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Abstract 

Background  Bladder cancer is a common malignancy with high recurrence rate. Early diagnosis and recurrence 
surveillance are pivotal to patients’ outcomes, which require novel minimal-invasive diagnostic tools. The urinary 
microbiome is associated with bladder cancer and can be used as biomarkers, but the underlying mechanism is to be 
fully illustrated and diagnostic performance to be improved.

Methods  A total of 23 treatment-naïve bladder cancer patients and 9 non-cancerous subjects were enrolled 
into the Before group and Control group. After surgery, 10 patients from the Before group were further assigned 
into After group. Void mid-stream urine samples were collected and sent for 16S rDNA sequencing, targeted metabo-
lomic profiling, and flow cytometry. Next, correlations were analyzed between microbiota, metabolites, and cytokines. 
Finally, receiver operating characteristic (ROC) curves of the urinary biomarkers were plotted and compared.

Results  Comparing to the Control group, levels of IL-6 (p < 0.01), IL-8 (p < 0.05), and IL-10 (p < 0.05) were remarkably 
elevated in the Before group. The α diversity of urine microbiome was also significantly higher, with the feature micro-
biota positively correlated to the level of IL-6 (r = 0.58, p < 0.01). Significant differences in metabolic composition were 
also observed between the Before and Control groups, with fatty acids and fatty acylcarnitines enriched in the Before 
group. After tumor resection, cytokine levels and the overall microbiome structure in the After group remained similar 
to that of the Before group, but fatty acylcarnitines were significantly reduced (p < 0.05). Pathway enrichment analysis 
revealed beta-oxidation of fatty acids was significantly involved (p < 0.001). ROC curves showed that the biomarker 
panel of Actinomycetaceae + arachidonic acid + IL-6 had superior diagnostic performance, with sensitivity of 0.94 
and specificity of 1.00.

Conclusions  Microbiome dysbiosis, proinflammatory environment and altered fatty acids metabolism are involved 
in the pathogenesis of bladder cancer, which may throw light on novel noninvasive diagnostic tool development.

Keywords  Bladder urothelial carcinoma, Urinary microbiome, Metabolome, Interluekin-6, Inflammation

†Cen Wu and Xiaoyu Wei contributed equally to this work.

*Correspondence:
Weili Li
vera_well4@hotmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-024-05446-7&domain=pdf
http://orcid.org/0000-0002-8956-0164


Page 2 of 17Wu et al. Journal of Translational Medicine          (2024) 22:628 

Introduction
Bladder cancer is the tenth leading cancer type globally 
with more than 573,000 new cases in 2020 [1]. In U.S., 
the estimated incidence is over 80,000 of both sexes in 
2024, with approximately three quarters occurring in 
men while one quarter occurring in women [2]. In China, 
bladder cancer is also common which ranked the eighth 
in morbidity and mortality among all cancer types in 
males [3]. Painless haematuria, microscopic or visible, 
is an alerting sign for bladder cancer. Medical attention 
should be paid to those with haematuria, but actually the 
urological referral rate of these patients remains at a low 
level [4]. What’s more, the recurrence rate of bladder can-
cer at 5 years can be as high as 70% [5], making it a heavy 
disease burden to the society. Cystoscopy is the gold 
standard for both diagnosis and recurrence surveillance, 
but it is invasive and usually costly due to repeated usage. 
Urine is in continuous contact with bladder cancer tissue 
and contains information both on tumor environment 
and tumor itself, making it a promising tool to be devel-
oped for disease screening, diagnosis, and recurrence 
monitoring. Urine cytology is a frequently used marker 
that has been approved to apply in adjuvant with cystos-
copy, but its prominent defect in sensitivity has restricted 
its role in detecting low-grade diseases. In addition, many 
urine assays based on proteins, DNA, RNA, and other 
biomarkers, have also been developed [6]. However, they 
encounter many other limitations, such as low specificity 
and false positive results [7, 8]. Therefore, a more robust 
urinary biomarker or panels designed for early diagnosis 
and recurrent surveillance will be of great clinical value 
to improve bladder cancer management and patient’s 
outcomes.

That urinary tract was sterile had been a long-held 
doctrine until several studies found a unique urinary 
microbiota harbors in it [9–11]. Differences in urinary 
microbiome between bladder cancer subjects and the 
healthy controls have been extensively studied [12, 13]. 
For example, Actinomyces, Achromobacter, Brevibacte-
rium, and Brucella were reported to be more abundant in 
bladder cancer urines when compared to healthy controls 
[13]. As for microbiome diversity, several studies [12, 14, 
15] reported a significantly higher α diversity in bladder 
cancer patients, which indicated an increased species 
diversity in cancer group. Unlike gut microbiome studies, 
the microbial diversity was inconsistent among urinary 
tract disorders and Zeng et  al. [15] even correlated low 
alpha diversity (especially Shannon index) to a prolonged 
recurrence-free survival. The inconsistence across stud-
ies is partly due to the variance in sample types used in 
their research. The most studied sample types included 
void mid-stream urine, cathedral urine, and tumor tis-
sues, each with its own advantages and disadvantages. 

