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Abstract 

Background Cancer-associated fibroblast (CAF)-cancer cell crosstalk (CCCT) plays an important role in tumor 
microenvironment shaping and immunotherapy response. Current prognostic indexes are insufficient to accurately 
assess immunotherapy response in patients with head and neck squamous cell carcinoma (HNSCC). This study aimed 
to develop a CCCT-related gene prognostic index (CCRGPI) for assessing the prognosis and response to immune 
checkpoint inhibitor (ICI) therapy of HNSCC patients.

Methods Two cellular models, the fibroblast-cancer cell indirect coculture (FCICC) model, and the fibroblast-cancer 
cell organoid (FC-organoid) model, were constructed to visualize the crosstalk between fibroblasts and cancer cells. 
Based on a HNSCC scRNA-seq dataset, the R package CellChat was used to perform cell communication analysis 
to identify gene pairs involved in CCCT. Least absolute shrinkage and selection operator (LASSO) regression was then 
applied to further refine the selection of these gene pairs. The selected gene pairs were subsequently subjected 
to stepwise regression to develop CCRGPI. We further performed a comprehensive analysis to determine the molecu-
lar and immune characteristics, and prognosis associated with ICI therapy in different CCRGPI subgroups. Finally, 
the connectivity map (CMap) analysis and molecular docking were used to screen potential therapeutic drugs.

Results FCICC and FC-organoid models showed that cancer cells promoted the activation of fibroblasts into CAFs, 
that CAFs enhanced the invasion of cancer cells, and that CCCT was somewhat heterogeneous. The CCRGPI 
was developed based on 4 gene pairs: IGF1-IGF1R, LGALS9-CD44, SEMA5A-PLXNA1, and TNXB-SDC1. Furthermore, 
a high CCRGPI score was identified as an adverse prognostic factor for overall survival (OS). Additionally, a high CCRGPI 
was positively correlated with the activation of the P53 pathway, a high TP53 mutation rate, and decreased benefit 
from ICI therapy but was inversely associated with the abundance of various immune cells, such as CD4+ T cells, CD8+ 
T cells, and B cells. Moreover, Ganetespib was identified as a potential drug for HNSCC combination therapy.
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Conclusions The CCRGPI is reliable for predicting the prognosis and immunotherapy response of HSNCC patients 
and may be useful for guiding the individualized treatment of HNSCC patients.

Keywords Head and neck squamous cell carcinoma, Immunotherapy, Machine learning, Prognosis, Biomarker, 
Cancer-associated fibroblasts

Background
In recent years, immune checkpoint inhibitor (ICI) 
therapy has shown significant survival benefits [1–4]. 
For example, therapeutic regimens targeting cytotoxic 
T-lymphocyte-associated protein 4 (CTLA4) and pro-
grammed death 1 (PD-1) increase tumor regression 
rates from less than 10% to nearly 50% in patients with 
advanced melanoma [2]. In head and neck squamous cell 
carcinoma (HNSCC), ICI therapy has been proven to be 
effective in treating patients with recurrence or metas-
tasis [5–7]. Nevertheless, the response to ICI therapy in 
patients with HNSCC is limited to a relatively low per-
centage (13%–45%) [5, 8]. The construction of markers 
related to the prognosis of immunotherapy can provide 
personalized treatment options for HNSCC patients. 
Unfortunately, although some prognostic markers have 
been developed for HSNCC, these markers perform 
poorly in the HNSCC immunotherapy cohort (Fig. 8D). 
Therefore, effective prognostic and therapeutic indicators 
are still urgently needed.

Cancer-associated fibroblasts (CAFs) are the most 
abundant stromal cells in the tumor microenvironment 
(TME) and play a crucial role in tumor metastasis and 
immunosuppression through CAF-cancer cell crosstalk 
(CCCT) [9, 10]. However, it is still difficult to visual-
ize the process of CCCT, which makes it more difficult 
to fully understand CCCT. Moreover, CAFs have been 
shown to impact the effectiveness of ICI therapy [11–13]. 
However, the functional state of CAFs and the patterns 
of CCCT may vary among different patients [9, 14], thus 
making it challenging to predict the correlation between 
CCCT and the efficacy of ICI therapy. Nevertheless, 
elucidating the ability of CCCT to predict the progno-
sis and response to ICI therapy in HNSCC patients is 
urgently needed because this will not only enhance our 
understanding of the role of CCCT in the development 
of HNSCC but can also be used to guide personalized 
treatment. Unfortunately, few studies have focused on 
the ability of CCCT to predict patient’s prognosis and 
response to immunotherapy.

In this study, we first constructed two cellular mod-
els to observe CCCT. Then, scRNA-seq data and bulk 
transcriptomic data of HNSCC patients were com-
bined to develop a prognostic index for HNSCC that 
can distinguish the immune status and prognosis of 
patients receiving ICI therapy. Paired ligands and 

receptors (pairLRs) between CAFs and cancer cells 
were extracted using the scRNA-seq data of HNSCC, 
and the key pairLRs were identified through least abso-
lute shrinkage and selection operator (LASSO) regres-
sion and Akaike information criterion (AIC)-based 
stepwise Cox regression to construct a CAF-cancer 
cell crosstalk-related gene prognostic index (CCRGPI). 
We then described the molecular and immune charac-
teristics of the CCRGPI, studied its prognostic ability 
in patients receiving ICI therapy, and screened poten-
tial therapeutic drugs through the connectivity map 
(CMap) analysis and molecular docking (Fig.  1). The 
results showed that the CCRGPI can serve as a relia-
ble biomarker to predict the prognosis and response to 
immunotherapy in HNSCC patients.

Methods
Construction of CCCT cellular models
To visualize the crosstalk between fibroblasts and can-
cer cells, we constructed two cellular models. The first 
is the fibroblast-cancer cell indirect coculture model 
(FCICC). We inoculated fibroblasts and cancer cells 
into Matrigel (BD Biosciences, USA) at a density of 
 106/100  µl, respectively. Next, 50  µl of Matrigel con-
taining fibroblasts (Fib-mg) was added to the culture 
dish. After solidification, 50  µl of Matrigel containing 
cancer cells (Ca-mg) was inoculated on the surface of 
Fib-mg (Fig.  2A). After solidification, the cells were 
incubated in culture dishes supplemented with DMEM 
medium (HyClone, USA) and observed under a micro-
scope every day.

