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Abstract
Background  An increasing proportion of lung adenocarcinoma (LUAD) occurs in patients even after they have 
stopped smoking. Here, we aimed to determine whether tobacco smoking induced changes across LUADs from 
patients who formerly smoked correspond to different biological and clinical factors.

Methods  Random forest models (RFs) were trained utilizing a smoking associated signature developed from 
differentially expressed genes between LUAD patients who had never smoked (NS) or currently smoked (CS) from 
TCGA (n = 193) and BCCA (n = 69) cohorts. The RFs were subsequently applied to 299 and 131 formerly smoking 
patients from TCGA and MSKCC cohorts, respectively. FS were RF-classified as either CS-like or NS-like and associations 
with patient characteristics, biological features, and clinical outcomes were determined.

Results  We elucidated a 123 gene signature that robustly classified NS and CS in both RNA-seq (AUC = 0.85) and 
microarray (AUC = 0.92) validation test sets. The RF classified 213 patients who had formerly smoked as CS-like and 
86 as NS-like from the TCGA cohort. CS-like and NS-like status in formerly smoking patients correlated poorly with 
patient characteristics but had substantially different biological features including tumor mutational burden, number 
of mutations, mutagenic signatures and immune cell populations. NS-like formerly smoking patients had 17.5 months 
and 18.6 months longer overall survival than CS-like patients from the TCGA and MSKCC cohorts, respectively.

Conclusions  Patients who had formerly smoked with LUAD harbor heterogeneous tumor biology. These patients 
can be divided by smoking induced gene expression to inform prognosis and underlying biological characteristics for 
treatment selection.
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Introduction
Lung cancer is the most lethal cancer in the world, with 
the majority of cases attributed to tobacco smoking. Suc-
cesses in tobacco smoking control policies and smoking 
cessation programs have led to a decrease in the num-
ber of people who are actively smoking [1]. In countries 
such as the United States and Canada, over 50% of lung 
cancer deaths are now in people who had stopped smok-
ing [2]. As a history of smoking is the biggest risk factor 
in terms of lung cancer development, people who have 
previously smoked are at an elevated risk. While lung 
cancer can occur even years after smoking cessation, [3] 
risk decreases gradually over time after smoking cessa-
tion at a rate that varies among individuals for reasons 
that remain unclear [4]. A recent meta-analysis showed 
the reducible relative risk after smoking cessation only 
marginally declines after 15 years from 26.7% (95% CI 
20.2–34.3) to 19.7% (95% CI 13.3–26.4) at 20 years [3]. 
This motivates the study of tumor biology in formerly 
smoking lung cancer patients to determine underlying 
biological traits that may otherwise separate this popu-
lation beyond clinical characteristics for the purposes of 
risk stratification.

In terms of clinical research, patients who have for-
merly smoked (FS) are often treated the same as those 
who are currently smoking, grouped together as ‘ever 
smokers’. However, a recent study that subdivided its 
cohort into patients who had never smoked (NS), patients 
who currently smoked (CS), or FS showed that CS have 
significantly greater survival after PD-L1 inhibitor treat-
ment than patients who previously smoked in refractory 
NSCLC, with NS experiencing significantly worse sur-
vival compared to both groups [5] In addition, another 
study showed that smoking exposure can be quantified 
using tumor mutational burden (TMB) and transversion/
transition ratio, which can be applied to classify NS, CS, 
FS who quit in the last 15 years and those who quit over 
15 years ago [6]. This supports the idea that FS are dis-
tinct from CS as well as among themselves, although the 
other molecular features that separate FS and how they 
can translate to clinical management and treatment strat-
egies is currently unknown.

In this study, we aimed to further understand the diver-
sity of FS with lung adenocarcinoma (LUAD) - the most 
common lung cancer subtype - by exploring their tumor 
biology and molecular features. We hypothesized that 
a subset of FS patients develop cancer due to the carci-
nogenic effects of previous tobacco smoking, while oth-
ers may develop cancer through processes unrelated to 
smoking. To this end, we developed an active smoking 
associated gene expression signature to classify LUADs 
from FS, which revealed distinct subsets related to either 
CS or NS LUADs. Furthermore, we demonstrated that 
these subsets have unique underlying molecular features 

that influence heterogeneity in tumor biology across FS. 
This insight towards the mechanisms underlying tumor 
development in people who have stopped smoking have 
potential implications for treatment and clinical manage-
ment of the largest LUAD patient group in the future.

