 
received signal was the COLLAGEN pathway (Fig. 10C). 
We further studied the specific interactions between MIF 
and COLLAGE pathways. Hierarchical diagram shows 
that PPP1R16A_pos cells, as MIF signal senders, mainly 

send signals to T/NK cells, macrophages, B cells, and 
plasma cells (Fig. 10D). As a COLLAGEN signal receiver, 
it mainly receives signals from endothelial cells and 
fibroblasts, of which fibroblasts received the most sig-
nals (Fig. 10E). Further mining of the ligands and recep-
tors that are most likely to play a role in the pathway, 
the highest pairing probability in the MIF pathway was 
between the MIF ligand and the CD74 + CXCR4 recep-
tor (Fig. 10F), and the highest probability of pairing in the 
COLLAGEN pathway was between the COL4A1 ligand 
and the SDC1 receptor (Fig. 10G).

Upregulation of PPP1R16A in liver cancer and knockdown 
of PPP1R16A significantly suppresses the proliferative, 
invasive, and migratory abilities of HCC cells
By summarizing all the aforementioned findings, we have 
established that PPP1R16A was a pivotal gene associated 
with ERS and exhibiting a high copy number mutation. 
QRT-PCR experiments, showed that human HCC cell 
lines exhibited a higher expression of PPP1R16A com-
pared to normal liver cells (Fig.  11A). We simultane-
ously transfected siRNA into Hep3B and HCCLM3 cells, 

Fig. 7  Predict the top 20 candidate drugs for endoplasmic reticulum stress-related genes based on PubChem. (A) Predict the top 20 most significant 
candidate compounds for ERSRGs using the DSigDB database. (B-G) Molecular docking between THBS1 and Mometasone
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selecting the highly most effective siRNA-PPP1R16A#1 
for subsequent experiments (Fig.  11B and C). CCK8 
experiments indicated that knockdown of PPP1R16A 
suppressed the proliferation capacity ability of Hep3B 
and HCCLM3 cells (Fig.  11D). Meanwhile, scratch test 
and Transwell experiments demonstrated that knock-
down of PPP1R16A inhibited the migration and invasion 
abilities of HCCLM3 and Hep3B cells. These observa-
tions suggested that PPP1R16A is a positive regulator of 
HCC cells (Fig. 11E and F).

Discussion
Hepatocellular carcinoma (HCC) is a type of tumor 
with poor prognosis, exhibiting a high incidence rate 
and mortality rate globally. It is a highly refractory dis-
ease, despite advancements in surgical and systemic 
treatments, the prognosis for HCC remains unsatisfac-
tory. Early diagnosis and treatment can improve the 
survival rate of HCC patients. It is imperative to detect 
and identify the progression characteristics of the tumor 
at an early stage. Therefore, developing new treatment 

Fig. 8  Survival, mutation and methylation Analysis Related to ERSRGs. (A-F) Kaplan-Meier curves representing the differences in overall survival between 
groups with high and low expression levels of six ERSRGs. (G) Comparison of gene mutations and copy number variations among the six ERSRGs. (H-M) 
Calculation of methylation levels of six ERSRGs genes
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techniques and identifying new therapeutic targets is 
of critical importance.Currently, endoplasmic reticu-
lum stress has garnered widespread attention from vari-
ous cancer researchers. During endoplasmic reticulum 
stress, when cells are overly stimulated, the unfolded 
protein response (UPR) is triggered. This response influ-
ences the regulation of the endoplasmic reticulum (ER) 
balance through three distinct receptors: IRE1α, PERK, 
and ATF6. Research has shown that the activation of 

ERS affects tumor cell proliferation, invasion, metastasis, 
and promotes rapid tumor progression [24, 25].However, 
the biological mechanisms underlying ERSRGs remain 
unclear, and their impact on HCC warrants further 
exploration。.

In this study, we conducted a comprehensive analysis 
of transcriptomic data between liver cancer and nor-
mal tissues. We identified differentially expressed genes 
(DEGs) between liver cancer and normal tissues, as well 

Fig. 9  Single-cell RNA-seq Data Analysis (GSE149613). (A) UMAP plot of annotated cell types. (B) Bubble chart showing markers corresponding to differ-
ent cell types. (C) UMAP diagram shows the expression of ppp1R16A (D) Go enrichment analysis, including BP, CC, MF. (E)KEGG enrichment analysis; The 
color close to blue indicates a smaller p value, and the larger bubble table indicates that more differential genes are enriched in this pathway.(F)Analysis 
of downstream signaling pathways of GSEA at the single-cell level
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as the functions and molecular pathway enrichment of 
these DEGs. Based on the expression profile analysis of 
the training set, six endoplasmic reticulum stress-related 
genes (ERSRGs) were identified using the Random For-
est (RF) and Support Vector Machine (SVM) algorithms. 
Subsequently, an artificial neural network (ANN) predic-
tion model was constructed and demonstrated effective 
predictive performance. This model was further validated 
on three independent test sets, confirming its superior 
predictive capability. We also conducted an in-depth 
study on the association and function of these genes in 
tumorigenesis and immunomodulation.