But void mid-stream urine is the most accessible type 
and can be exploited as a minimal invasive tool for can-
cer screening, diagnosing as well as recurrence surveil-
lance. Nevertheless, though the urinary microbiome is an 
increasingly understood area, the findings on its role in 
bladder cancer pathogenesis remain insufficiently eluci-
dated. Some studies proposed that chronic inflammation, 
caused by urinary microbial dysbiosis, might lead to can-
cer initiation [16, 17]. During this process, the transloca-
tion of bacterial could activate Toll-like receptors (TLRs), 
followed by the activation of inflammation-associated 
pathways, including NF-kB and Janus-activated kinase 
(JAK)-STAT3 signaling pathways, which lead to upregu-
lation of proinflammatory cytokines and finally induce an 
inflammatory bladder environment [16]. Particularly, the 
proinflammatory cytokine IL-6 was reported to be asso-
ciated with initiation and progression of bladder cancer 
[18, 19]. But it remains unclear what taxa is responsible 
for chronic inflammation. On the other hand, the immu-
notherapy with intravesical Bacillus Calmette–Guérin 
(BCG) vaccine yields generally good outcomes for many 
non-muscle invasive bladder cancer (NMIBC) patients, 
which signifies that the immune-inflammation system, 
activated by the microbe in the vaccine, could play a posi-
tive effect against bladder tumors [20]. The contrasting 
findings reminded us that a more overall picture should 
be painted on the urinary microbiome and its functions.

As living organisms, urinary microbes exchange mate-
rials by “eating”, producing, and releasing substances into 
the urine. Thus, the urinary metabolome is a reservoir 
that contains metabolites produced by normal urothelial 
cells, tumor cells, and microbes, including amino acids, 
organic acids, carbohydrates, and so on. Accumulating 
research has explored urinary metabolomic biomarkers 
to differentiate bladder cancer patients from non-cancer-
ous populations. For example, Nizioł et al. [21] reported 
a series of metabolites detecting bladder cancer with 
sensitivity ranging from 80 to 90% and specificity from 
81 to 90%. Lin et  al. [22] also found eight metabolites 
with sensitivity varying between 67 and 92% and speci-
ficity between 75 and 100%. Similar studies abound, but 
there is a dearth of research that exploits void urine to 
unveil the underlying mechanism of bladder cancer from 
a multi-dimensional perspective. Integrative studies that 
combined urinary microbiome and metabolome could 
provide extensive additional information about the tum-
origenic liquid environment that tumor tissue reside in, 
and useful urinary biomarkers or marker panels might be 
discovered in time.

Urinary microbiome and urinary metabolome have 
been studied extensively, and some microbiota and 
metabolites have been proposed as biomarkers for blad-
der cancer [23–26]. However, the diagnostic performance 
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of these single biomarkers was limited, and the potential 
mechanism and function of urinary microbiome remain 
insufficiently elucidated. In this study, we conducted an 
integrated exploration based on microbiomics, targeted 
metabolomics, and cytokine profiling to reveal the patho-
genesis of bladder cancer. First, 16S rDNA sequencing, 
ultra-performance liquid chromatography coupled to 
tandem mass spectrometry (UPLC-MS/MS), and flow 
cytometry were performed with void mid-stream urine 
samples collected from non-cancerous and bladder can-
cer patients pre- and post-operation, respectively. Next, 
Spearman correlation was analyzed between microbiota 
and cytokines, as well as between microbiota and metab-
olites. Finally, receiver operating characteristic (ROC) 
curves were plotted and compared on the biomarkers 
generated in the steps above.

Materials and methods
Study design and sample collection
From May 2021 to November 2022, eligible participants 
were screened and recruited into the Before group at 
the Department of Urology of Quanzhou First Hospital 
(Fujian Province, China). Inclusion criteria were as fol-
lows: (1) 40–80 years old; (2) diagnosed with primary or 
recurrent bladder urothelial cancer, single or multiple 
tumors; (3) no therapy was used at the time of enroll-
ment. Exclusion criteria were as follows: (1) lack of 
informed consent; (2) absence of histological confirma-
tion; (3) presence of other malignancies. Meanwhile, age- 
and sex-matched subjects who were ruled out for the 
presence of urological malignancies or other alterations 
by ultrasound scan were recruited into the Control group. 
Routine blood tests and urinalysis, including urine spe-
cific gravity, were measured by laboratory standardized 
methods, and midstream urine samples were collected 
from all participants in sterile 50 mL centrifuge tubes and 
immediately frozen at − 80 °C until analyzed. Besides, ten 
patients from the Before group who underwent transure-
thral resection of bladder tumors (TURBT) were further 
selected into the After group, midstream urine samples 
of these patients were again collected 2–3 weeks after the 
surgery and stored at − 80  °C. When completing sam-
ple collection of three groups, all samples were sent for 
analysis and tested in the same batch. Written informed 
consent was obtained from all participants prior to sam-
ple collection. The study was performed according to the 
Declaration of Helsinki and was approved by the Ethics 
Committee of Quanzhou First Hospital (#2020-226).

Urine microbiome analysis with 16S rDNA sequencing
First, urine samples were thawed on an ice bath, and 
1 mL of each sample was taken for DNA extraction. Total 
bacterial genomic DNA was extracted by the PowerMax 

DNA isolation kit (MoBio Laboratories, Carlsbad, CA, 
USA) according to the manufacturer’s instructions and 
stored at − 20 °C for further analysis. The V4 region of the 
bacterial 16S rRNA genes was amplified using the for-
ward primer 515F (5′- GTG​CCA​GCMGCC​GCG​GTAA-
3′) and the reverse primer 806R (5′-GGA​CTA​CHVGGG​
TWT​CTAAT-3′). Paired-end barcodes of 6-bp for each 
sample were integrated into the TrueSeq adaptors for 
multiplex sequencing. The PCR reaction mix consisted 
of 25 μL of Phusion High-Fidelity PCR Master Mix, 3 μL 
(10 uM) of each Forward and Reverse primer, 10  μL of 
DNA Template, 3  μL of DMSO, and 6  μL of ddH2O. 
Thermal cycling procedures were set as follows: initial 
denaturation at 98  °C for 30  s, followed by 25 cycles of 
denaturation at 98 °C for 15 s, annealing at 58 °C for 15 s, 
and extension at 72 °C for 15 s, with a final extension of 
1 min at 72 °C. Then, the Agencourt AMPure XP Beads 
(Beckman Coulter, Indianapolis, IN) and the PicoGreen 
dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA) were 
used to purify and quantify the PCR amplicons. Finally, 
amplicons were pooled in equal amounts and sequenced 
via the pair-end 2 × 150  bp Illumina NovaSeq6000 
platform.