Methods
Data sources
Gene expression data from LUAD tumor samples with 
information regarding patient smoking status were 
obtained from three sources. The Cancer Genome Atlas 
(TCGA) dataset contained 500 RNA-Seq samples (118 
CS, 75 NS, 307 FS) (Illumina HiSeq RNA -Seq V2 RSEM) 
that were downloaded from Broad GDAC Firehose. 
Somatic copy number alterations (SCNAs), mutation fre-
quency, and other genomic data including TMB and frac-
tion of genome altered were also obtained from available 
samples.

The British Columbia Cancer Agency (BCCA) data-
set comprised of 69 microarray samples (39 CS, 30 NS) 
profiled using the Illumina WG-6 v3.0 BeadChip and 
the Memorial Sloan Kettering Cancer Center (MSKCC) 
dataset involved 192 samples (25 CS, 36 NS, 131 FS) pro-
filed using Affymetrix HG-U133A Arrays. Both micro-
array datasets were obtained from the GEO database 
(GSE75037 and GSE31547, respectively).

Differentially expressed Gene (DEG) analysis
Differentially expressed gene (DEG) analysis was con-
ducted between NS and CS samples to develop a gene 
signature associated with active smoking. For both 
TCGA and BCCA datasets, genes expressed at low lev-
els were removed and in instances of multiple probes 
corresponding to a single gene, only the probe with the 
highest mean expression was retained. Normalization 
was applied to each dataset using the EdgeR package in 
R and significantly up- and down-regulated genes were 
obtained using the limma package [7].

The overlapping DEGs from these two independent 
analyses that were also present within the MSKCC data-
set constituted our active smoking gene signature. Prin-
cipal component analysis (PCA) was performed using 
gene expression data from the genes within the signature 
derived from DEG analyses using the ggfortify package 
[8]. Receiver operating characteristic (ROC) curves were 
constructed with the principle component 1 values from 
each dataset’s PCA and respective areas under the curve 
(AUCs) were calculated to determine the ability of the 
gene signature to separate samples based on their NS and 
CS status.

Functional analysis of DEGs
To understand the functions and pathways associ-
ated with the genes within the smoking associated gene 



Page 3 of 14Wang et al. Journal of Translational Medicine          (2024) 22:634 

signature, Gene Ontology (GO), [9, 10] specifically Bio-
logical Process terms, and KEGG [11] databases were 
used. The DAVID tool [12] allowed integration of GO 
terms and pathways into clusters and ShinyGO [13] 
was utilized for confirmatory analysis and visualization 
purposes.

Random forest from gene signature
A random forest model (RF) utilizing genes of the 
derived gene signature and sex as features was trained 
to predict NS and CS status for future application to FS 
samples. RFs were created for both RNA-Seq and micro-
array data to account for inherent differences in the two 
data types. Each RF utilized the default settings from the 
randomForest package [14]. The RF built from RNA-Seq 
data was trained on 70% of the NS and CS within the 
TCGA dataset and tested on the remaining 30%, each of 
which was selected as described below. The RF built from 
microarray data was trained on the BCCA dataset and 
tested on the NS and CS of the MSKCC dataset. YuGene 
transformation was applied to both microarray datasets 
for cross-platform data consistency [15]. Performance 
metrics used to evaluate each RF included ROC curve 
AUC, overall accuracy, sensitivity, specificity, positive 
predictive value, and negative predictive value, courtesy 
of the caret package [16]. The train-test sets used for the 
TCGA RF were resampled 10 times and both RFs were 
built on 10 distinct seeds. The model with the AUC clos-
est to the average among each dataset was selected for 
classification of FS.

Random forest classification of patients who had formerly 
smoked
The RFs categorize samples as NS or CS based on the 
proportion of trees voting for either status. For FS, these 
classifications are interpreted as being “NS-like” or “CS-
like”, respectively.

Using RF classified NS-like or CS-like status given to 
lung tumors of FS, the relationships between FS and dif-
ferent clinical and biological characteristics could be 
investigated. RF defined FS classes were compared to 
variables that have been used to delineate higher risk of 
lung cancer, which include individuals between the ages 
of 50 and 80 who have previously smoked that have quit 
within the last 15 years and have over 20 pack years of 
smoking history according to the United States Preven-
tive Services Task Force (USPSTF) [17].

Genomic traits including TMB, fraction of genomic 
altered, and number of mutations were compared across 
samples of all smoking statuses in available data. Fre-
quency of oncogenic driver mutations and sex were also 
analyzed between RF defined FS classes.

When analyzing relationships between FS class and 
other traits, Fisher’s exact test was used for categorical 

variables and Wilcoxon test was used for continuous vari-
ables. Correlations were assessed by Pearson correlation 
coefficient. In any comparisons that involved FS class as 
well as true NS and CS, Benjamini-Hochberg multiple 
testing correction was applied.