The current (ERSRGs) encompass six potential genes 
(SRPX, THBS4, CTH, PPP1R16A, CLGN, and THBS1). 
In fact, previous studies have elucidated the significant 
roles of some of these genes in various tumors. Cystathi-
onine γ-lyase, encoded by the CTH gene, plays a crucial 
role in the cysteine sulfur metabolism pathway. It cata-
lyzes the generation of hydrogen sulfide (H2S), L-cyste-
ine, α-ketobutyrate, and ammonia [26]. Several studies 
have indicated that aberrant activation of the CTH/H2S 
signaling pathway is closely linked to the occurrence and 
progression of HCC [27]. X-rays activate the p38 mito-
gen-activated protein kinase, which in turn activates 
the CTH/H2S signaling pathway, inducing epithelial-
mesenchymal transition and promoting invasion of liver 

cancer cells [28]. Recent research has also reported that 
FOXC1, by regulating CTH, inhibits cysteine metabo-
lism, increases reactive oxygen species levels, and 
promotes tumorigenesis. Overexpression of CTH signifi-
cantly inhibits the proliferation, invasion, and metastasis 
of liver cancer cells induced by FOXC1 [29]. In contrast, 
CTH presents a potential therapeutic target when nor-
mally regulated in contrast to FOXC1. Furthermore, 
Sushi repeat-containing protein X-linked (SRPX) has 
been identified as a potential therapeutic target in HCC 
treatment. SRPX has been identified through mRNA 
expression network analysis, and has been shown to 
suppress cancer cell stemness [30]. SRPX also regulates 
the migration and invasion of ovarian cancer through 
the Ras homolog family member A signaling pathway 
[31]. Thrombospondin-1 (THBS1), known for inhibit-
ing angiogenesis, has been studied for its potential as a 
therapeutic target [32]. THBS1 promotes the progres-
sion and development of various cancers by regulating 
angiogenesis and tumor vascular perfusion [33]. Addi-
tionally, THBS1 modulates innate and adaptive immune 
cells through the CD47 signaling molecules, thereby 
restricting anti-tumor immunity [34]. Overexpression of 
THBS4 promotes the proliferation and migration of liver 
cancer cells, participates in the regulation of epithelial-
mesenchymal transition progression and interacts with 

Fig. 10  Inference of cell–cell communications in TME. (A-B) A cell–cell communications between the identified cell types. (C) The incoming and outgo-
ing signaling pathways of each cell type. (D-G) The hierarchical diagram displays the specific interaction between MIF and COLLAGE pathways
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members of the integrin family to modulate the FAK/
PI3K/AKT pathway [35]. The miR-142 is highly corre-
lated with THBS4 overexpression in HCC tissue sam-
ples, by regulating THBS4 expression in HCC cells [36], 
PPP1R16A encoded the membrane-associated subunit 
of protein phosphatase 1 which is located on the plasma 
membrane as a CAR-binding protein [37]. The area under 
the ROC curve for PPP1R6A in global and initial-stage 

tumors was 0.82 and 0.76, respectively, showing excellent 
sensitivity and specificity to define the diagnosis likeli-
hood of endometrial carcinoma [38]. However, the role 
of PPP1R6A in HCC diagnosis and prognosis is rarely 
known and requires further exploration. A recent study 
reported that upregulation of CLGN in HCC is signifi-
cantly related to poor prognosis, especially in advanced 
stages which might be regulated by miR-194-3p, thus 

Fig. 11  Validation of PPP1R16A Expression Levels and Knockout of PPP1R16A Significantly Inhibits Proliferation, Invasion, and Migration Capabilities of 
HCC (A)Expression levels of PPP1R16A mRNA in HCC cell lines. (B-C) Knockout efficiency of PPP1R16A mRNA in Hep3B and HCCLM3 cells. (D) CCK8 assays 
indicate that the knockdown of PPP1R16A inhibits the proliferation abilities of Hep3B and HCCLM3 cells. (E-F) Knockout of PPP1R16A inhibits the migra-
tion and invasion capabilities of Hep3B and HCCLM3 cells (*p < 0.05, **p < 0.01, ***p < 0.001, ns: not significant)
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providing a potentially therapeutic target and prognosis 
predictor in HCC [39].