Next, we constructed a fibroblast-cancer cell orga-
noid model (FC-organoid). First, we prepared a cell sus-
pension of fibroblasts and cancer cells at a ratio of 1:1 
at a concentration of  105 cells/ml and then added the 
cell suspension droplets onto the inverted 10CM dish 
lid, with 20 µl of suspension per droplet. The lid of the 
dish was then turned over, and the cells were cultured 
for 3  days to form cell spheroids. Next, the cell sphe-
roids were injected into 50 µl of Matrigel, DMEM was 
added after solidification (Fig.  2C), and the cells were 
observed under a microscope every day. Fibroblasts and 
human oral squamous cell carcinoma cell line CAL27 
were purchased from the Cell Bank and Stem Cell 
Bank, Chinese Academy of Science (Shanghai, China).
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Fig. 1 Flowchart of the entire research
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Data sources and processing
RNA-seq data, mutation data, and clinicopathologic 
information for 494 HNSCC samples labeled “-01A” were 
downloaded from The Cancer Genome Atlas (TCGA) 
database (https:// portal. gdc. cancer. gov/ proje cts/ TCGA- 
HNSC). RNA-seq data and survival information of 66 
HNSCC samples (GSE85446), scRNA-seq data of 10 
human papillomavirus (HPV)-negative HNSCC samples 
(GSE103322) [15], and immunotherapy data of HNSCC 
samples (GSE212550, anti-PD-1) were downloaded from 
the Gene Expression Omnibus (GEO) database (https:// 
www. ncbi. nlm. nih. gov/ geo). Missing data were replaced 
with NA. ScRNA-seq data was integrated and analyzed 
using the R packages “Harmony” [16] and “Seurat” [17], 
respectively. Genes that could only be detected in 5 or 
fewer cells, as well as low-quality cells with fewer than 
2000 genes detected, were excluded from subsequent 
analysis. The top 2000 genes characterized by high vari-
ability were then screened by the FindVariableFeatures 
function in the “Seurat” package. Principal component 
analysis (PCA) was performed on the single-cell samples, 
and the top 30 principal components (PCs) were selected 
for subsequent analysis. The top 30 PCs were analyzed 
for overall dimensionality reduction of the samples using 
the UMAP algorithm [18].

Extraction of pairLRs involved in CCCT 
Based on the scRNA-seq data of 10 HNSCC sam-
ples, CAFs and cancer cells were divided into differ-
ent subpopulations using the R package “Seurat” with 
a resolution of 0.1. The FindAllMarkers function was 
used to identify differentially expressed genes (DEGs) 
(p < 0.05, |logFC|> 1), and gene ontology (GO) analy-
sis was performed on these genes using the R package 
“clusterProfiler” [19]. Then, the expression data of each 
subpopulation were uploaded to CIBERSORT (https:// 
www. ciber sort. stanf ord. edu) to determine the relative 
proportion of each subpopulation in HNSCC samples 
obtained from TCGA. Survival analysis was subsequently 
carried out to determine the survival-related subpopula-
tions of cancer cells (p < 0.05, log-rank test). Finally, the R 
package “CellChat” [20] was used to screen the pairLRs 
between CAFs and survival-related subpopulations of 
cancer cells.

Construction of the CCRGPI
First, the enrichment score (ES) of the piarLRs in the 
TCGA cohort was calculated using single sample gene set 
enrichment analysis (ssGSEA) provided in the “GSVA” 
package [21]. Based on the ES, all piarLRs were subjected 
to the LASSO regression to identify the key piarLRs 
when the partial likelihood deviance reached the mini-
mum value. These key piarLRs were further transformed 
into binary variables and analyzed via the univariate 
Cox regression analysis. The piarLRs with p values less 
than 0.05 were subsequently subjected to the stepwise 
Cox regression based on the Akaike information crite-
rion (AIC) to establish the CCRGPI. The model with the 
smallest AIC value was identified as the ultimate model. 
The CCRGPI was constructed according to the formula:

where βi is the coefficient of each pairLR in the final 
model and ESi represents the ES of each pairLR. In sub-
sequent analyses, the samples were subdivided into a 
high-CCRGPI group and a low-CCRGPI group based 
on the median CCRGPI or cutoff point calculated by the 
“survivalROC” package.

Validation of the CCRGPI
To assess the reliability of the CCRGPI in predicting 
prognosis, we analyzed the associations of the CCRGPI 
with different clinicopathological factors using Wilcoxon 
tests. In addition, Kaplan‒Meier (KM) survival curves 
were plotted for the TCGA dataset and the GEO dataset 
(GSE85446) using the R package “survminer”. To explore 
the sensitivity and specificity of the CCRGPI, we carried 
out a time-dependent area under the receiver operating 
characteristic curve (AUC) analysis with the R package 
“riskRegression” [22]. Then, we performed univariate and 
multivariate Cox regression analyses of the CCRGPI and 
clinicopathologic factors in the TCGA cohort using the R 
package “survival”.

Analysis of molecular characteristics in different CCRGPI 
subgroups
First, differential expression analysis was performed 
on the two CCRGPI subgroups using the “edgeR” [23] 
package to obtain all DEGs. Genes with p < 0.05 and 

CCRGPI =
∑

βi ∗ ESi,

Fig. 2 CCCT in cellular models. A Schematic diagram of the construction of the FCICC model. B Culture of the FCICC model. The red dotted line 
represents the leading edge of cancer cell invasion. The yellow dotted line represents the interface between Ca-mg and Fib-mg. C Schematic 
diagram of the construction of the FC-organoid model. D Culture of the FC-organoid model. The green arrow points to CAFs, and the red arrow 
points to CAL27 cells. CAFs cancer-associated fibroblasts, Ca-mg Matrigel containing cancer cells, FCICC fibroblast-cancer cell indirect coculture, 
FC-organoid fibroblast-cancer cell organoid, Fib-mg Matrigel containing fibroblasts

(See figure on next page.)

https://portal.gdc.cancer.gov/projects/TCGA-HNSC
https://portal.gdc.cancer.gov/projects/TCGA-HNSC
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.cibersort.stanford.edu
https://www.cibersort.stanford.edu
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Fig. 2 (See legend on previous page.)
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|logFC|> 1 were considered significantly DEGs. Then, 
based on the HALLMARK and GO gene sets down-
loaded from MSigDB (https:// www. gsea- msigdb. org/ 
gsea/ msigdb), gene set enrichment analysis (GSEA) was 
performed on the DEGs using the GSEA function in 
the GSVA package to screen the signaling pathways in 
which the DEGs were involved (p < 0.05). Subsequently, 
the “Maftools” package [24] was used to analyze gene 
mutations and tumor mutation burden (TMB) in the two 
CCRGPI subgroups.

