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Abstract 

Metastatic breast cancer (mBC) poses a significant threat to women’s health and is a major cause of malignant neo-
plasms in women. Human epidermal growth factor receptor (HER)3, an integral member of the ErbB/HER receptor 
tyrosine kinase family, is a crucial activator of the phosphoinositide-3 kinase/protein kinase B signaling pathway. HER3 
overexpression significantly contributes to the development of resistance to drugs targeting other HER receptors, 
such as HER2 and epidermal growth factor receptors, and plays a crucial role in the onset and progression of mBC. 
Recently, numerous HER3-targeted therapeutic agents, such as monoclonal antibodies (mAbs), bispecific antibod-
ies (bAbs), and antibody–drug conjugates (ADCs), have emerged. However, the efficacy of HER3-targeted mAbs 
and bAbs is limited when used individually, and their combination may result in toxic adverse effects. On the other 
hand, ADCs are cytotoxic to cancer cells and can bind to target cells through antibodies, which highlights their use 
in targeted HER3 therapy for mBC. This review provides an overview of recent advancements in HER3 research, histori-
cal initiatives, and innovative approaches in targeted HER3 therapy for metastatic breast cancer. Evaluating the advan-
tages and disadvantages of current methods may yield valuable insights and lessons.
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Introduction
The ErbB family (ErbB1–ErbB4; also known as epidermal 
growth factor receptor [EGFR], human EGFR [HER]2, 
HER3, and HER4) comprises receptor tyrosine kinases 
(RTKs) [1]. Through signal transduction, the ErbB fam-
ily supports cellular activities on which cell survival 
and function depend [2]. Each receptor comprises an 

extracellular ligand–binding domain, a single hydropho-
bic transmembrane region, and an intracellular segment 
with a tyrosine kinase domain [3]. EGFR, HER3, and 
HER4 ligands are currently well-studied [4] (Fig. 1). The 
downstream signaling pathways activated by ErbB fam-
ily members are interconnected and overlapping [5–8]. 
The two main representative signaling pathways are the 
phosphatidylinositol-3 kinase (PI3K)-protein kinase B 
(AKT)-mammalian target of rapamycin (mTOR) and 
mitogen-activated protein kinase (MAPK) pathways [5, 6, 
9, 10]. Additionally, there is the phospholipase Cγ–pro-
tein kinase C [11, 12], and Janus kinase (JAK)2-signal 
transducer, and activator of transcription 3 pathways [13, 
14]. Aberrant activation of EGFR and HER2 in cancer 
cells can be induced by numerous mechanisms, includ-
ing gene amplification, point mutations, deletions, and 
autocrine ligand-receptor stimulations [8, 15–18]. Alter-
ations in these genes lead to the abnormal activation of 
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EGFR and HER2 signaling, independent of ligand-recep-
tor stimulation, resulting in tumorigenesis, growth, and 
progression. HER2, located on chromosome 17q12.1, was 
first identified as a novel gene from rat neuroblastomas 
that transformed NIH 3T3 cells [19]. King et al. reported 
that DNA from human breast carcinoma amplifies this 
gene [20]. HER2 encodes a 185-kDa transmembrane 
protein [21] that phosphorylates tyrosine residues in the 
protein kinase domain within the cell through dimeriza-
tion, activating downstream oncogenic signals [22] and 
leading to aggressive tumor growth. HER2 amplification 
is the primary mechanism of HER2 receptor overexpres-
sion. The overexpression/amplification of HER2 in a vari-
ety of tumors is the main driver of the occurrence and 
progression of some breast cancers. Of note, HER2 pro-
tein overexpression may also be found in the absence of 
gene amplification [23]. In addition to amplification and 
overexpression, HER2 increases kinase activity through 
missense mutations and in-frame insertions, contribut-
ing to tumorigenesis [24–27]. In addition, HER2 gene 
fusion is also a potential therapeutic target [28]. For 
example, NOS-HER2 and ZNF207-HER2 fusions have 
been characterized and found to undergo autophospho-
rylation and cell transformation [29]. Owing to its limited 

kinase activity [30–33], the oncogenic function of HER3 
is mainly mediated through its overexpression and inter-
action with EGFR or HER2. The role of HER4 in tumo-
rigenesis and progression is inconsistent because it has 
multiple isoforms, such as oncogenic and tumor-suppres-
sor isoforms, each with different activities [34, 35]. HER3 
is overexpressed in various cancers (e.g., breast, colorec-
tal, bladder, melanoma, lung) [36]. Breast cancer (BC) is a 
prevalent cancer, with 2.3 million new cases and 680,000 
deaths reported in the year 2020 [37]. Metastasis, the 
process by which cancer cells spread, is responsible for 
mortality associated with breast cancer. Furthermore, a 
significant proportion of initial-stage cases, ranging from 
20 to 30%, advance, resulting in poor survival rates in 
metastatic BC [38]. HER3 expression is high in mBC. Pri-
mary tumors have 30% HER3 expression, which increases 
to 60% in mBC [39]. HER3 is overexpressed in various 
cancers, including breast, ovarian, colon, and gastric 
[36, 40]. However, compared to the broad representa-
tion of EGFR mutations, HER3 mutations are rare [41]. 
Although HER3 itself does not cause tumorigenesis, the 
HER2:HER3 heterodimer has the highest transforming 
capacity among all possible EGFR family dimers, and the 
superior oncogenic capacity of the dimer makes HER3 