During the bioinformatic analysis procedure, raw 
sequencing reads that exactly matched the barcodes were 
allocated to the corresponding samples and identified 
as valid sequences. The following low-quality sequences 
were filtered out: sequences that (1) had a length 
of < 150 bp; (2) had average Phred scores of < 20; (3) con-
tained ambiguous bases; (4) contained mononucleotide 
repeats of > 8  bp. Vsearch V2.4.4 was used to assemble 
paired-end reads, and Vsearch v2.15.0 was applied to pick 
the Operational Taxonomic Units(OTUs). The Quantita-
tive Insights Into Microbial Ecology (QIIME2, v2020.6) 
pipeline and R packages (v3.2.0) were utilized to process 
the OTUs and sequencing data. OTU taxonomic classifi-
cation was performed by searching against the SILVA138 
database. OTU-level alpha diversity indices, including 
Chao1 richness, Shannon diversity index, and Simpson 
index, and beta diversity, including UniFrac distance 
metrics, were performed with QIIME2 and visualized 
to determine the structural variation of microbial com-
munities across samples. Ranked abundance curves were 
generated to compare the richness and evenness of OTUs 
for all samples. Linear discriminant analysis effect size 
(LEfSe) was performed to explore differentially abundant 
taxa across groups with the default parameters. Pairwise 
comparisons of differences in the Unifrac distances were 
determined by performing Student’s t-test and the Monte 
Carlo permutation test with 1000 permutations. The var-
iance of microbiota structure among groups was assessed 
by using Permutational multivariate analysis of variance 
(PERMANOVA) with R package “vegan”. Differences in 
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taxa abundances at the phylum, class, order, family, and 
genus levels were calculated by the Kruskal test.

Urine targeted metabolites profiling with UPLC‑MS/MS
Targeted metabolomics was performed using the Q300 
Metabolite Array Kit (Metabo-Profile, Shanghai, China). 
All standard metabolites were purchased from Sigma-
Aldrich (St. Louis, MO, USA), Steraloids Inc. (Newport, 
RI, USA), Thermo-Fisher Scientific (FairLawn, NJ, USA), 
and TRC Chemicals (Toronto, ON, Canada) and were 

accurately weighed and prepared in water, methanol, 
sodium hydroxide solution, or hydrochloric acid solution 
to obtain individual stock solutions with a concentration 
of 5.0 mg/mL. Ultrapure water was obtained from a Mill-
Q Reference system equipped with an LC–MS Pak filter 
(Millipore, Billerica, MA, USA). First, urine samples were 
thawed on an ice-salt bath to minimize sample degrada-
tion. Then, 25  μL of urine was added to a 96-well plate 
and transferred to the Eppendorf epMotion Worksta-
tion (Eppendorf Inc., Humburg, Germany). After adding 
120 μL ice-cold methanol with partial internal standards 

Table 1  Clinicopathological characteristics of all subjects included in this study

BMI: Body mass index; UTI: Urinary tract infection; TNM: Tumor Node Metastasis classification; WHO: World Health Organization; TURBT: Transurethral resection of 
bladder tumors. p was calculated by Student’s t-test or Fisher’s exact test

Before group (n = 23) Control group (n = 9) p-value

Age, y 64.30 ± 11.18 56.44 ± 12.89 0.12

Sex, n (%) 1.00

 Male 20 (86.96%) 8 (88.89%)

 Female 3 (13.04%) 1 (11.11%)

BMI, kg/m2 23.46 ± 3.36 23.81 ± 2.59 0.79

Smoking history, n (%) 0.02

 Smoker 17 (73.91%) 2 (22.22%)

 Nonsmoker 6 (26.09%) 7 (77.78%)

UTI history, n (%) 0.006

 Yes 18 (78.26%) 2 (22.22%)

 No 5 (21.74%) 7 (77.78%)

Urolithiasis, n (%) 1.00

 Yes 3 (13.04%) 1 (11.11%)

 No 20 (86.96%) 8 (88.89%)

Comorbidities, frequencies  –

 Hypertension 15 3

 Diabetes mellitus 3 1

 Cardiovascular diseases 2 0

 Hyperplasia prostate 4 3

 Others 1 1

TNM stage, n (%)  –  –

 0–I 13 (56.52%)

 II 3 (13.04%)

 III 3 (13.04%)

 IV 0

Unknown/Unclassified 4 (17.40%)

WHO grade, n (%)  –  –

 1 6 (26.09%)

 2 6 (26.09%)

 3 7 (30.43%)

 Unknown/Unclassified 4 (17.39%)

Treatment – –

 TURBT 18 (78.26%)

 Laparoscopic radical cystectomy 2 (8.70%)