Analysis of immune characteristics in different CCRGPI 
subgroups
The immunescores and stromalscores were calculated 
using the R package “estimate” [25] and were subse-
quently used to analyze correlations with CCRGPI. The 
immune-related gene sets HCK, IgG, Interferon, LCK, 
MHC_I, MHC_II, and STAT1 were obtained from Zhang 
[26]. Then, the ES of these gene sets was calculated by the 
ssGSEA algorithm. The relative proportions of immune 
cells in HNSCC samples based on the XCELL, TIMER, 
MCPCOUNTER, EPIC, and CIBERSORT algorithms 
were downloaded from TIMER (RRID:SCR_018737) 
(http:// timer. comp- genom ics. org). Subsequently, we used 
the “limma” package [27] to analyze the differences in the 
relative proportions of immune cells. Finally, differences 
in the expression of 46 immune checkpoints [28] in the 
two CCRGPI subgroups were examined and visualized 
using the R package “ggpubr”.

Prediction of therapeutic sensitivity in different CCRGPI 
subgroups
We inferred patients’ potential response to immunother-
apy through the tumor immune dysfunction and exclu-
sion (TIDE) score and the immunophenoscore (IPS). 
Generally, the lower the TIDE score and the higher the 
IPS, the better the response to immunotherapy. The 
TIDE score was calculated on the TIDE website (http:// 
tide. dfci. harva rd. edu), and the IPS was downloaded from 
The Cancer Immunome Database (TCIA) (https:// tcia. 
at/ home). Then, immunotherapy data from patients with 
HNSCC (GSE212550, anti-PD-1, n = 20) and urothelial 
cancer (IMvigor210, anti-PD-L1, n = 298) [29] were used 
to investigate the ability of the CCRGPI to predict the 
prognosis of patients receiving ICI therapy. Finally, we 
used the “oncoPredict” [30] package to extrapolate the 
50% inhibitory concentration (IC50) values of 198 chem-
otherapy/targeted therapy drugs in the two CCRGPI sub-
groups to investigate the predictive ability of the CCRGPI 
to predict the response to immunotherapy, chemother-
apy, and targeted therapy.

Screening of small‑molecule drugs and key target
To screen for small-molecule drugs against CCRGPI, 
we selected the 80 upregulated genes with the largest 
logFC and the 80 downregulated genes with the small-
est logFC from DEGs for connectivity map (CMap) 
analysis (https:// clue. io/ query) [31]. Drugs with a mean 
connective score < − 0.4 and p < 0.05 were retained, 
and the chemical structures of these drugs were down-
loaded from the PubChem database (https:// pubch em. 
ncbi. nlm. nih. gov) [32].

To identify the key target of CCRGPI, we constructed 
a protein–protein interaction (PPI) network by imput-
ing 8 proteins contained in CCRGPI into the STRING 
database (https:// string- db. org/) [33]. Then, the maxi-
mum neighborhood component centrality, neighbor-
hood component centrality, and clustering coefficient 
algorithms were performed to mine the key target using 
the cytoHubba plug-in contained in Cytoscape (RRID: 
SCR_003032).

Molecular docking
Based on the best available resolution, we downloaded 
the crystal structure of the key target from the Pro-
tein Data Bank (PDB) database (http:// www. rcsb. org) 
[34], and this crystal structure was poured along with 
the 3D structures of drugs derived from CMap analysis 
into the Schrödinger software suite to perform molec-
ular docking. First, the protein crystal structure was 
optimized by the Protein Preparation Wizard module. 
Next, the LigPrep module was used for ligand prepara-
tion. Subsequently, the active site of the protein is iden-
tified and the Receptor Grid Generation tool is used to 
create a grid at the site, which will serve as a space for 
ligand exploration during subsequent docking. Then, 
the Glide module is used to perform ligand searches 
and docking within the generated grid. Upon comple-
tion of docking, the binding affinity of the ligand to the 
target protein was evaluated based on the Glide score. 
Lower Glide scores usually indicate superior binding 
possibilities.

Statistical analysis
For continuous variables, the Wilcoxon test was utilized 
for the comparisons between two groups. For categori-
cal variables, the chi-square test was used to calculate 
the significance of differences, and KM (log-rank test) or 
Cox regression analysis was used for survival analysis. In 
the correlation analysis between the CCRGPI score and 
other variables, the Spearman method was used to calcu-
late correlation coefficients and p values. In this research, 
p values < 0.05 were considered significant.

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
http://timer.comp-genomics.org
http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
https://tcia.at/home
https://tcia.at/home
https://clue.io/query
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://string-db.org/
http://www.rcsb.org
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Results
CCCT in cellular models
First, we simulated the process of cancer cells breaking 
through the basement membrane from the epithelium 
into the lamina propria using the FCICC model (Fig. 2A). 
Interestingly, cancer cells advanced into the lamina pro-
pria in a jagged manner, and a large number of fibro-
blasts were activated in Fi-mg invaded by cancer cells and 
aggregated at the leading edge of the cancer cell invasion. 
In contrast, few fibroblasts were activated in Fi-mg not 
invaded by cancer cells (Fig.  2B). This finding confirms 
the critical role of cancer cells in promoting the trans-
formation of fibroblasts into CAFs. To explore the effect 
of CAFs on cancer cells, we constructed an FC-organoid 
model (Fig.  2C). Notably, CAFs and cancer cells grew 
asymmetrically in the FC-organoid model (Fig. 2D), with 
more cancer cells on the side where CAFs were active. 
In addition, CAFs grew outward more rapidly than can-
cer cells, and there was concomitant exogenesis between 
them. These results suggested that CCCT has a certain 
degree of heterogeneity, which may be caused by dif-
ferences at the cellular and molecular levels. Therefore, 
we explored the heterogeneity of CAFs and cancer cells 
using scRNA-seq data from HNSCC patients in subse-
quent studies.