Fig. 1 Structure of ErbB receptors, ligands, and conformational changes upon ligand binding. A The ErbB family (ErbB1-ErbB4; also referred 
to as EGFR, HER2, HER3, and HER4) comprises receptor tyrosine kinases (RTKs) with similar structures, each consisting of an extracellular domain 
(ECD), a single hydrophobic transmembrane region, and an intracellular domain. The intracellular domain includes a juxtamembrane region, 
a tyrosine kinase domain, and a tyrosine-rich carboxy-terminal tail. The extracellular domain is divided into four subdomains, designated 
as Subdomains I-IV. EGFR, HER3, and HER4 exist in a tethered ("closed") conformation in the absence of ligands, preventing the dimerization domain 
from interacting with the corresponding Erbb components. HER2, lacking a known ligand, exists in an active extended ("open") conformation 
and can readily dimerize permanently. Among EGFR ligands, EGF, transforming growth factor-alpha (TGFα), amphiregulin (AREG), and epigen 
(EPGN) interact exclusively with EGFR, whereas epiregulin (EREG), heparin-binding EGF-like growth factor (HB-EGF), and betacellulin (BTC) can 
also bind and activate HER4. A family of EGF-related ligands, the neuregulins (NRGs; composed of NRG1-NRG4), binds to HER3 and HER4. HER2 does 
not directly bind these EGF-related ligands. HER3 has an impaired tyrosine kinase domain and exhibits reduced kinase activity. Therefore, to activate 
and facilitate signaling through HER2 and HER3, heterodimerization with other ErbB family members is required. B Ligand binding to ErbB receptors 
induces a conformational change in the molecular fold of the dimerization domain, a step necessary for dimer formation and the functional 
activation of EGFR, ERBB3, and ERBB4. The interaction in the kinase domains is asymmetrical, where the amino-terminal lobe of one tyrosine kinase 
interacts with the carboxy-terminal lobe of another
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critical for HER2-mediated tumorigenesis in breast can-
cer [42, 43]. In addition, inhibition of HER3 expression 
reversed HER2-dependent tumorigenesis in a trans-
genic breast tumor model [44]. In breast cancer cell lines, 
HER3 expression was shown to be essential for maintain-
ing cell viability, whereas EGFR was dispensable. In addi-
tion, compared with the broad representation of EGFR 
mutation, the data rarely HER3 mutations. In breast 
cancer, several HER3 mutations (F94L, G284R, D297Y, 
T355I, and E1261A) have been shown to have functional 
properties [45]. Cote et al. describe three germ line ErbB3 
single nucleotide polymorphisms (SNPs), these SNPs 
cause dorsey his racing, carboplatin chemotherapy drugs 
and by ErbB2 positive breast cancer patients treated bead 
sheet resistance disease-free survival rate is poor [46]. At 
present, most studies use the combination of cytoplas-
mic and membrane HER3 staining to determine HER3 
expression. However, a pooled analysis of studies assess-
ing HER3 in the cytoplasm or membranes did not show 
a significant difference. To address this knowledge gap, a 
consistent and reproducible method to evaluate HER3 is 
warranted to help better identify patients who are more 
responsive to the anti-HER3 therapies that are currently 
being evaluated clinically [47].

HER3 is a 180-kDa protein derived from the ERBB3 
gene on chromosome 12q13 [1]. It consists of an intra-
cellular domain containing a juxtamembrane region, 
a tyrosine kinase domain, a tyrosine-rich carboxy-ter-
minal tail, an extracellular domain (ECD), and a trans-
membrane domain. The ECD contains four subdomains 
labeled I through IV, with subdomains II and IV being 
rich in cysteines. Subdomain II holds a crucial dimeriza-
tion arm for the interaction of HER3 with other recep-
tors [48] (Fig.  2). Unlike other ErbB family members, 
HER3’s ligands include neuregulins (NRGs), specifically 
NRG-1 and NRG-2, which are subsets of EGF ligands 
[49]. Intramolecular interactions keep subdomains II 
and IV in an inactive conformation without ligands. 
Ligand binding alters the ECD structure, resulting in an 
open conformation [50] and exposing the dimerization 
arm in subdomain II, allowing HER3 to form heterodi-
mers with ErbB RTK monomers. The kinase domains 
engage asymmetrically, leading to transphosphorylation 
[22] (Fig. 2). Reports indicate that HER2 and HER3 pair-
ing requires NRGs [51]. These heterodimers have potent 
transforming potential, essential for HER2-driven tumo-
rigenesis. HER3 overexpression alone lacks the carci-
nogenic effect seen in other ErbB members [41]. It can 
also heterodimerize with non-ErbB receptors such as 
MET and FGFR2 [52, 53]. The kinase domain of HER3 
has an inactive conformation of a key tyrosine residue, 
which results in approximately 1,000 times lower tyrosine 
kinase activity compared to EGFR [54]. However, HER2 

(and/or EGFR) heterodimers amplify signaling, providing 
a potent stimulus for human breast cancer [49]. HER3 
can bind to the p85 subunit of PI3K, triggering the acti-
vation of PI3K/AKT signaling, which is crucial for tumor 
cell survival [55]. Additionally, HER3 activates pathways, 
including the MAPK cascade, JAK, and the oncogene 
c-Src (SRC) [56] (Fig. 2).