Copy number assessment and mutational analysis
GISTIC 2.0 [18] was used to identify frequent SCNAs in 
all smoking status groups within the TCGA dataset. The 
parameters of q-value, confidence, and focal length were 
set with 0.05, 0.95, and 0.5, respectively.

A total of 220 samples had mutation data for com-
parison of mutational signatures between all smok-
ing statuses in the TCGA dataset. This was analyzed 
using the mutSignatures package and comparisons were 
made between smoking status groups by Wilcoxon test. 
From the mutation data of 144 FS patients from TCGA, 
driver mutation frequencies of each gene were compared 
between NS-like and CS-like samples using Fisher’s 
exact test. Multiple testing correction was subsequently 
applied with the Benjamini-Hochberg method.

DEG analysis in patients who had formerly smoked
As with the DEG analysis between NS and CS samples, 
DEGs between NS-like and CS-like FS in the TCGA 
dataset were identified using the edgeR and limma pack-
ages. The thresholds for DEG selection were |log2 fold 
change| >1 and adjusted p value < 0.01. Functional analy-
sis on these DEGs were performed using the DAVID tool 
and visualized with ShinyGO.

Immune cell content assessment
CIBERSORTx, [19] a deconvolution algorithm, was 
employed to estimate the relative proportion of 22 
types of immune cells in the tumor tissue through the 
gene expression levels of 547 genes. The normalized 
gene expression data of the FS in the TCGA dataset 
were uploaded to the CIBERSORTx web interface with 
parameters set at 1000 permutations and relative propor-
tions mode. Differences in each immune cell population 
between FS classes were compared by Wilcoxon test and 
adjusted by Bonferroni correction. The same process was 
repeated for true NS and CS as controls.

Assessment of clinical outcomes
The pathological stage of NS-like and CS-like FS samples 
was evaluated by Fisher’s exact test and Benjamini-Hoch-
berg multiple testing correction. In the TCGA dataset, FS 
were also assessed for their pathological T and N stages.

Univariate Cox regression analysis was conducted in 
the FS of the TCGA dataset using the survivalAnalysis 
package [20]. This was done to determine if RF-classi-
fied FS class could serve as an independent prognostic 
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factor alongside age, sex, and pack year history, years 
since quitting.

Kaplan-Meier survival curves were constructed with FS 
in both TCGA and MSKCC datasets to understand dif-
ferences in overall survival between NS-like and CS-like 
FS. The survival and survminer packages were chosen for 
survival analysis by log rank test and for visualization, 
respectively, due to their robust capabilities and compat-
ibility with one another [21, 22].

Statistical analysis
All statistical analyses were done using R (version 4.3.0) 
and p values < 0.05 were considered statistically signifi-
cant. All visualization of data was conducted with the 
ggplot2 and ggpubr packages unless otherwise stated.

Results
Derivation of an active smoking gene expression signature 
to separate patients who had never smoked and currently 
smoke
Although all FS share a history of tobacco use, the range 
of their smoking history and susceptibility to tobacco 
smoke means that lung carcinogenesis in some FS is 
inevitably attributable to smoking, while in others, it may 
be due smoking unrelated factors. We aimed to stratify 
the FS lung adenocarcinoma population and thus better 
understand their heterogeneity by building a model to 
classify FS based on their smoking induced gene expres-
sion. In order to determine genes related to active smok-
ing for later classification of FS, differentially expressed 
gene (DEG) analysis between NS and CS in both TCGA 
and BCCA cohorts was conducted, which yielded 4515 
and 203 DEGs, respectively. The overlap between these 
genes and the ones available within the MSKCC dataset 
resulted in a 123-gene signature (Fig.  1a). Construction 
of PCAs using the expression levels from these 123 genes 

Fig. 1  Gene signature that discerns lung adenocarcinoma patients who had never smoked (NS) and currently smoked (CS) functionally relates to drug 
metabolism. (a) Overlap of DEGs between lung adenocarcinoma tumors of NS and CS from the TCGA and BCCA cohorts that are present within the 
MSKCC cohort (123 genes). (b) PCA of expression of 123 overlapped genes in NS and CS from TCGA (n = 193), (c) BCCA (n = 69), and (d) MSKCC (n = 61). 
(e) ROC curves and AUCs generated from principle component 1 values for each sample, demonstrating strong separation of NS and CS by the selected 
123 genes. (f) Functional analysis displaying significantly enriched Molecular Function Gene Ontology terms and (g) KEGG pathways from the 123 DEGs 
between NS and CS in TCGA and BCCA. FDR = false discovery rate; AUC = area under the curve
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showed a visible separation between the NS and CS 
patients in all datasets, including within MSKCC, which 
was independent from the signature derivation process 
(Fig. 1b-d). A receiver operating characteristic area under 
the curve (AUC) comprised from each PCA’s principal 
component 1 demonstrates that the 123-gene signature is 
robust in distinguishing NS and CS LUAD tumors. The 
AUCs for TCGA, BCCA, and MSKCC were 0.81, 0.93, 
and 0.89, respectively (Fig. 1e).