PairLRs involved in CCCT 
After quality control and integration of the scRNA-seq 
data (Additional file 1: Figure S1A, 1B), cancer cells from 
10 HSNCC samples were classified into two squamous 
cell carcinoma (SCC) subgroups (SCC1, SCC2), and 
CAFs were divided into three subgroups, namely, myofi-
broblast (MyoCAF), matrix CAF (MatCAF), and resting 
fibroblast (Resfib). (Fig.  3A), with each subgroup exhib-
iting its own highly expressed genes (Fig.  3B and Addi-
tional file 1: Figure S1D). The expression of CAFs markers 
varied across the three CAFs subgroups, with MyoCAF 
exhibiting high levels of ACTA2, MatCAF showing ele-
vated expression of FAP, COL1A1, and DCN, and Resfib 
expressing the mesenchymal marker VIM (Additional 
file  1: Figure S1C). Puram [15] categorized Resfib as 
inactivated fibroblasts; hence, we excluded Resfib from 
subsequent analyses. The results from the GO analysis 
indicated that genes overexpressed in MyoCAF were pre-
dominantly enriched in pathways related to myogenesis 
and contraction, while those overexpressed in MatCAF 
were mainly enriched in extracellular matrix-associated 
pathways; for cancer cells, genes highly expressed in 
SCC1 were chiefly enriched in pathways related to neu-
trophils, whereas those in SCC2 were mainly enriched in 
metabolic and stress-related pathways (Fig.  3C and D). 
Notably, survival analysis revealed that HNSCC patients 

with a higher proportion of SCC2 cells had a poorer 
prognosis (Fig. 3E). Therefore, we extracted only pairLRs 
between MyoCAF, MatCAF, and SCC2 cells for subse-
quent studies (Additional file 1: Figure S2).

Construction of the CCRGPI
To identify the key pairLRs for the construction of the 
CCRGPI, we first employed the ssGSEA algorithm to cal-
culate the ES of pairLRs in HNSCC samples from TCGA 
(Fig.  4A). Subsequently, these pairLRs were subjected 
to LASSO regression analysis (Fig.  4B), from which 26 
critical pairLRs were selected (Additional file  1: Figure 
S3A). These pairLRs were then used to perform univari-
ate Cox regression analysis, and 10 pairLRs were ulti-
mately selected (Fig.  4C). Next, these 10 pairLRs were 
input into a stepwise Cox regression analysis, ultimately 
retaining 4 pairLRs (Fig. 4C, D). Based on the 4 pairLRs, 
we constructed a model using the following formula: 
CCRGPI = (0.682) * IGF1_IGF1R + (− 0.425)  * LGALS9_
C D 4 4  +  ( −  0 . 5 1 8 ) * S E M A 5 A _
PLXNA1 + (− 0.392)  * TNXB_SDC1. Consistent with 
the formula, HNSCC patients with high IGF1_IGF1R ES 
had a worse prognosis, which was reversed for LGALS9_
CD44, SEMA5A_PLXNA1, and TNXB_SDC1 (Fig. 4E).

Validation of the CCRGPI
We first studied the distribution of the CCRGPI in 
HNSCC patients with different clinical characteris-
tics. The results showed that patients with a history of 
smoking, drinking, recurrence, and advanced T stage 
had a greater CCRGPI, but HPV-positive patients had a 
lower CCRGPI (Fig. 5A). Consistently, the proportion of 
patients with a history of smoking, drinking, recurrence, 
and advanced T stage was higher in the high-CCRGPI 
group, but the proportion of HPV-positive patients was 
lower (Additional file 1: Figure S3C). As shown in Addi-
tional file  1: Figure S3B, the HPV-positive group had 
significantly lower content of MatCAF. It has been indi-
cated that HPV-positive HSNCC patients [35, 36] and 
those with low stroma abundance [37, 38] have a better 
prognosis. MatCAF is an important cell for stroma pro-
duction, so a low level of MatCAF may be one of the rea-
sons why HPV-positive patients have a better prognosis. 
Although the content of SCC2 was higher in the HPV-
positive group, the reduction in MatCAF may lead to a 
lower CCRGPI (Fig. 5A), which in turn led to an overall 
effect of better prognosis.

KM curves (log-rank test) and univariate Cox analysis 
showed that patients with higher CCRGPI had worse OS 
(Figs. 5B and C). In multivariable Cox regression analy-
sis, CCRGPI was confirmed as an independent risk fac-
tor for OS in the TCGA dataset after adjusting factors 
such as gender, T stage, N stage, M stage, clinical stage, 
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Fig. 3 Characteristics of single-cell subgroups. A Dimensionality reduction analysis of the scRNA-seq data. B Highly expressed genes in single-cell 
subgroups. C, D GO analysis. E Kaplan‒Meier survival analysis of the single-cell subgroups in the TCGA cohort. GO Gene Ontology, TCGA  The Cancer 
Genome Atlas
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Fig. 4 Construction of the CCRGPI. A Schematic diagram of CCRGPI construction. B LASSO regression analysis of the pairLRs. C Univariate 
Cox analysis of the pairLRs and stepwise Cox regression of the pairLRs significant in the univariate Cox analysis (p < 0.05). D PairLRs contained 
in the CCRGPI. E Kaplan‒Meier survival analysis of the pairLRs contained in the CCRGPI. CCRGPI cancer-associated fibroblast (CAF)-cancer cell 
crosstalk-related gene prognostic index, LASSO least absolute shrinkage and selection operator, pairLRs paired ligands and receptors
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and recurrence (Fig.  5C). Moreover, time-dependent 
AUC analysis suggested that the CCRGPI has consider-
able value in predicting the OS of patients with HSNCC 
in the TCGA cohort (Fig.  5D). Notably, there were no 
significant differences in the proportions of SCC2, Myo-
CAF, and MatCAF between the two CCRGPI subgroups 
(Fig. 5E), indicating that the predictive power of CCRGPI 
was independent of the content of these 3 cell types. 
ScRNA-seq data analysis revealed that 8 genes contained 
in the CCRGPI were differentially expressed in SCC2, 
MyoCAF, and MatCAF and exhibited extensive crosstalk 
between these cells (Fig. 4D and Additional file 1: Figure 
S4), which further confirmed the reliability of CCRGPI 
and its role in characterizing CCCT.