Increased HER3 expression reduces the effectiveness 
of EGFR-targeted treatment by causing non-EGFR het-
erodimer formation, leading to EGFR-targeted tyros-
ine kinase inhibitor (TKI) resistance [55]. Studies have 
shown that hepatocyte growth factor receptor (MET) 
amplification increases gefitinib resistance by increasing 
HER3/PI3K signaling. MET amplification was detected 
in 22% of patients with lung cancer resistant to gefitinib 
or erlotinib [52]. In addition, HER3 signaling is associ-
ated with resistance to the EGFR-targeted TKIs gefitinib 
in head and neck squamous cell carcinoma (HNSCC) 
and BC [57, 58]. Lapatinib, a dual TKI targeting EGFR 
and HER2, induces feedback upregulation at the mRNA 
and protein levels in BC cell lines, and HER3 knockdown 
restores the drug sensitivity of lapatinib-resistant cells 
[59]. Lapatinib-resistant cells in BC cell lines depend on 
the heregulin (HRG)-driven HER3-EGFR-PI3K-PDK1 
signaling axis [60]. Another study showed that lapatinib 
could induce symmetric HER2:HER3 dimers, which may 
promote tumor cell proliferation [61] (Table 1). In EGFR–
TKI–treated BC, HER3 is related to gefitinib resistance 
[58], whereas cetuximab/panitumumab-resistant patients 
with BC show increased EGFR: HER3 heterodimerization 
[62]. Patritumab effectively counteracts the resistance to 
EGFR inhibitors caused by NRG1, with the levels of cir-
culating NRG1 being a more reliable indicator of its effi-
ciency compared to the expression of HER3 mRNA [63]. 
HER3 overexpression hampers HER2-targeted therapies, 
as observed in trastuzumab resistance in HER2-positive 
mBC [63]. NRG1 stimulation induces HER3 overex-
pression, triggering PI3K/AKT and SRC pathways and 
HER2–IGF–1R heterotrimer formation, underpinning 
trastuzumab resistance [64]. Trastuzumab sensitivity is 
restored by HER3 expression reduction, while hormone 
and chemotherapy resistance is conferred by high HER3 
expression. In HER2-positive BC, HER3 overexpression 
results in tamoxifen resistance [65] and is associated 
with resistance to fulvestrant [66] and paclitaxel, whereas 
inhibiting HER3 overexpression restores drug sensitiv-
ity [67]. Targeted HER3 therapies involving inhibition of 
HER3 kinase activity, blocking heterodimerization, and 
using monoclonal antibodies such as seribantumab, lum-
retuzumab, elgemtumab, and patritumab are being devel-
oped to treat mBC. However, the effectiveness of single 
treatments is limited. Combining multiple therapies, such 
as elgemtumab, trastuzumab, and alpelisib, may lead to 
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harmful adverse effects [67]. However, monoclonal/dual-
specificity antibodies have modest mBC efficacy alone or 
when used in combination. Consequently, the targeted 
distribution of the cytotoxic payload has been achieved 

by using antibody–drug conjugates (ADCs). With its 
ability to cause immunological stimulation, antitumor 
response, and cell damage, patritumab deruxtecan (U3-
1402) shows promise as a treatment for late-stage breast 

Fig. 2 HER3 receptor and its signaling cascade. A The monomeric inactive form of HER3 comprises the extracellular, transmembrane, 
and intracellular regions. The extracellular region comprises subdomains I-IV, with subdomains I and III responsible for ligand binding 
and subdomain II containing a dimerization arm. The intracellular region is composed of the juxtamembrane domain, tyrosine kinase domain, 
and C-terminal tail with phosphorylation sites. B Upon NRG binding to subdomain I and III, a conformational change occurs in the extracellular 
region, exposing the dimerization arm. This leads to heterodimerization between HER3 and EGFR/HER2 receptors, subsequently resulting 
in the phosphorylation of HER3 C-terminal tail and the activation of downstream intracellular signaling cascades, including PI3K/AKT, MAPK, JAK/
STAT, SRC, and PLCγ/PKC. These signaling pathways collectively promote cell survival, proliferation, migration, and growth. The abbreviations used 
are as follows: AKT (protein kinase B), GDP (guanosine diphosphate), GRB2 (growth factor receptor-bound protein 2), JAK (Janus kinase), MAPK 
(mitogen-activated protein kinase), MEK (mitogen-activated extracellular signal-regulated kinase), SOS (son of sevenless), STAT (signal transducer 
and activator of transcription)
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cancer. ADCs present a viable way to improve mBC care 
and increase survival. Overcoming resistance, lowering 
toxicity, and increasing tumor cell absorption are among 
the difficulties. Finding predictive biomarkers is therefore 
essential when selecting patients.

Targeting HER3 to treat mBC
The prevailing strategies for HER3-targeted therapy in 
mBC involve the use of antibodies targeting the extracel-
lular domain of HER3, as detailed in the following sec-
tions. Figure  3 and Table  2 briefly outline the current 
status of drugs in preclinical and clinical trials for HER3-
targeted therapy in mBC.

Monoclonal antibodies
Monoclonal antibodies (MAbs) targeting HER3 have 
been engineered to disrupt receptor-ligand binding or 
hinder heterodimerization [68]. Preclinical and clinical 
studies have been conducted on several mAbs targeting 
HER3, some of which have advanced to phase 1 trials to 
evaluate their safety, tolerability, and preliminary efficacy 

in solid tumors. Some mAbs have progressed to phase 2 
and 3 trials, such as seribantumab, lumretuzumab, and 
patritumab.