In cellular communication analysis, we found that the 
expression levels of these ERSRGs were closely associated 
with immune cell infiltration and the activity of immune-
related pathways. Single-cell sequencing revealed that 
the high expression of PPP1R16A in the liver paren-
chyma may be a trigger for high-copy mutations. Given 
that MIF acted as a macrophage stimulator, we speculate 
from cell communication results that PPP1R16A cells 
may promote macrophage aggregation through the MIF 
pathway, which inducing M2 polarization of liver cancer 
cells. Recent study suggests that novel ERSRGs signature 
could an independent prognostic factor for HCC [40]. 
ERS regulate immune levels by regulating myeloid cells, 
mainly macrophages which is related to tumor evasion of 
the immune response, and chemoresistance. ER-stressed 
HCC cells release exosomes, upregulate the expression 
of PD-L1 in macrophages, and consequently suppresses 
T-cell function. A higher density of infiltrated macro-
phages in the liver has been observed to be associated 
with enhanced tumor aggressiveness and unfavorable 
prognosis among patients with HCC [11].

In recent years, immune checkpoint inhibitors (ICIs) as 
a new therapeutic approach targeting T cells regulatory 
pathways, have much attention [41, 42], and have great 
prospects in the field of anti-tumor therapy. Through 
the analysis of ssGSEA results, we found that THBS1 
and SRPX showed significant positive correlations with 
immune cell infiltration, neutrophils, helper T cells, TILs, 
CCR, and inflammatory response-related pathways. In 
contrast, THBS4, PPP1R16A, and CLGN exhibited sig-
nificant negative correlations with immune cell infiltra-
tion, neutrophils, helper T cells, TILs, CCR, immune 
checkpoints, T cell co-inhibition, and other immune-
related pathways. These findings suggest that ERSRGs is 
closely related to the immune status of liver cancer, and 
offered a new research direction for the combination tar-
geting of ERSRGs and ICIs in the treatment of liver can-
cer. Through combination therapy, there is potential to 
enhance anti-tumor immune responses and improve the 
prognosis of liver cancer.

We also found in cellular communication analysis that, 
simultaneously, fibroblasts, as essential factors promoting 
tumor metastasis, may reshape the tumor microenviron-
ment by enhancing the collagen pathway and promoting 
collagen deposition to affect the function of PPP1R16A 
cells. These results further indicate that PPP1R16A may 
influence the prognosis of HCC by regulating the tumor 
immune microenvironment. Additionally, our experi-
mental results suggest that knocking out PPP1R16A can 
inhibit the proliferation, invasion, and migration capa-
bilities of HCC cells, indicating that PPP1R16A may be 
a crucial tumor-promoting factor. Cancer-associated 

fibroblasts produce collagen and change the extracellu-
lar matrix, which is an important mechanism of tumor 
metastasis. Modulating targeting specific signaling mol-
ecules responsible for crosstalk between Cancer‐associ-
ated fibroblasts and tumor cells is considered a promising 
approach to modulating HCC metastasis [43, 44]. Our 
study indicated that PPP1R16A may be one of such 
potential targets.

However, it is important to note that there are some 
limitations that need further addressing and in-depth 
exploration. Firstly, Considering the bioinformatics anal-
ysis based on public cancer databases, it is crucial to fur-
ther validate the diagnostic and predictive performance 
of ERSRG markers in large-scale and prospective clinical 
trials and assess their potential clinical applications. This 
will contribute to ensuring the reliability and reproduc-
ibility of the analysis results and provide a more solid 
foundation for the clinical application of ERSRGs in liver 
cancer patients. Secondly, Despite some cell experimen-
tal validation was involved, providing support for prelim-
inary findings, further in vivo and in vitro experiments 
are needed to thoroughly investigate the functions of 
ERSRGs in HCC. This expanded experimental research 
will contribute to a more comprehensive and in-depth 
understanding of the exact mechanisms of action of 
these genes in the development and progression of HCC, 
and contribute to a more comprehensive understanding 
of the potential efficacy and mechanisms of ERSRGs in 
combination with ICIs in liver cancer. Therefore, future 
research directions should include broader experimen-
tal designs to more comprehensively and systematically 
reveal the role of ERSRGs in the biology of HCC biology.

Conclusions
In this study, the researchers integrated the six iden-
tified ERSRGs into an ANN prediction model based 
on RF and SVM algorithms. Furthermore, we further 
investigated the biological mechanisms, immune regu-
lation, and genomic mutations associated of these six 
ERSRGs in the diagnosis of liver cancer. The comprehen-
sive analysis of ERSRGs provides a powerful tool for the 
prognosis prediction and personalized treatment of liver 
cancer patients. The feature model based on ERSRGs 
holds promise as a crucial prediction and therapeu-
tic decision support system in the field of liver cancer 
research.
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