Molecular characteristics in different CCRGPI subgroups
In the differential expression analysis, 48 genes were 
upregulated in the high-CCRGPI group compared to the 
low-CCRGPI group, which was much lower than the 279 
downregulated genes (Fig. 6A and Additional file 1: Fig-
ure S5A). Even so, GSEA analysis based on the HALL-
MARK gene sets showed that up to 13 signaling pathways 
were activated in the high-CCRGPI group, such as the 
P53 Pathway, hypoxia, epithelial-mesenchymal transition, 
and glycolysis, while only allograft rejection, inflamma-
tory response, interferon gamma response, and IL6 Jak 
Stat3 signaling were suppressed (Fig. 6B and Additional 
file 1: Figure S5B), which suggested that the high-CIRGS 
group may have a higher malignancy grade. Additionally, 
GSEA analysis based on the chemokine-cytokine net-
work showed that the production, secretion, binding, and 
activation of chemokines and cytokines were all inhibited 
in the high-CCRGPI group (Fig.  6C). Chemokines and 
cytokines, such as IFN-γ [39], CXCL9 [40], and CCL20 
[41], are related to the recruitment of CD4+ and CD8+ 
T cells, so the lack of chemokines and cytokines may lead 
to impaired recruitment of immune cells, thereby causing 
an immunosuppressive tumor microenvironment.

The gene mutation is an important driver of TME het-
erogeneity. For example, the TP53 gene, which is the 
most frequently mutated gene in human cancer, can 
exert tumor-suppressive effects through the regulation of 
immunity, and its mutation will alter the immune micro-
environment and promote the development of cancer 

[42]. Therefore, we calculated the TMB of HNSCC sam-
ples. Correlation analysis revealed a positive correlation 
between the TMB and CCRGPI, with the high-CCRGPI 
group exhibiting a greater TMB (Fig. 6D and Additional 
file  1: Figure S5G). Next, we extracted the top 10 genes 
with the highest mutation frequency and those with sig-
nificant mutation differences (p < 0.01). TP53 was identi-
fied as the most frequently mutated gene, with a notably 
higher mutation frequency in the high-CCRGPI group 
(73%) than that in the low-CCRGPI group (62%) (Addi-
tional file  1: Figure S5C). Additionally, the mutation 
frequency of 19 genes with significant mutational differ-
ences was higher in the high-CCRGPI group (Additional 
file  1: Figure S5D), and these gene mutations demon-
strated a significant co-occurrence (Additional file 1: Fig-
ure S5E). Furthermore, the mutation rate of the 8 genes 
included in the CCRGPI was low, with no significant dif-
ferences between the two CCRGPI subgroups (Fig.  6E). 
However, there was a significant co-occurrence of TNXB 
and IGF1 (Additional file 1: Figure S5F).

Immune characteristics in different CCRGPI subgroups
Initially, the R package “estimate” was used to calcu-
late the immunescore and stromalscore for HNSCC 
samples. CCRGPI was negatively correlated with the 
immunescore, and the high-CCRGPI group had a signifi-
cantly lower immunescore than the low-CCRGPI group 
(Fig. 7A). However, there was no significant difference in 
the stromalscore between the two CCRGPI subgroups 
(Fig. 7A). Considering that CAFs are the most abundant 
stromal cells within the TME and that the subpopula-
tions of CAFs did not significantly differ between the two 
CCRGPI subgroups, the absence of difference in stro-
malscore is reasonable and further substantiates the reli-
ability of CCRGPI.

Subsequently, we investigated the relationships 
between CCRGPI and seven gene sets representing dif-
ferent inflammatory and immune responses. The results 
revealed that the ES of HCK, Interferon, LCK, MHC_II, 
and STAT1 gene sets were all negatively correlated with 
CCRGPI (Fig. 7B). Additionally, GSEA analysis based on 
the GO database indicated that immune-related path-
ways were all suppressed in the high-CCRGPI group 
compared to the low-CCRGPI group (Fig. 7C). Similarly, 

(See figure on next page.)
Fig. 5 Validation of the CCRGPI. A CCRGPI in samples with different clinicopathologic factors (ns: not significant, *p < 0.05, ***p < 0.001, 
****p < 0.0001). B Kaplan‒Meier survival analysis of the CCRGPI subgroups in the TCGA and GEO cohorts. C Univariate Cox analysis 
of clinicopathologic factors and CCRGPI and multivariate Cox analysis of factors significant in univariate Cox analysis (p < 0.05). D Time-dependent 
AUC analysis of clinicopathologic factors and CCRGPI. E Proportion of MatCAF, MyoCAF, and SCC2 cells in the TCGA cohort (ns: not significant). 
AUC  area under the receiver operating characteristic curve, CCRGPI cancer-associated fibroblast (CAF)-cancer cell crosstalk-related gene prognostic 
index, GEO Gene Expression Omnibus, MatCAF matrix CAF, MyoCAF myofibroblast, SCC2 squamous cell carcinoma 2, TCGA  The Cancer Genome Atlas
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except for CD276, nearly all 46 immune checkpoint 
genes were downregulated in the high-CCRGPI group 
(Fig.  7D). To analyze the composition of immune cells 
within different CCRGPI subgroups, we also examined 
the distribution of infiltrating immune cells predicted by 
algorithms such as XCELL, TIMER, MCPCOUNTER, 
EPIC, and CIBERSORT. Our findings demonstrated that 
most immune cells, such as M1 macrophages, regulatory 
T cells (CD4+), cytotoxic T cells (CD8+), and dendritic 
cells, were reduced in the high-CCRGPI group and were 
negatively correlated with the CCRGPI. However, the 
infiltration of M0 macrophages, M2 macrophages, rest-
ing mast cells, resting NK cells, and common lymphoid 
progenitors was more abundant in the high-CCRGPI 
group and positively correlated with the CCRGPI 
(Fig. 7E). These results suggest that samples in the high-
CCRGPI group were in an immunosuppressed state and 
may be insensitive to immunotherapy.