Lumretuzumab (RG7116, RO5479599 GE-huMab-
HER3) is a humanized glycoengineered immunoglobu-
lin (Ig) G1 targeting subdomain I of the HER3 ECD [69]. 
This antibody prevents the attachment of NRG to the 
HER3 receptor, thereby impeding the formation of recep-
tor heterodimers and activating the immune system to 
induce lethal effects. Lumretuzumab further reduces 
HER3 expression. In a xenograft model of ER + /HER3 + /
HER2–low human BC, the combination of lumretu-
zumab and pertuzumab demonstrated efficacy, leading to 
tumor regression [70].

Seribantumab (MM-121, SAR256212) is a human 
IgG2 mAb that competes with NRG for HER3 binding, 
obstructing dimerization and inhibiting HRG-mediated 
downstream PI3K/AKT signaling [71]. Seribantumab 
also induces HER3 internalization and degradation. In 
combination with trastuzumab, seribantumab inhibits 
the growth of HER2 + mBC cells. MM-121 also exhibits 

Table 1 A summary of HER3 overexpression and drug resistance mechanisms

Drug type Drug name Targets Conclusion References

Tyrosine kinase inhibitors Gefitinib EGFR In breast cancer cell lines, the signaling mediated by HER2:HER3 is associ-
ated with resistance to gefitinib, as HER3 and the PI(3)K/Akt pathway are 
not effectively inhibited by gefitinib

[58]

Lapatinib EGFR
HER2

In breast cancer cell lines, lapatinib-resistant cells rely on the HER3-EGFR-
PI3K-PDK1 signaling axis driven by heregulin (HRG)

[60]

Studies indicate that treatment with lapatinib can induce a feedback 
upregulation of mRNA and protein levels in breast cancer cell lines, 
and knockdown of HER3 can restore drug sensitivity in lapatinib-resistant 
cells

[59]

Research demonstrates that lapatinib can induce symmetric HER2:HER3 
dimers, which may promote tumor cell proliferation

[61]

The blocking Abs Trastuzumab HER2 Two studies suggest that in breast cancer cell lines, bypass activation 
of PI3K/AKT and SRC driven by HER3 is a primary mechanism of therapy 
resistance

[64, 145]

Another study indicates that the formation of heterotrimeric complexes 
of HER2, HER3, and IGF1R is a principal inducer of trastuzumab resistance 
driven by AKT and SRC in breast cancer cells

[56]

Hormonal therapy Tamoxifen ER HER3 is critical in the phosphorylation of HER2 in breast cancer cells, 
and overexpression of HER3 can lead to tamoxifen resistance

[146]

Studies indicate that patients with breast cancer co-expressing HER2 
and HER3 are more likely to develop tamoxifen resistance

[147, 148]

Fulvestrant ER Increased activity of EGFR, HER2, and HER3 is associated with resistance 
to the ER agonist fulvestrant

[66]

Treatment with fulvestrant promotes the expression and phosphorylation 
of HER3 in breast cancer cells, underlying the mechanism of resistance 
to fulvestrant in breast cancer

[149]

Chemotherapy Paclitaxel – In HER2-positive breast cancer cell lines, resistance to paclitaxel is associ-
ated with upregulation of HER3 and increased levels of Survivin

[67]

Chemotherapy Paclitaxel
Doxorubicin
5-fluorouracil Etoposide
Camptothecin

– In breast cancer cell lines, resistance to various chemotherapeutic agents 
such as 5-fluorouracil, paclitaxel, camptothecin, and etoposide is asso-
ciated with co-expression of HER2/HER3 and the PI3K/AKT signaling 
pathway

[150]
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enhanced antitumor activity in HER2 + mBC frameworks 
resistant to paclitaxel and trastuzumab [72]. The phase 
2 investigation of seribantumab and exemestane in hor-
mone receptor-positive HER2-negative patients with 
mBC highlights the therapeutic advantages of the com-
bination in the HRG-high subgroup in the context of bio-
marker assessment [73].

AMG-888, also known as U3-1287, is a human IgG1 
mAb that completely inhibits ligand binding to HER3, 
causing receptor internalization and destruction. Patients 
with HER2-positive mBC may have a prolonged over-
all survival with patritumab [74]. A phase 1 study has 
reported that the combination of patritumab with pacli-
taxel and trastuzumab in patients with HER2-positive 
mBC exhibited controllable toxicity and promising initial 
activity [75].

Elgemtumab (LJM716) is a human IgG1 mAb that 
binds to an epitope between the HER3 ECD subdomains 
II and IV, leading to conformation closure and blocking 

receptor activation [76]. Elgemtumab combined with 
trastuzumab and lapatinib enhanced the survival of 
HER2-positive BC xenograft mice [77]. Elgemtumab, 
however, showed significant gastrointestinal toxic-
ity when combined with trastuzumab and alpelisib in 
patients with PI3K-mutant HER2-positive mBC, indi-
cating that combination therapy targeting this pathway 
should be used with caution [78].

ISU104 is an antibody that targets HER3 and binds 
to subdomain III. ISU104 suppresses HER3, prevents 
receptor attachment to NRG, inhibits receptor heter-
odimerization with other HER receptors, and inactivates 
downstream signaling. In xenograft BC models, ISU104 
showed more than 70% suppression of tumor develop-
ment [79].