Functional analysis of the gene signature demonstrated 
that many of the 123 genes are related to regulation of 
monooxygenase activity (Fig.  1f ). Molecular function 
GO terms that were most significantly enriched were 
“N, N-dimethylaniline monooxygenase activity”, “kinase 
binding”, and “flavin adenine dinucleotide binding”. The 
genes associated with each term and whether they are 
more highly expressed in CS or NS are detailed in Sup-
plementary Table 1.

According to the KEGG pathway database, the 123 
genes most commonly fell into drug metabolism by cyto-
chrome P450, metabolic, aldosterone-regulated sodium 
reabsorption, and Ras signaling pathways (Fig.  1g). 
However, only the drug metabolism by cytochrome 

P450 pathway was significantly enriched (fold enrich-
ment = 13.4, FDR = 0.007) and all the five genes that fall 
within this pathway (FMO3, FMO2, FMO4, MAOB, 
CYP3A5) are upregulated in NS tumor tissue.

Random forest models (RFs) were built to classify NS 
and CS LUAD patients with both RNA-seq data and 
microarray data using these 123 genes and sex as input 
features (Fig.  2a). These models were then validated by 
predicting NS and CS status from independent test data; 
the RNA-seq RF was trained on 70% of the TCGA dataset 
(n = 133) and tested on the remaining 30% (n = 60). The 
microarray RF was trained by the BCCA cohort (n = 69) 
and tested on the MSKCC data (n = 61). The AUCs from 
the validation these models were 0.85 and 0.92, respec-
tively (Fig. 2b), with further performance metrics listed in 
the table of Fig. 2c.

Smoking induced gene expression correlates modestly 
with patient characteristics
The patients who had previously smoked from the TCGA 
cohort were defined as 72% (n = 213) CS-like and 28% 
(n = 86) NS-like according to our RF (Fig.  3a). The RF 
classifies a patient as NS-like or CS-like on a scale from 

Fig. 2  Pipeline of analysis and demonstration that random forest models (RFs) trained on gene signature and sex data can accurately distinguish be-
tween NS and CS with lung adenocarcinoma. (a) RF development and validation pipeline to differentiate NS and CS lung adenocarcinoma tumors. (b) 
ROC curves and AUCs generated from inputting previously unseen test data into random forest models trained on gene signature and sex data from 
TCGA (RNA-seq) and BCCA (microarray) datasets. (c) Table of random forest performance metrics. TCGA data was resampled 10 times for test and train sets 
and both models were built on 10 separate seeds and mean metrics are shown. AUC = area under the curve, PPV = positive predictive value, NPV = nega-
tive predictive value
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zero to one, with a score less than 0.5 being NS-like 
and a score greater than 0.5 being CS-like. Correlative 
analyses showed that age and years since quitting have 
a significant but weak negative correlation with smok-
ing score (Fig.  3b). The former is likely due to the fact 
that with higher age, there is a greater amount of time 
for years since quitting to accrue; as such, age and years 
since quitting are correlated with one another (data not 
shown). FS in this cohort were defined as those who had 
quit for over a year; to assess the change in proportion of 
NS-like FS, this group was further parsed into those who 
had quit more than five, 10, or 15 years. The percentage 
of NS-like FS increased from 29.5 to 31.4%, 34.0%, and 
39.1%, respectively, although none of these proportions 
are significantly different. This aligns with previous find-
ings that some smoking related genes decrease in expres-
sion linearly as time since quitting increases, while other 
genes’ expression remain resiliently expressed for years, 
potentially explaining why our NS-like status, which 
is defined by gene expression, is only modestly corre-
lated with years since quitting [23]. Surprisingly, there 
was no correlation between smoking score in the FS and 
pack years (Fig. 3b). Finally, although sex is not currently 
part of lung cancer screening criteria, it was found that 
a slightly higher proportion of female FS patients were 
classified as NS-like compared to males (Fig. 3c).