Immune characteristics in different HPV subgroups
HPV-positive and HPV-negative HNSCC patients have 
different immune response patterns [36]. Therefore, we 
next investigated the immune characteristics in differ-
ent HPV subgroups. As shown in Additional file 1: Figure 
S6A, in both HPV subgroups, CCRGPI was negatively 
correlated with the immunescore, and the high-CCRGPI 
group had a significantly lower immunescore than the 
low-CCRGPI group in the HPV-negative group. Moreo-
ver, the CCRGPI was negatively correlated with various 
immune-related gene sets, such as HCK and MHC_II 
in the HPV-negative group, and LCK, MHC_I, MHC_
II, and STAT1 in the HPV-positive group (Additional 
file  1: Figure S6B). Additionally, in both HPV groups, 
all differentially expressed immune checkpoint genes 
were downregulated in the high-CCRGPI group (Addi-
tional file  1: Figure S6C). Similarly, almost all immune 
cells with differential content were reduced in the high-
CCRGPI group, such as B cells, CD4+ T cells, and CD8+ 
T cells (Additional file 1: Figure S6D). Unfortunately, the 
HNSCC immunotherapy data used in this study did not 
contain information on HPV infection, thus we were una-
ble to assess the performance of CCRGPI in predicting 
immunotherapy response in both HPV subgroups. Over-
all, whether in the HPV-negative or HPV-positive group, 
the high-CCRGPI group had lower immunogenicity, 

suggesting that HNSCC patients with a high CCRGPI 
are more difficult to benefit from ICI regardless of HPV 
infection. These results further confirmed the reliability 
of the CCRGPI.

Therapeutic sensitivity in different CCRGPI subgroups
We further explored the capability of the CCRGPI to pre-
dict the response to immunotherapy. First, we inferred 
patients’ response to immunotherapy by the TIDE score 
and IPS. In general, the lower the TIDE score and the 
higher the IPS, the better the patient’s response to immu-
notherapy. The results showed that the TIDE and T-cell 
exclusion scores of the high-CCRGPI group were higher 
than those of the low-CCRGPI subgroup, but the T-cell 
dysfunction score and IPS were lower (Fig. 8A). In addi-
tion, we investigated the ability of the CCRGPI to predict 
the prognosis of patients receiving ICI therapy using the 
immunotherapy datasets of HNSCC (GSE212550, anti-
PD-1) and uroepithelial cancer (IMvigor210, anti-PD-
L1). We found that patients with a high CCRGPI had a 
worse prognosis than those with a low CCRGPI (Figs. 8B 
and C). These results imply that HNSCC patients with a 
high CCRGPI are less likely to benefit from ICI therapy 
than those with a low CCRGPI. Interestingly, the results 
of the analysis of the immune-related gene prognos-
tic index (IRGPI) [43], immune-related gene signature 
(IRGS) [44], and m6A-based risk score (m6Arisk) [45] 
in the GSE212550 dataset were contrary to the trends 
in the original articles (IRGPI, IRGS) or were not sig-
nificant (m6Arisk) (Fig. 8D). Finally, we extrapolated the 
IC50 values of 198 chemotherapy/targeted therapy drugs 
in the two CCRGPI subgroups. The results showed that, 
among the 83 drugs with statistical significance, the sam-
ples in the high-CCRGPI group had higher IC50 values, 
that is, worse drug sensitivity (Fig.  8E and Additional 
file 2: Table S1). Overall, we suggest that the CCRGPI has 
considerable predictive ability for immunotherapy and 
even chemotherapy.

Screening of small‑molecule drugs and molecular docking
By using CMap analysis, we screened 20 potential small-
molecule drugs against CCRGPI, such as Agomelatine, 
Prochlorperazine, PD-173074, and Ganetespib (Addi-
tional file  1: Figure S7A). To further identify the key 
target of CCRGPI, we built a PPI network consisting of 

Fig. 6 Molecular characteristics in different CCRGPI subgroups. A DEGs and clinical features in different CCRGPI subgroups. B GSEA analysis 
on the DEGs based on the HALLMARK gene sets (p < 0.05). C GSEA analysis on the DEGs based on chemokine-cytokine network in the GO database 
(p < 0.05). D Correlations between the gene mutations and CCRGPI. E Mutations of genes contained in the CCRGPI. CCRGPI cancer-associated 
fibroblast (CAF)-cancer cell crosstalk-related gene prognostic index, DEGs differentially expressed genes, GO Gene Ontology, GSEA gene set 
enrichment analysis

(See figure on next page.)
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8 proteins contained in the CCRGPI. In addition, three 
algorithms were used to identify key targets. The results 
showed that IGF1R ranked first among all three algo-
rithms and was therefore considered the key target 
(Additional file  1: Figure S7B). The molecular docking 
technique is an effective and rapid method for screening 
compounds and assessing the binding stability of a com-
pound to a target by calculating the free binding energy. 
The top 15 compounds that bind well to IGF1R are listed 
in Additional file  2: Table  S2. In particular, the binding 
energies of Perospirone and Ganetespib to IGF1R were 
lower than that of the native ligand (PubChem CID: 
137349240), which implies that these two compounds 
have a greater affinity for IGF1R, suggesting that Pero-
spirone and Ganetespib can be used for combination 
therapy of HNSCC. However, Perospirone is an atypical 
antipsychotic, so it was excluded [46]. A three-dimen-
sional diagram of the interaction between Ganetespib 
and IGF1R is displayed in Additional file 1: Figure S7C.

Discussion
In recent years, immunotherapy has shown good prom-
ise for solid tumors [1–4]. In particular, ICI therapy has 
shown positive results in the treatment of patients with 
HNSCC [5–7]. However, only a small number of patients 
are currently able to benefit significantly from this treat-
ment. Therefore, the development of biomarkers that can 
accurately predict the prognosis of immunotherapy is of 
particular importance.