CDX-3379 (KTN3379) is a human mAb (IgG1λ) that 
binds to an exclusive epitope between subdomains II and 
III with high affinity, stabilizing HER3 in an inactive state. 
Therefore, the antibody inhibits both ligand-dependent 

Fig. 3 The current status quo of HER3-targeted therapies for MBC. Monoclonals antibodies (mAbs), bispecific antibodies (bAbs), antibody–drug 
conjugate (ADC) and other therapies such as antibody-derived molecules
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Table 2 A summary of the HER3-targeted therapies for MBC under evaluation in preclinical and clinical trials

Drug type Drug name Mechanism of action Developer Highest 
clinical trial 
phase

Key trial numbers References

Antibodies Lumretuzumab 
(R05479599, RG7116)

HER3 mAb Genentech/Roche PhWase Ib/II NCT01918254
NCT02204345
NCT01482377

[69, 70]

Seribantumab (MM-
121)

HER3 mAb Merrimack
Pharmaceuticals/
Elevation oncology

Phase II NCT00994123

NCT01209195 [71–73]

NCT01451632

NCT04383210

NCT02134015

AMG-888, (U3-1287) HER3 mAb Daiichi sankyo Phase III NCT02134015 [74, 75, 85]

NCT01211483

NCT02143622

Elgemtumab (LJM716) HER3 mAb Morphosys/novartis Phase I/II NCT01602406 [76–78]

NCT02167854

ISU104 HER3 mAb ISU Abxis Phase I NCT03552406 [79]

CDX-3379 (KTN3379) HER3 mAb Celldex therapeutics Phase II NCT02473731
NCT02014909

[80]

AV-203 HER3 mAb Aveo oncology Phase I NCT01603979 [81, 82]

REGN1400 HER3 mAb Regeneron
Pharmaceutials

Phase I NCT01727869 [83, 84]

1F9E5 HER3 mAb – Preclinical – [86]

TAMHER3 HER3 mAb – Preclinical – [87]

SGP1 HER3 mAb – Preclinical – [88–90]

Ab1-Ab7 HER3 mAb – Preclinical – [91]

IgG95 HER3mAb – Preclinical – [92]

huHER3-8 HER3 mAb – Preclinical – [93]

ADCs U3-1402 HER3-ADC Daiichi sankyo Phase II NCT04479436
NCT03260491
NCT02980341

[78, 113, 114]

EVA20/MMAF HER3-ADC Mediapharma Preclinical – [115]

EV20-Sap HER3-ADC Mediapharma Preclinical – [115]

Bi-specific antibodies Zenocutuzumab
(MCLA-128)

HER2/HER3 bispecific Merus Phase I/II NCT02912949 [94, 95]

MM-111 HER2/HER3 bispecific Merrimack
Pharmaceuticals

Phase I NCT01097460
NCT00911898
NCT01304784

[96, 97]

Istiratumab(MM-141) HER3/IGF1R bispecific Merrimack
Pharmaceuticals

Phase II NCT01733004
NCT02538627
NCT02399137

[98]

Duligotuzumab
(MEHD7954A)

EGFR/HER3 bispecific Genetech/Roche Phase II NCT01911598
NCT01986166

[62, 99–107]

Tab6 HER2/HER3 bispecific – Preclinical – [108]

Antisense olihonu-
cleotide

EZN-3920 HER3 mRNA antago-
nist

Enzon Pharmaceuticals Preclinical – [118]

micro-RNAs miR-450b-3p Inhibits HER3 expres-
sion

– Preclinical – [119–121]

miR-205 Inhibits HER3 expres-
sion

– Preclinical –

Antibody-derived 
molecules

FL518, CRTB6 HER3/EGFR bAb Preclinical [116]

HER2/VEFR bAb – –

mixture
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and ligand-independent HER3 activation. CDX-3379 
shows therapeutic effects in HER2-positive BC xenograft 
tumor models [80].

AV-203 (CAN017) is a human IgG1 mAb that inhibits 
the binding of HER3 to NRG. It has demonstrated tumor 
growth inhibition in breast cancer (BC) xenograft mod-
els [81]. It was discovered to inhibit tumor growth in BC 
xenograft frameworks. A phase 1 clinical trial reported 
AV-203 to be safe for use in patients with metastatic 
breast cancer (mBC) or advanced BC [82].

REGN1400, a fully human IgG mAb, effectively blocks 
the interaction between HER3 and NRG, hindering the 
proliferation of BC cells. REGN1400 shows promis-
ing efficacy in inhibiting tumor growth when admin-
istered in combination with EGFR or HER2-targeted 
antibodies [83]. Phase I trials studying the combination 
of REGN1400 with erlotinib or cetuximab have reported 
satisfactory tolerability [84].

Several drugs show inhibitory effects on the growth 
and proliferation of tumor cells in preclinical studies. For 
example, the first fully humanized HER3 mAb U3-1287 
can inhibit tumor growth in a BC xenotransplantation 
model [85]. The anti-HER3 mAb 1F9E5 has shown simi-
lar inhibitory effects on cell proliferation to trastuzumab 
and is more effective than other anti-HER3 monoclonal 
antibodies alone or in combination with trastuzumab 
[86]. The TAMHER3 construct created by Anna Orlova 
et  al. can inhibit the growth of HER3-expressing xeno-
graft tumors and shows good tolerance in mice without 
adverse events or weight loss [87].

SGP1 is an antibody that targets HER3 and competes 
with NRG for binding to the HER3 receptor [88]. This 
antibody effectively inhibits NRG-induced tumor cell 
growth and shows an enhanced growth-inhibiting effect 
in mBC cells when combined with trastuzumab [89]. 
SGP1, as monotherapy or in combination with lapatinib, 
inhibits the proliferation of lapatinib-resistant HER2-
positive mBC cells [90].