 Laparoscopic partial cystectomy 3 (13.04)
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to each sample, the plate was centrifuged at 4000g for 
30 min. Next, 30 μL of supernatant was transferred to a 
clean 96-well plate, and 20 μL of freshly prepared deriva-
tive reagents was added to each well, followed by derivat-
ization at 30  °C for 60 min. Finally, the plate was sealed 
for LC–MS analysis after derivatization and dilution. 
For quality control (QC), QC samples were prepared by 
mixing the test samples and injected at regular intervals 
throughout the analytical run. In addition, reagent blank 

samples were processed during the same procedures and 
were also used to wash the column and reduce cumula-
tive matrix effects. Besides, the samples were analyzed 
in group pairs randomly to diminish analytical bias. The 
QC samples, blank samples, and calibrators, consisting of 
a blank sample, a zero sample, and seven concentrations 
of metabolites, were analyzed within the entire analytical 
process.

Fig. 1  a Flowchart of the study design; b participants distribution of three groups
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Targeted metabolites in urine samples were quantitated 
with UPLC-MS/MS system (ACQUITY UPLC-Xevo 
TQ-S, Waters Corp., Milford, MA, USA). The instru-
ment settings can be found in Supplementary Table  1. 
The TMBQ software (v1.0, Metabo-Profile, Shanghai, 
China) was utilized to process the raw data files gener-
ated by UPLC-MS/MS by performing peak integration, 
calibration, and quantitation for each metabolite. Before 
analysis, the metabolomic profile of urine samples was 
normalized to specific gravity as previously described 
[27]. Then, the in-house platform iMAP (v1.0, Metabo-
Profile, Shanghai, China) was applied for statistical anal-
yses. A calibration curve was plotted to yield a linear 
model described as y = ax + b, where the analyte concen-
tration (x) of unknown samples can be calculated from 
this equation. Next, multivariate statistical analyses and 
univariate statistical analyses were performed via statisti-
cal analysis software packages in R studio (http://​cran.r-​
proje​ct.​org/), including principal component analysis 
(PCA), partial least square discriminant analysis (PLS-
DA), orthogonal partial least square discriminant analy-
sis (OPLS-DA), student t-test, Mann Whitney (U-test), 
ANOVA, and Spearman rank correlation analysis. The 
Sankey plot of relationships between microbiota and 

metabolites were performed via MetOrigin [28] (https://​
metor​igin.​met-​bioin​forma​tics.​cn/).

Urine cytokines detection by flow cytometry
First, urine samples were thawed on an ice bath followed 
by centrifugation at 400g for 5 min at 4 °C to remove cel-
lular debris. Then, 50 µL of supernatant of each sample 
was taken to incubate with capture-bead suspensions and 
fluorescent-labeled antibodies with EasyMagPlex Human 
Cytokine 12 Plex Kit (category number: 281601HN, Well-
grow, Shenzhen, China). Meanwhile, a standard curve 
was also prepared according to manufacturer’s instruc-
tions. Next, flow cytometry was performed on DxFLEX 
(Beckman Coulter, Germany) with a termination con-
dition of capturing 120 events at the P4 gate or record-
ing for 600  s. Finally, WellEasy CKAS1.0.2 was applied 
to process the data and calculate the concentrations of 
IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, 
TNF-α, IFN-γ, IFN-α.

Statistical analysis
Normally distributed continuous variables were dis-
played as mean ± standard deviation, and comparisons 
between two groups were calculated with Student’s t-test 
or paired t-test; non-normally distributed continuous 
variables were displayed as median (Q1, Q3), and com-
parisons between two groups were calculated by Mann–
Whitney U test; categorical variables were displayed 
as number (%), and comparisons between two groups 
were calculated by chi-square test. One-way ANOVA 
or Kruskal–Wallis test was used to compare differences 
among three groups. The Delong test [29] was performed 
for comparisons between ROC curves.

Results
A total of twenty-three eligible bladder urothelial car-
cinoma patients and nine non-cancerous participants 
were enrolled in this study. The clinical characteristics 
are displayed in Table 1. The age, sex, BMI, and history 
of urolithiasis were similar between the two groups. The 
proportions of smokers and individuals with a history of 
urinary tract infection (UTI) were significantly higher 
in the Before group than in the Control group (p < 0.05; 
p < 0.01). Most subjects (78%) in the Before group under-
went TURBT. Among these, ten subjects were enrolled 

Table 2  Differences in urine cytokine levels between the Control 
group and the Before group

IL: interleukin; TNF: tumor necrosis factor; IFN: interferon. p was calculated by 
Student’s t-test or Mann–Whitney U test

Before group 
(n = 23)

Control group 
(n = 9)