Numerous studies have developed prediction models 
for HNSCC immunotherapy based on immune-related 
genes or other gene sets, such as the IRGPI [43], IRGS 
[44], and m6Arisk [45]. However, these models were not 
validated in the HNSCC immunotherapy cohort. In this 
study, to validate the predictive ability of the above three 
biomarkers, we applied them to the HNSCC immuno-
therapy cohort containing the long-term survivors (LTS) 
and short-term survivors (STS) groups. Unfortunately, 
the results were contrary to the trend of the original arti-
cle or were not significant. One of the reasons for the 
poor performance of these prediction models may be 
that they only pay attention to a single gene and ignore 
the heterogeneity of the TME when constructing mod-
els. It should be noted that the success of immunotherapy 

depends on multiple anti-immunotherapeutic mecha-
nisms mediated by multifaceted crosstalk between stro-
mal, epithelial, and immune cells within the TME [47].

Emerging evidence suggests a correlation between poor 
tumor immunotherapy response and CAFs. CAFs are 
the most abundant mesenchymal cells in the TME and 
one of the most important factors affecting the outcome 
of ICI therapy [11–13]. By remodeling the extracellu-
lar matrix and interacting with tumor cells and immune 
cells, CAFs can promote the formation of an immuno-
suppressive microenvironment and induce resistance 
to radiotherapy and chemotherapy [14, 48, 49]. In addi-
tion, different subsets of CAFs have different molecular 
features and functional properties and exhibit a certain 
degree of heterogeneity [50], which further complicates 
their effects on the TME and immune responses. There-
fore, the development of biomarkers based on the cross-
talk of CAFs with other cells in the TME is promising and 
may help to develop more effective therapeutic strategies 
and improve the success rate of immunotherapy.

Although the crosstalk between CAFs and immune 
cells has a more direct impact on the immune envi-
ronment of the TME, the impact of the CCCT on the 
immune status of tumor should not be overlooked [48]. 
We observed in the FCICC and FC-organoid cellular 
models that the activation of CAFs was directly affected 
by cancer cells. Moreover, activated CAFs grew outward 
more rapidly than cancer cells, and there was concomi-
tant outward growth with cancer cells. We hypothesized 
that CCCT may play a key role in the initiation stage of 
cancer development. Through CCCT, a large number 
of normal fibroblasts are transformed into CAFs, which 
then undergo crosstalk with tumor cells, immune cells, 
and other stromal cells and ultimately lead to the active 
modification of the TME, resulting in an immunosup-
pressive state. Therefore, it is potentially valuable to 
develop biomarkers based on CCCT. However, few stud-
ies have incorporated the crosstalk between CAFs and 
tumor cells to guide prognosis and precision treatment 
strategies for HNSCC.

In this study, by using scRNA-seq data and bulk tran-
scriptomic data of HNSCC patients, we developed the 
CCRGPI based on CCCT and performed multiple valida-
tions to assess its performance and reliability. Our results 

(See figure on next page.)
Fig. 7 Immune characteristics in different CCRGPI subgroups. A Correlation between the immunescore, stromalscore, and CCRGPI (ns: 
not significant, ****p < 0.0001). B Correlation between the ES of immune-related gene sets and CCRGPI (**p < 0.01, ***p < 0.001). C GSEA 
analysis on the DEGs based on immune-related gene sets in the GO database (p < 0.05). D Expression of 46 immune checkpoints in different 
CCRGPI subgroups (ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). E Proportion of immune cells in the TCGA cohort based 
on the XCELL, TIMER, MCPCOUNTER, EPIC, and CIBERSORT algorithms. CCRGPI cancer-associated fibroblast (CAF)-cancer cell crosstalk-related gene 
prognostic index, ES enrichment score, GO Gene Ontology, GSEA gene set enrichment analysis, TCGA  The Cancer Genome Atlas
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showed that patients in the high-CCRGPI group exhib-
ited lower immune cell infiltration, lower immunogenic-
ity, poorer prognosis, and poorer immunotherapeutic 
response than those in the low-CCRGPI group. These 
findings suggest that the CCRGPI may be a promising 
and reliable biomarker for predicting the prognosis and 
immunotherapy response of HNSCC patients. Moreo-
ver, although HPV-positive and HPV-negative HNSCC 
patients have different immune response patterns, the 
CCRGPI showed consistently performance in both HPV 
subgroups, which further confirmed the rationality of 
establishing a prognostic model based on CCCT.

Some studies have revealed that the higher the content 
of CAFs, the worse the prognosis of HNSCC patients 
[37, 51]; however, it has also been shown that the con-
tent of CAFs has no significant association with the 
prognosis of HPV-positive HNSCC patients [52]. This 
contradiction may be related to the different measure-
ment methods and standards used. In addition, the iden-
tification of the content of CAFs in previous studies was 
mostly based on the expression of marker genes of CAFs. 
However, these marker genes are differentially expressed 
in the subpopulations of CAFs, and the contents of these 
subpopulations also vary in different HNSCC patients. 
This heterogeneity makes the measurement of the CAFs’ 
content prone to error, and the prognostic indicators 
based on the content of CAFs are also difficult to be 
accurate. In our study, we incorporated two major CAFs 
subpopulations (MatCAF and MyoCAF) into the model. 
Notably, there was no significant difference in the con-
tents of the two CAFs subpopulations between the two 
CCRGPI subgroups. This reduces the impact of the con-
tent of each subpopulation on the predictive ability of 
the model, thus minimizing the error in the prediction. 
On the one hand, this enhances the reliability of our 
model; on the other hand, it also highlights the necessity 
of constructing a prognostic model based on the hetero-
geneity of the TME.

To identify potential small-molecule drugs for clinical 
combination therapy, we constructed a PPI network for 
the eight genes contained in the CCRGPI. In this net-
work, we screened IGF1R as a key drug target. IGF1R 

is an oncogene that promotes tumor cell proliferation, 
metabolism, and metastasis [53], and it has promising 
applications in combination therapy for tumors [54]. By 
molecular docking technique, we found that Ganetespib 
has a high affinity with IGF1R. The anticancer effects of 
Ganetespib have been widely recognized [55, 56], and 
Ganetespib can inhibit IGF1R expression [57, 58]. There-
fore, Ganetespib has the potential to be combined with 
cancer immunotherapy to improve the prognosis of 
HNSCC patients at high risk. However, further in-depth 
studies and experimental validation of Ganetespib and its 
specific molecular mechanisms are needed.