Okita et  al. produced rat mAbs (Ab1–Ab7) targeting 
HER3, which could induce HER3 internalization and 
inhibit NRG binding, HER3 phosphorylation, and cell 
growth. The combination of Ab4 and erlotinib shows 

promising therapeutic effects in treating HER2-positive 
mBC [91].

Turowec et al. developed IgG95, which blocks the bind-
ing of ligands to the HER3 receptor, leading to the down-
regulation of HER3 expression. This antibody inhibits the 
proliferation of HER2-amplified mBC cells [92].

The mouse anti-HER3 antibody, HER3-8, demonstrates 
efficacy in inhibiting HER2:HER3 dimerization and 
decreasing the proliferation of BC cell lines stimulated by 
ligands. Accordingly, efforts have been made to human-
ize the HER3-8 antibody, and the product has been desig-
nated as huHER3-8 [93].

Bispecific antibodies
In clinical studies, bivalent antibodies (BAbs) target-
ing two antigens simultaneously have been investigated 
to address the limitations and resistance mechanisms 
of single-agent HER3-targeted mAbs. Zenocutuzumab 
(MCLA-128) is an IgG1 bAb that targets both HER2 
(subdomain I) and HER3 (subdomain III). Zenocutu-
zumab docks onto HER2, preventing ligands from bind-
ing to HER3 and disrupting HER2-HER3 heterodimers, 
thereby inhibiting oncogenic signaling. This bAb has 
demonstrated efficacy in NRG1 fusion-positive mBC that 
is resistant to chemotherapy [94]. Zenocutuzumab is cur-
rently in phase 1/2 clinical trials, showing favorable toler-
ability, safety, and anti-cancer efficacy [95].

MM-111 is a bAb targeting both HER2 and HER3. Its 
anti-HER2 arm positions the bAb within HER2 + tumor 
cells, while its anti-HER3 arm blocks NRG binding with 
HER3 [96]. Preclinical research has demonstrated that 
MM-111, in combination with trastuzumab or lapatinib, 
increases anti-cancer activity in HER2-positive mBC cells 
[97]. A clinical investigation found that the combination 
of MM-111 with standard HER2-targeted treatment and 
chemotherapy was safe [96].

Istiratumab (MM-141) targets both HER3 and IGF-1R. 
It entered phase 2 trials for pancreatic cancer [98] but has 
not yet entered clinical trials for BC.

Duligotuzumab (MEDH7945A) is a humanized IgG1 
bAb targeting EGFR and HER3. It binds to the extra-
cellular domains of EGFR or HER3, blocks ligand 
binding, inhibits signaling pathways, and enhances 

Table 2 (continued)

Drug type Drug name Mechanism of action Developer Highest 
clinical trial 
phase

Key trial numbers References

Antibody-derived 
molecules

TsAb2v2, TsAb3v1 RGFR/HER3/cMet/
IGFIR

– Preclinical – [117]

mAb mixture

HER3 vaccine Ad-HER3,Ad-HER3-FL HER3 vaccine – Preclinical – [128–130]
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antibody-dependent cell-mediated cytotoxicity [99, 100]. 
Several clinical trials (phase 1/2) are evaluating duli-
gotuzumab and have generally reported limited activ-
ity [101–105]. In preclinical trials, duligotuzumab has 
shown efficacy in erlotinib- and cetuximab-resistance 
models in HNSCC and non-small cell lung cancer [106] 
or when used in combination with cisplatin [107]. It has 
also shown efficacy in combination with AKT and PI3K 
inhibitors in triple-negative breast cancer (TNBC) [62].

TAb6, also known as TA, is a bispecific antibody 
explicitly targeting both HER2 and HER3. It is produced 
by combining the anti-HER2 antibody trastuzumab with 
HER3-specific single-chain fragment variations [108]. 
However, treatment with TAb6 increases the prolifera-
tion of HER2-positive mBC cell lines [108].

Antibody–drug conjugates
ADCs are a novel class of anti-cancer drugs with sig-
nificant potential in HER3-targeted therapy. ADCs are 
composed of targeted mAbs that are chemically linked to 
cytotoxic drugs, either cleavable or non-cleavable [109]. 
The mAb component of ADCs binds to specific antigens 
on the surface of cancer cells, resulting in the internaliza-
tion of ADCs [110]. ADCs are intended to be transported 
to lysosomes after internalization, where they release the 
cytotoxic drug in a proteolytic or acidic environment to 
cause cell death. ADCs not only specifically target can-
cer cells but also cause the bystander effect, which is the 
elimination of surrounding cells regardless of how much 
the target antigen is expressed. This effect may improve 
the effectiveness of ADCs, but concerns regarding poten-
tial harm to normal cells still exist [111].

ADCs integrate the selective targeting of antibodies 
with the cytotoxicity of chemotherapeutic drugs, making 
them a promising class of anti-cancer agents [112]. Cur-
rently, three ADCs targeting HER2 have been approved, 
with others targeting the HER family of receptors under 
investigation.