p-value

IL-1β (pg/mL) 17.86 (4.95, 34.57) 8.30 (4.74, 48.04) 0.66

IL-2 (pg/mL) 1.82 ± 1.09 1.42 ± 0.75 0.32

IL-4 (pg/mL) 9.64 ± 5.64 7.44 ± 5.67 0.34

IL-5 (pg/mL) 10.64 ± 5.34 7.97 ± 3.69 0.18

IL-6 (pg/mL) 12.75 (7.80, 34.52) 6.36 (5.39, 8.26) 0.00

IL-8 (pg/mL) 54.86 (4.53, 160.17) 6.38 (3.44, 23.89) 0.03

IL-10 (pg/mL) 6.00 (4.08, 7.97) 3.39 (2.25, 5.57) 0.02

IL-12p70 (pg/mL) 14.33 (5.11, 22.29) 6.99 (3.42, 28.32) 0.57

IL-17 (pg/mL) 24.77 (9.02, 32.19) 14.17 (10.61, 25.11) 0.49

TNF-α (pg/mL) 5.92 (2.67, 7.71) 3.23 (1.19, 6.35) 0.20

IFN-α (pg/mL) 1.50 (0.64, 2.40) 0.83 (0.59, 1.40) 0.10

IFN-γ (pg/mL) 5.72 ± 3.01 3.81 ± 2.62 0.11

(See figure on next page.)
Fig. 2  Urine microbiome characteristics and association with urine cytokines. a Shannon index and Simpson index (b) indicated a significant 
higher α diversity of urine microbiome in the Before group compared to the Control group (Wilcoxon test p < 0.05; p < 0.01); c Rank-abundance 
curve showed differences in richness and evenness between two groups; d Taxonomy bar plot displayed dominant phyla between two groups; e 
PCoA analysis showed no significant difference in β diversity between the Before group and the Control group (p > 0.05). f LEfSe analysis identified 
a series of feature microbiota for the Before group; g Spearman correlation analysis revealed a positive relationship between the feature microbiota 
and the level of urine cytokines. *p < 0.05; **p < 0.01. IL: interleukin; TNF: tumor necrosis factor; IFN: interferon

http://cran.r-project.org/
http://cran.r-project.org/
https://metorigin.met-bioinformatics.cn/
https://metorigin.met-bioinformatics.cn/
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Fig. 2  (See legend on previous page.)
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in the After group, whose urine samples were collected 
within three weeks after TURBT surgery. The flowchart 
of the study design was displayed in Fig. 1.

Urine cytokine analysis revealed an inflammatory 
environment in bladder cancer patients which cannot be 
reversed by tumor resection
The levels of proinflammatory cytokines, includ-
ing IL-6 and IL-8, were significantly increased in the 
Before group compared to the Control group (p < 0.01; 
p < 0.05), while the anti-inflammatory cytokine, IL-10, 
was also upregulated in the Before group (p < 0.05). 
The levels of other cytokines, such as IL-1β, IL-2, 
IL-4, IL-5, IL-12p70, IL-17, TNFα, IFNα, and IFNγ, 
were similar between the two groups (Table  2). How-
ever, after tumor resection, no remarkable changes in 
cytokine levels were observed in these patients, with 
the IL-6 level in the After group still higher than that 
of Control group (p < 0.05) (Supplementary Table  2 
and 3).

Diversity and abundance of urine microbiota increased 
in the Before group and was positively correlated 
with urine cytokine levels
The α diversity indices of the urine microbiome, includ-
ing the Shannon index and Simpson index, were remark-
ably increased in the Before group (p < 0.05; p < 0.01) 
when compared to the Control group (Fig.  2a, b), but 
the other indexes were not significantly different (Sup-
plementary Fig.  1). Besides, the rank-abundance curve 
indicated a higher richness and evenness of the urine 
microbiome in the Before group (Fig.  2c). Microbiome 
composition analysis showed that phyla Firmicutes and 
Proteobacteria dominated in the Control group, while 
in the Before group, more phyla were observed, includ-
ing phylum Deinococcota, Bacteroidota, Actinobacte-
riota, Fusobacteriota, and others (Fig.  2d). Principal 
Co-ordinates Analysis (PCoA) showed that the difference 
in β diversity between the Before group and the Control 
group was not significant (p > 0.05) (Fig. 2e). LEfSe analy-
sis identified feature microbiota for the Before group, 
including o_Staphylococcales, f_Staphylococcaceae, 

g_Staphylococcus, g_Corynebacterium, f_Corynebac-
teriaceae, g_Micrococcus, g_Methylobacterium_Meth-
ylorubrum, o_Peptostreptococcales_Tissierellales, 
f_Peptostreptococcales_Tissierellales, g_Actinomyces, o_
Actinomycetales, f_Actinomycetaceae, g_Negativicoccus, 
g_Tepidisphaera, o_Tepidisphaerales, c_Phycisphaerae, 
g_Finegoldia, p_Planctomycetota, g_Asticcacaulis, f_
Tepidisphaeraceae, and g_Peptoniphilus (Fig. 2f ). Finally, 
the Spearman correlation analysis showed that the abun-
dance of g_Corynebacterium was positively correlated 
with the levels of IL-6 (r = 0.58, p < 0.01), IL-10 (r = 0.56, 
p < 0.01), and IFNγ (r = 0.35, p < 0.05) (Fig.  2g). Other 
feature microbiota, such as g_Micrococcus (r = 0.38, 
p < 0.05), g_Finegoldia (r = 0.36, p < 0.05), g_Asticcacaulis 
(r = 0.36, p < 0.05), and g_Methylobacterium_Methyloru-
brum (r = 0.40, p < 0.05), were also positively related to 
the IL-6 level.

Urine metabolome differed in the Before group with fatty 
acids and fatty acylcarnitines remarkably upregulated
There were significant differences in metabolic compo-
sition (component1 25.3% p < 0.01; component2 15.9% 
p < 0.001) between the Before group and Control group 
according to PLS-DA model (Fig. 3a). The carbohydrates 
and phenols were significantly higher in the Control 
group (p < 0.05; p < 0.05) (Fig.  3b–d). Univariate analysis 
identified 17 downregulated and 4 upregulated metabo-
lites in the Before group, including arachidonic acid, 
DHA, palmitoylcainitine, and oleylcarnitine (Fig.  3e, f ). 
The metabolites clusters of the two groups with Princi-
pal Component Analysis (PCA) were shown in Fig.  3g, 
but no significant difference was observed (PC1 34%, 
p > 0.05; PC2 8.5%, p > 0.05). Spearman correlation analy-
sis revealed generally positive correlations between the 
feature microbiota and the 4 upregulated metabolites in 
Before group (Fig.  3h). Predicted pathway of the differ-
entially expressed metabolites showed that Glyoxylate 
and dicarboxylate metabolism might be involved in the 
pathogenesis of bladder cancer (Fig. 3i).