The construction of the prognostic model based on 
CCCT in this study has multiple advantages. On the 
one hand, the model incorporates the two main factors 
causing TME heterogeneity, CAFs and tumor cells, thus 
reducing the impact of TME heterogeneity on the pre-
diction accuracy of the model. On the other hand, this 
study constructed pairLRs for the crosstalk between 
CAFs and tumor cell subpopulation at the single-cell 
level, thereby connecting CAFs and tumor cells into a 
whole, which is more in line with the actual situation 
in  vivo. However, this study has several limitations. 
The CCRGPI was constructed using retrospective data 
obtained from public databases, which has a potential 
bias. Future validation of this index should focus more 
on prospective studies and need to incorporate mul-
ticenter HNSCC cohort data. In addition, few HNSCC 
immunotherapy cohorts with survival data are accessible 
at present, and CCRGPI needs to be validated in more 
HNSCC immunotherapy cohorts. Moreover, the molec-
ular network that determines the function of CCRGPI 
during the development of HNSCC deserves further 
investigation.

Conclusions
Overall, we developed a reliable CCCT-based prognostic 
index for HNSCC and explored potential small-molecule 
drugs for clinical combination therapy. It is hoped that 
the CCRGPI will be used for predicting prognosis and 
immunotherapy response and guiding the individualized 
treatment for HNSCC patients.

Fig. 8 Therapeutic sensitivity in different CCRGPI subgroups. A TIDE, T-cell dysfunction, T-cell exclusion score, and IPS in different CCRGPI 
subgroups. B Comparison of the CCRGPI between the STS and LTS groups in the GSE212550 dataset. C Kaplan‒Meier survival analysis of different 
CCRGPI subgroups in the IMvigor210 dataset. D Comparison of the IRGPI, IRGS, and m6Arisk between the STS and LTS groups in the GSE212550 
dataset. E Predicted IC50 values of 30 drugs in different CCRGPI subgroups (***p < 0.001, ****p < 0.0001). CCRGPI cancer-associated fibroblast 
(CAF)-cancer cell crosstalk-related gene prognostic index, IC50 50% inhibitory concentration, IPS immunophenoscore, IRGPI immune-related gene 
prognostic index, IRGS immune-related gene signature, LTS long-term survivors, m6Arisk m6A-based risk score, STS short-term survivors, TIDE tumor 
immune dysfunction and exclusion

(See figure on next page.)
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Additional file 1: Figure S1. Analysis of the scRNA-seq data. (A) Quality 
control of the scRNA-seq data. (B) Integration of the scRNA-seq data. 
(C) Expression of marker genes of CAFs in three CAFs subgroups. (D) 
Highly expressed genes in single-cell subgroups. CAFs, cancer-associated 
fibroblasts. Figure S2. PairLRs involved in CCCT. CCCT, cancer-associated 
fibroblast (CAF)-cancer cell crosstalk; pairLRs, paired ligands and receptors. 
Figure S3. Construction and Validation of the CCRGPI. (A) PairLRs selected 
from LASSO regression analysis. (B) Proportion of MatCAF, MyoCAF, SCC1, 
and SCC2 cells in the TCGA cohort (ns: not significant, *p < 0.05). (C) 
Proportion of patients with various clinicopathologic factors in different 
CCRGPI subgroups. CCRGPI, cancer-associated fibroblast (CAF)-cancer cell 
crosstalk-related gene prognostic index; LASSO, least absolute shrinkage 
and selection operator; pairLRs, paired ligands and receptors; MatCAF, 
matrix CAF; MyoCAF, myofibroblast; SCC2, squamous cell carcinoma 
2; TCGA, The Cancer Genome Atlas. Figure S4. Expression of pairLRs 
contained in the CCRGPI in scRNA-seq data. CCRGPI, cancer-associated 
fibroblast (CAF)-cancer cell crosstalk-related gene prognostic index; 
pairLRs, paired ligands and receptors. Figure S5. Differential expres-
sion analysis in different CCRGPI subgroups. (A) Volcano map showing 

differentially expressed genes. (B) Activated and inhibited HALLMARK 
pathways in the high-CCRGPI group. (C) The top 10 genes with the 
highest mutation frequencies in different CCRGPI subgroups. (D) Forest 
plot showing genes with mutational differences in different CCRGPI 
subgroups (**p < 0.01, ***p < 0.001). (E) Interaction effect of genes with 
significant mutation differences. (F) Interaction effect of genes contained 
in the CCRGPI (*p < 0.05,.p < 0.01). (G) TMB in different CCRGPI subgroups. 
CCRGPI, cancer-associated fibroblast (CAF)-cancer cell crosstalk-related 
gene prognostic index; TMB, tumor mutation burden. Figure S6. Immune 
characteristics in different HPV subgroups. (A) Correlation between the 
immunescore and CCRGPI in different HPV subgroups (ns: not sig-
nificant, *p < 0.05). (B) Correlation between the ES of immune-related 
gene sets and CCRGPI in different HPV subgroups (*p < 0.05, **p < 0.01, 
***p < 0.001). (C) Immune checkpoints differentially expressed among 
CCRGPI subgroups in different HPV subgroups (*p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001). (D) Proportion of immune cells based on the 
XCELL, TIMER, MCPCOUNTER, EPIC, and CIBERSORT algorithms in differ-
ent HPV subgroups. CCRGPI, cancer-associated fibroblast (CAF)-cancer 
cell crosstalk-related gene prognostic index; ES, enrichment score; HPV, 
human papillomavirus. Figure S7. Screening of small-molecule drugs 
and molecular docking. (A) Schematic diagram of the CMap analysis. (B) 
PPI network of genes contained in the CCRGPI. (C) The three-dimensional 
interaction diagrams of Ganetespib with IGF1R. CCRGPI, cancer-associated 
fibroblast (CAF)-cancer cell crosstalk-related gene prognostic index; CMap, 
connectivity map; PPI, protein–protein interaction. 

Additional file 2: Table S1. The Predicted IC50 values of the 83 drugs 
with statistical significance. Table S2. The results of molecular docking 
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