U3-1402 (patritumab deruxtecan, HER3-DXd) is an 
ADC involving the covalent binding of patritumab to a 
therapeutic linker containing deruxtecan (DX-8951, a 
topoisomerase I inhibitor). This ADC efficiently prevents 
DNA replication, which triggers apoptosis. Moreover, 
U3-1402 may induce cellular damage and immune acti-
vation, thereby triggering antitumor immune responses 
[113]. U3-1402 has demonstrated efficacy in late-stage, 
heavily pretreated mBC [78]. In a phase 1/2 study, the 
overall response rate (ORR) was 30.1% for hormone 
receptor-positive (HR +)/HER2-negative BC (n = 113), 
22.6% for TNBC (n = 53), and 42.9% for HER2-positive 
disease (n = 14). In the SOLTI-TOT HER3 window-of-
opportunity trial, a single dose of U3-1402 was evalu-
ated as neoadjuvant therapy in HR + /HER2-negative 

BC, wherein it demonstrated an ORR of 45%, increased 
tumor cell activity, and cancer-infiltrating lymphocyte 
scoring with no significant correlation between response 
and pretreatment HER3 mRNA levels [114]. U3-1402 
was assessed in 182 extensively pretreated patients with 
HER3-expressing mBC in the U31402-A-J101 phase 1/2 
trial, showing prolonged anti-cancer efficacy across all 
BC subtypes.

Gianluca Sala et al. developed four ADC versions from 
the anti-HER3 antibody EV20: (1) EV20-sap, conjugated 
with the plant-derived toxin saporin, (2) EV20/MMAF, 
(3) EV20-ss-vc/MMAF, conjugated with cleavable or 
non-cleavable linkers and the cytotoxic drug auristatin F, 
and (4) EV20/NMS-P945, conjugated with a connectable 
cleavable linker and a small molecule DNA alkylating 
agent (thieno indole NMS-P528). Among these, EV20/
MMAF demonstrated HER3-dependent cell-killing activ-
ity in HER2-positive mBC cell lines [115].

Antibody‑derived molecules
Hu et  al. produced tetraspecific antibodies, FL518 and 
CRTB6, capable of recognizing EGFR, HER2, HER3, 
and VEGF. CRTB6 was prepared by fusing the variable 
regions of cetuximab, trastuzumab, lumretuzumab, and 
bevacizumab into a DVD-Ig-like antibody along with 
FL518. The combination of duligotuzumab, which targets 
HER3 and EGFR, and bH1-44, which targets HER2 and 
VEGF, allowed the tetraspecific antibodies to more effec-
tively block the proliferation and signaling of mBC cells 
than the bAbs [116].

TsAb2v2 and TsAb3v1 are tetraspecific, tetravalent, Fc-
containing antibodies targeting EGFR, HER3, cMet, and 
IgF1R, with binding arms derived from imgatuzumab 
(anti-EGFR mAb), lumretuzumab (anti-HER3 mAb), 
onartuzumab (anti-cMet mAb), and R1507 (anti-IgF1R 
mAb). When compared to single monoclonal antibodies, 
or bAbs, the antibodies show higher levels of mBC cell 
apoptosis and growth inhibition while concurrently bind-
ing and inhibiting all targets [117].

Other anti‑HER3 strategies for mBC therapy
Certain antisense oligonucleotides or microRNAs have 
demonstrated potential efficacy against mBC by down-
regulating HER3 and preventing tumor cell proliferation. 
In  vitro and xenograft tumor models have shown that 
EZN-3920, a HER3 antisense oligonucleotide, exhibits 
anti-cancer efficacy either alone or in combination with 
TKIs, including models of HER-targeted therapeutic 
resistance [118]. Several microRNAs (miRNAs), such 
as miR-125a, miR-125b, miR-205, and miR-450b-3p, 
suppress HER3 expression by directly targeting the 3′ 
UTR of HER3 mRNA, inhibiting breast cancer (BC) cell 
proliferation and showing potential for treating mBC 
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[119–121]. HER3 siRNAs reduce tumor cell prolifera-
tion and sensitize cells to targeted HER therapy. HER3 
aptamers, which are engineered single-stranded DNA 
or RNA oligonucleotides, bind to HER3 and have been 
used to target HER3-positive tumor cells [122]. Yu et al. 
reported an antitumor effect in HER2-positive BC using 
a 3-in-1 nucleic acid aptamer–siRNA chimera [123]. Shu 
et al. have recently shown that carbon dots/HER3 siRNA, 
alone or in combination with trastuzumab, can inhibit 
the proliferation of HER2-positive BC cells [124]. HER3 
aptamer–protamine–siRNA (targeting oncogenes or 
CDKs) exerts anti-cancer effects in HER3-positive BC 
models [125]. A30, an RNA aptamer that targets HER3-
ECD, suppresses BC cell proliferation by blocking NRG 
signaling [126]. A30 has also been used to deliver a set of 
cytotoxic siRNAs that can inhibit HER3 + BC cell growth 
[127].

In this domain, preclinical trials have been conducted 
to evaluate a vaccine that encodes the full-length human 
HER3 receptor (Ad-HER3 or Ad-HER3-FL) using an ade-
novirus. Ad-HER3 can efficiently stimulate anti-HER3 
antibody production and T-cell responses against can-
cers. Even in individuals who have become resistant to 
HER2-targeted therapy, these antibodies may be helpful 
against mBC. Additionally, there are reports of increased 
effectiveness when Ad-HER3-FL is used in combination 
with PD-1/PD-L1 and CTLA4 dual-blockade therapy, 
suggesting HER3 as a promising target for antitumor 
vaccines [128, 129]. Furthermore, a preclinical study 
found that the HER3 vaccine antibody and HER3 peptide 
mimetic could inhibit cancer cell proliferation and recep-
tor phosphorylation and induce apoptosis and antibody-
dependent cytotoxicity [130].