Fig. 3  Urine metabolome characteristics and association with urine cytokines. a PLS-DA model showed metabolic discrimination between Before 
and Control groups in Component 1 (25.3%, p < 0.01) and Component 2 (15.9%, p < 0.001); b comparison of the relative abundance of metabolite 
classes between Before group and Control group, which showed that c carbohydrates and d phenols were higher in the Control group (Wilcoxon 
test p < 0.05; p < 0.05); e Z score plot and f volcanic plot of differentially expressed metabolites, a single dot represent a patient in Z score plot 
or a metabolite in volcanic plot; g Metabolites clusters of the Before group and the Control group with PCA analysis; h Spearman correlation 
analysis revealed a close relationship between the metabolites and urine microbiota; i Pathway enrichment analysis of the differentially expressed 
metabolites. *p < 0.05; **p < 0.01. SCFAs: short chain fatty acids; TCA: taurocholic acid; DHA: docosahexaenoic acid; IL: interleukin; TNF: tumor necrosis 
factor; IFN: interferon

(See figure on next page.)
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After tumor removal, fatty acylcarnitines significantly 
decreased but urine microbiota remained similar
As shown in Fig.  4a, the PLS-DA model indicated a 
remarkable variance in urine metabolites between the 
Before group and After group (component1 26.4% 
p < 0.001; component2 21.6% p < 0.01). According to uni-
variate analysis, the proportions of carnitines, in particu-
lar, octanoylcarnitine, acetylcarnitine, and carnitine, were 
greatly reduced after tumor removal (p < 0.05; p < 0.05; 
p < 0.05) (Fig.  4b–d, f–h). Metabolism pathway enrich-
ment analysis of the differentially expressed metabolites 
showed that beta-oxidation of very long-chain fatty acids 
and oxidation of branched-chain fatty acids were associ-
ated with bladder cancers (Fig.  4e). However, there was 
no significant difference in the diversity and composition 
of microbiota between the Before group and After group 
(Supplementary Fig. 2).

The heatmaps of the metabolites of all samples were 
displayed in Supplementary Fig. 3a, b. The Sankey maps 
of the production and inhibition relationships between 
featured microbiota and metabolites were shown in 
Supplementary Fig.  3c–f. The potential metabolic path-
ways of host cells and urine microbiota are integrated in 
Fig.  5a, which included fatty acid transportation, beta-
oxidation, and glyoxylate cycle. Typically, the Before 
group had higher levels of fatty acids, carnitine, and 
fatty acylcarnitines than the others. For example, arachi-
donic acid, DHA, palmitoylcarnitine, and oleylcarnitine 
were more abundant than in the Control group (p < 0.01; 
p < 0.01; p < 0.05; p < 0.05), while carnitine, propionyl-
carnitine, and hexanylcarnitine were higher than After 
group (p < 0.01; p < 0.05; p < 0.05) (Fig.  5b–d). Although 
no significant difference was observed, the levels of cit-
ric acid, isocitric acid, fumaric acid and succinic acid 
were slightly lower in the Before group than in the others 
(Fig. 5e).

Combination of urine cytokine, microbiota and metabolite 
demonstrated excellent diagnostic efficiency in predicting 
bladder cancers from noncancerous population
To find novel biomarkers for prediction bladder cancers, 
ROC curves were plotted for feature microbiota, metabo-
lites and differentially expressed cytokines independently 
and in combination. For urine microbiota, the AUC of 
o_Actinomycetales and f_Actinomycetaceae reached 0.82 

(95% CI 0.64–1.00), with sensitivity of 0.69 and speci-
ficity of 0.67 (Fig. 6a). Regarding urine metabolites, ara-
chidonic acid achieved the highest AUC of 0.85 (95% CI 
0.70–1.00), with a sensitivity of 0.72 and a specificity of 
0.78 (Fig. 6b). For urine cytokines, the largest AUC was 
for IL-6 at 0.82 (95% CI 0.63 ~ 1.02), and at the optimal 
cutoff point, the sensitivity was 0.77, and specificity was 
0.78 (Fig.  6c). When combining either two or three of 
them, the largest AUC reached 0.96 (95% CI 0.86–1.06), 
with a sensitivity of 0.94 and a specificity of 1.00 (Fig. 6d). 
Additional details on the parameters of these ROC curves 
can be found in Supplementary Table 4. However, there 
was no significant differences in the AUC among any of 
the two combinations (Delong test, all p > 0.05) (Table 3).

Discussion
In the present study, we observed an upregulated diver-
sity of the urinary microbiome and inflammatory 
cytokines in patients with bladder cancer compared to 
cancer-free participants. Also, the abundances of fatty 
acids and fatty acylcarnitines increased in bladder can-
cer patients, with the latter declining after tumor resec-
tion. The abundances of certain feature microbiota were 
positively correlated with the levels of inflammatory 
cytokines, fatty acids and fatty acylcarnitines. Functional 
enrichment analysis revealed that the glyoxylate cycle 
and fatty acid metabolism might be potential pathways 
involved in the pathogenesis of bladder cancer. In addi-
tion, the combination of biomarkers from urinary micro-
biome, metabolome, and cytokines, either two or three 
of them, displayed excellent diagnostic efficiency for pre-
dicting bladder cancer. Specifically, the panel of Actino-
mycetaceae + Arachidonic acid + IL-6 showed promise as 
noninvasive screening and diagnostic tools for bladder 
cancer.

The findings on the urinary microbiome in bladder can-
cer have been inconsistent across various studies. Some 
studies [12, 14, 30] reported a significant higher α diver-
sity evenness index in bladder cancer patients compared 
to controls, while others found no significant differences 
[13, 31]. Such discrepancies among studies might be 
attributed to variations in study design, sampling pro-
cedures and sample types. In this study, we observed a 
higher α diversity of urinary microbiome in bladder can-
cer using mid-stream urine samples, which might be the 

(See figure on next page.)
Fig. 4  Urine metabolome changes after tumor resection. a PLS-DA model showed metabolic discrimination after tumor resection in Component 
1 (26.4%, p < 0.001) and Component 2 (21.6%, p < 0.01); b comparison of the relative abundance of metabolite classes between Before group 
and After group; c Z score plot and d volcanic plot of differentially expressed metabolites, a single dot represent a patient in Z score plot 
or a metabolite in volcanic plot; e pathway enrichment of differentially expressed metabolites; f carnitine, g acetylcarnitine, and h octanoylcarnitine 
levels remarkably dropped after tumor resection (paired t test p < 0.05; p < 0.05; p < 0.05). SCFAs: short chain fatty acids
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result of urinary tract infection history of bladder cancer 
patients. At genus level, we found increased abundances 
of Acinetobacter, Actinomyces, Corynebacterium, Micro-
coccus, Staphylococcus, Streptococcus and Tepidomonas 
in bladder cancer urine, which is consistent with several 
other studies [32–34]. The dysbiosis of the local micro-
bial environment has been associated with the develop-
ment of various epithelial cancers [35, 36], suggesting 
that altered urinary microbiome might also play a role 
in the pathogenesis of bladder cancer by inducing a sus-
tained inflammatory microenvironment [37, 38]. It is 
known that microbe- or pathogen-associated molecular 
patterns (MAMPs or PAMPs), including bacteria cell wall 
component lipopolysaccharide (LPS), can be recognized 
by Toll-like receptors (TLRs) and subsequently activate 
inflammation-related signaling pathways, leading to the 
expression of inflammatory cytokines such as IL-6 and 
IL-8. These inflammatory cytokines have been reported 
to be pro-tumorigenic in bladder cancer [39, 40]. In 
addition, genotoxins, including reactive oxygen spe-
cies (ROS) and hydrogen sulfide (H2S), can be released 
from host immune cells and microbes and contribute to 
DNA damage and elicit tumor development [41–44]. In 
the present study, elevated levels of IL-6, IL-8, and IL-10 
were observed in the cancerous group and the IL-6 were 
positively correlated with the relative abundance of the 
feature microbiota. This indicated that a proinflamma-
tory environment induced by the dysbiosis of micro-
biome might potentially result in carcinogenesis in the 
Before group. Moreover, after tumor resection, there was 
no obvious variance in the diversity and component of 
urinary microbiome or the levels of cytokines, indicat-
ing a potential risk for recurrence. It is important to note 
that the urinary microbiome comprises taxa from mul-
tiple sites within the urinary system, including the sur-
face of the urethral and ureteral tract, kidney, or inside 
the tumor [16]. suggesting that tumor-associated micro-
biome only accounted for a small portion of the whole 
urinary microbiome. Therefore, the removal of tumor-
associated microbiome had little effect on the urinary 
microbiome and inflammatory cytokines, indicating that 
urinary microbiome dysbiosis might be a causal factor, 

rather than a consequence, of the development of bladder 
cancer.

It is well-documented that microbiota metabolism 
may also contribute to intensifying the proinflammatory 
microenvironment in the bladder and exacerbating dam-
age by producing genotoxins like acetaldehyde, thereby 
influencing host cell metabolism [45, 46]. Emerging evi-
dence showed that alterations in the profile of urinary 
metabolome and the identification of metabolic biomark-
ers have shown promise for diagnosing bladder cancer 
[21, 22, 25, 47]. However, many of these were cross sec-
tional studies and their findings were largely inconsistent. 
Recently, an animal experiment that integrated unbiased 
metabolomics, lipidomics, and transcriptomics analy-
ses with bladder cancer tissues, suggested that impaired 
fatty acid beta-oxidation (FAO) was pivotal to the pro-
gression of low grade to high grade bladder cancer [48]. 
Consistently, we also found FAO metabolic pathway was 
enriched between pre- and post-operation groups. In 
addition, by comparing metabolites between the healthy 
individuals and bladder cancer patients, we identified 
two significant pathways that might potentially involved 
in the bladder cancer formation, namely glycine, ser-
ine, and threonine metabolism, as well as glyoxylate and 
dicarboxylate metabolism. Glyoxylate cycle, which serves 
as a substitute of the  tricarboxylic acid (TCA) cycle, 
occurs in  plants and  microbes instead of human beings 
due to the absence of key enzymes, malate synthase (MS) 
and isocitrate lyase (ICL) [49–51]. Thus, it is plausible 
that the differentially expressed metabolites between 
the non-cancerous and bladder cancer group might 
be a result of dysbiosis of urinary microbiome. What’s 
more, in certain bacterial and fungi, the glyoxylate cycle 
enables the conversion of acetate and acetyl-CoA, pro-
duced during FAO, into succinate and finally converted 
into carbohydrates [49, 52]. This explained the relatively 
lower levels of succinate and significantly increased lev-
els of fatty acids in the bladder cancer group compared 
to the control group. Therefore, we presume that due to 
the urinary microbiome dysbiosis, the glyoxylate cycle 
was downregulated, leading to an impaired conversion 
of fatty acids into carbohydrates, which ultimately lead 
to a cumulation of fatty acids and decreased level of 