Chimeric antigen receptor-regulated T lymphocytes 
(CAR-T) can stimulate anti-cancer immunity. How-
ever, insufficient tumor specificity of the targeted anti-
gen often leads to immunotoxicity and off-target effects. 
Endogenous ligands of tumor antigens may be more suit-
able than single-chain variable fragments as components 
of chimeric antigen receptors, with high cancer-recogni-
tion potential and minimal immunogenicity [131, 132]. A 
study has shown that CAR-T cells based on the extracel-
lular domain of HRG1β, a natural ligand of HER3/HER4, 
can effectively inhibit HER family receptor–driven BC, 
which may provide a new strategy to overcome tumor 
resistance to HER2-targeted therapy [133].

Discussion
Despite the acceptable safety profiles of mAbs and bAbs 
observed in clinical trials, their efficacy has been under-
whelming. Moreover, combination strategies with mAbs 
and bAbs have been hindered by toxicity [134] or inad-
equate effectiveness [135], leading to the discontinuation 

of development efforts for several mAbs and bAbs. Con-
versely, HER3-targeted ADCs offer a novel approach to 
cancer treatment and have the potential to be a unique, 
effective therapeutic option for patients with metastatic 
breast cancer by lowering drug resistance, enhancing 
treatment efficacy, and minimizing systemic toxicity.

ADCs are rapidly emerging as targeted drugs, although 
they continue to face substantial obstacles. Improv-
ing ADC absorption by cancer cells is a critical issue in 
developing ADCs. Furthermore, ADCs rely on high lev-
els of target antigen expression on cancer cell surfaces to 
effectively internalize and release cytotoxic  drugs. The 
limited expression of target antigens on cancer cell sur-
faces restricts the effectiveness of ADCs. Consequently, 
patients with limited antigen expression may benefit 
from increased ADC uptake by cancer cells. Systemic 
toxicity is another challenge that leads to ADC failure 
in clinical trials. Toxicity is associated with multiple fac-
tors such as inadequate ADC internalization, nonspecific 
binding of antibodies to Fc receptors [112], premature 
cleavage and release of free drugs from the linker [136], 
the bystander effect induced by the super-cytotoxic pay-
load in normal cells [137], and off-target toxicity due to 
the low expression of target receptors in normal tissues 
[138]. Furthermore, one issue that needs to be addressed 
is resistance to ADC therapy.

Potential avenues for future ADC research include 
the following strategies: (1) Exploring recombinant anti-
body approaches to enhance ADC internalization and 
lysosomal trafficking: Studies related to the domains of 
bAbs and bispecific affinity molecules to augment ADC 
internalization and lysosomal trafficking are ongoing 
[139]. As an alternative to antibodies, antibody recom-
binants, including lysosome-sorting or cell-penetrating 
peptides, are being investigated [140]. (2) Study of novel 
payload platforms, conjugation technologies, and link-
ing strategies to improve ADC efficacy while reducing 
toxicity: Currently, advancements in this field are driven 
by next-generation ADCs demonstrating enhanced effec-
tiveness, reduced toxicity, and diverse modes of action 
[141]. Designing cleavable linkers and explicating their 
release mechanisms could be a key focus in the future 
[142]. The development of reliable and site-specific con-
jugation strategies is ongoing to ensure the production 
of homogeneous ADCs with consistent quality [143]. 
(3) Improving ADC therapy through clinical and trans-
lational research, the possibility of combination therapy 
to improve drug efficacy and decrease ADC resistance 
has been considered [144]. (4) Studying the clinical bio-
markers will improve patient selection and help monitor 
response signals to augment ADC efficacy [144].

An adenovirus-based vaccine known as Ad-HER3 or 
Ad-HER3-FL, encoding the full-length human HER3 
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receptor, has been developed and evaluated in preclini-
cal trials. It has been discovered that ad-HER3 effectively 
stimulates T-cell responses against malignancies and gen-
erates antibodies against HER3. Even when mBC patients 
exhibit resistance to HER2-targeted therapies, these anti-
bodies may be useful against the disease. Additionally, 
reports of increased effectiveness when Ad-HER3-FL is 
used alongside PD-1/PD-L1 and CTLA4 dual blockade 
therapy suggest that HER3 could be a promising target 
for antitumor vaccines [128, 129].

Conclusions
Overexpression of HER3 plays a crucial role in promot-
ing mBC and providing resistance to treatments targeting 
HER receptors and chemotherapeutic agents. Although 
HER3 was identified more than 30  years ago, no thera-
peutic interventions have reached clinical approval to 
date. While mAbs and bAbs have shown some effective-
ness, their clinical benefits are limited, leading to the dis-
continuation of their development. The failure of these 
antibody therapies may be due to the use of incorrect 
antibody epitopes, pharmacokinetic problems, or a lack 
of biomarkers. In addition, targeting ErbB3 in isolation 
may not be sufficient to fully inhibit cancer cell signal-
ing. Therefore, combination therapy targeting ErbB3 and 
other anti-ErbB receptors or growth factor receptors, as 
well as hormonal therapy, chemotherapy, immunother-
apy, or radiotherapy, may enhance therapeutic effects. 
ADCs exhibit potential in cancer treatment and offer a 
promising therapeutic advantage for managing mBC. 
Delivering therapeutics to ErbB3-expressing cancer cells 
with anti-ErbB3 ADCs is a promising area for clinical 
trials. Moreover, the expression of the receptor alone is 
necessary but not sufficient for the response to ErbB3 
therapies. Emerging data suggest that more sophisticated 
biomarkers are needed. Therefore, to improve clinical 
outcomes, prospective biomarker validation and HER3-
targeted drug studies are essential.
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