Fig. 5  Potential pathways involved in the pathogenesis of bladder urothelial carcinoma. a Schematic diagram of the fatty acids transportation, 
beta-oxidation, and glyoxylate cycle. Prior to being shuttled into the mitochondria, fatty acids will be activated into fatty acyl-CoA by fatty 
acyl-CoA synthetase, followed by converted to fatty acylcarnitines by the CPT1 located on the outer mitochondrial membrane. Then, CACT 
on the inner membrane shuttles fatty acylcarnitines into the mitochondrial matrix, where the CPT2 on the matrix side of the inner membrane 
reconverts acylcarnitine into acyl-CoA for further oxidation; b fatty acids, c carnitines, d fatty acylcarnitines, and e metabolites in glyoxylate cycle 
changes among patients before and after tumor resection when compared to the Control group (Wilcoxon test *p < 0.05; **p < 0.01). CPT1: 
carnitine palmitoyltransferase I; CPT2: carnitine palmitoyltransferase II; CACT: carnitine-acylcarnitine translocase; DHA: docosahexaenoic acid; TCA: 
tricarboxylic acid cycle. Figure generated by Biorender (https://​biore​nder.​com/)

(See figure on next page.)

https://biorender.com/
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carbohydrates in the urine of bladder cancer patients. 
On the other hand, fatty acids are important sources for 
energy production and membrane biogenesis in tumor 
cells, and abnormal FAO is involved in various aspects 
of carcinogenesis [53, 54]. Before oxidation, fatty acids 
need to be shuttled into mitochondria (very long chain 
fatty acids shortened in peroxisome first) with collabora-
tion of a series of enzymes, including carnitine palmitoyl-
transferase I (CPT1) and carnitine palmitoyltransferase 
II (CPT2) that converts and reconverts fatty acyl-CoA 
and fatty acylcarnitines (Fig. 5a). In the present study, the 

concentrations of carnitine and fatty acylcarnitines in the 
Before group were remarkably elevated but declined after 
tumor removal, suggesting an abnormality of FAO in 
bladder cancer cells. These suggested a potential connec-
tion between abnormal microbial metabolism and tumor 
metabolism, possibly mediated by fatty acids metabolism.

Finally, the biomarkers identified in this study were uti-
lized to perform ROC curves to assess their potential as 
noninvasive diagnostic tools for bladder cancer. In fact, 
the diagnostic performance of metabolites in detect-
ing bladder cancer has been studied extensively, with 

Fig. 6  ROC curves of a the feature microbiota, b differentially expressed metabolites, c upregulated cytokines, and d the combinations 
of biomarkers with largest AUC value for prediction bladder urothelial cancer. ROC: receiver operating characteristic curve; AUC: area 
under the curve; DHA: docosahexaenoic acid; IL: interleukin; TNF: tumor necrosis factor; IFN: interferon

Table 3  Comparisons of ROC curves of the combined markers

SE: standard error; CI: confidence interval; IL: interleukin. p was calculated by Delong test

Curve 1 Curve 2 SE 95% CI Z value p-value

Actinomycetaceae + Arachidonic acid Actinomycetaceae + Arachidonic acid + IL-6 0.03 − 0.05 to 0.10 0.673 0.50

Actinomycetaceae + Arachidonic acid Actinomycetaceae + IL-6 0.05 − 0.09 to 0.11 0.123 0.90

Actinomycetaceae + Arachidonic acid Arachidonic acid + IL-6 0.05 − 0.09 to 0.09 0.000 1.00

Actinomycetaceae + IL-6 Actinomycetaceae + Arachidonic acid + IL-6 0.02 − 0.01 to 0.08 1.299 0.19

Actinomycetaceae + IL-6 Arachidonic acid + IL-6 0.03 − 0.06 to 0.07 0.178 0.85

Arachidonic_acid + IL-6 Actinomycetaceae + Arachidonic acid + IL-6 0.03 − 0.03 to 0.08 0.833 0.40
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the sensitivity ranging from 27 to 100%, while specific-
ity between 43 and 96% [55]. Our results showed that 
the biomarker panels exhibited superior diagnostic per-
formance, achieving sensitivity levels between 86 to 94% 
and specificity ranging from 89 to 100% in distinguishing 
bladder cancer patients from non-cancerous individuals. 
However, further validation in a large cohort is necessary 
to confirm these findings.

Limitations are inevitable in this study. First, the sam-
ple size is relatively small with an obvious difference 
between the bladder cancer and the control groups. Sec-
ond, a validation cohort is necessary to confirm the dis-
tinguishing performance of the biomarker panel. Finally, 
this study only presented observations and assumptions 
of the underlying network involved in this phenomenon. 
Further comprehensive experiments are needed to sub-
stantiate these findings.

Conclusions
These findings demonstrated a close relationship between 
urinary microbiome, inflammation environment, and 
perturbed fatty acid metabolism in bladder cancer, which 
can throw light on the exploration of potential pathogen-
esis and development of noninvasive diagnostic tools as 
well as novel targets for bladder cancer.
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