The RF was also applied to the MSKCC dataset, which 
classified 57 FS to be CS-like and 74 to be NS-like. 
Although there was not enough information to assess the 
theoretical risk of these patients, available data indicated 
that pack years had a slight positive correlation with CS-
like status and recapitulated that a greater proportion of 
female FS are NS-like compared to males (Figure S1a-
b). Together, this suggests that clinical factors are not 
strongly correlated with active smoking gene expression 
levels in FS.

To understand how high risk traits relate to FS based 
on their active smoking gene expression levels, FS LUAD 
patients were presented to the 123-gene RF to be classi-
fied as never smoker-like (NS-like) or current smoker-
like (CS-like). Only 41.7% of FS with LUAD would have 
been considered to be at relatively higher risk for lung 
cancer according to the USPSTF (Supplementary Table 
2). Furthermore, of the FS who are at lower risk, 38.3% 
(79/206) were still categorized as CS-like (Fig.  3d-e). 
This demonstrates that, according to our model, a size-
able number of FS falling outside of high lung cancer risk 
attributes harbored tumors with high smoking induced 
gene expression.

Fig. 3  Clinical characteristics correlate mildly with smoking induced gene expression and patients who formerly smoked (FS) with lung adenocarcinoma 
are a diverse demographic. (a) Percentage of FS categorized as either NS-like (n = 86) or CS-like (n = 213) by random forest model (RF). (b) Age, years since 
quitting (YSQ), and pack years depending on smoking score as predicted by RF. (c) Proportions of sex in FS relative to their RF classified CS- or NS-like 
status. (d) Mosaic plot of FS who would be higher risk and thus more likely recommended for screening (green) or lower risk (red). (e) Proportion of RF 
classified NS- or CS-like FS that are high or low risk. *p < 0.05

 



Page 7 of 14Wang et al. Journal of Translational Medicine          (2024) 22:634 

NS-like and CS-like formerly smoking patient subgroups 
have significantly different genomic profiles
In order to determine whether other underlying biologi-
cal differences are associated with active smoking gene 
expression levels, RF-classified FS were compared to 
different biological features. CS-like FS have markedly 
higher TMB than NS-like FS and their TMB is relatively 
similar to those of true CS. It is notable that relative to 
true NS, NS-like FS have significantly greater TMB. A 
similar stepwise trend from NS to NS-like FS to CS-like 
FS is also present in the number of mutations between 
groups. Regarding the fraction of the genome that is 
altered in each group, there is no significant difference 
between NS and NS-like tumors. However, both of these 
groups have distinguishable differences compared to 

both CS-like and CS tumors, which again demonstrate 
distinct genomic differences between NS-like and CS-
like FS (Fig.  4a). Combining these three genomic traits 
through a composite score, having quit smoking for over 
15 years was also able to separate FS by genomic features 
in addition to RF predicted class of FS (Figure S2). Taken 
together, these findings extend beyond the established 
knowledge that NS and CS possess pronounced genomic 
characteristics (Figure S3). Moreover, this reveals that 
FS occupy an intermediate position between these two 
groups that can be further delineated into two distinct 
groups based on our active smoking gene expression 
signature.

Mutational signature analysis revealed different muta-
tional signature profiles between NS-like and CS-like FS 

Fig. 4  Genomic profiles between NS- and CS-like FS with lung adenocarcinoma are significantly different. (a) Genome related measures and (b) absolute 
and relative frequencies of mutational signatures that have been previously detected in lung cancer between true NS, true CS, and RF classified NS- and 
CS-like FS. (c) Relative levels of SBS4 (tobacco), SBS1 (ageing) and SBS6 (DNA mismatch repair) mutational signatures between different smoking statuses. 
TMB = tumor mutational burden, ns = not significant, *p < 0.05, **p < 0.001, ***p < 0.0001, ****p < 0.00001
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with LUAD (Fig. 4b). Specifically, relative level of SBS4, a 
well-defined COSMIC signature associated with tobacco 
mutagens, [24] is relatively higher in CS-like than NS-
like FS (Figure S4) although the difference is only upon 
comparing absolute count of SBS4 between the two 
groups (Fig.  4c). This aids to verify the gene signature, 
which was developed to separate FS by smoking related 
gene expression. Furthermore, APOBEC signature SBS2 
was relatively higher in NS than other groups as has been 
previously reported (Figure S4). True NS have the highest 
relative levels of SBS1 and SBS6, representing ageing and 
deficient mismatch repair, [24] which were significantly 
greater than CS-like FS but not NS-like FS, suggesting a 
greater impact of endogenous signatures in tumors of NS 
and NS-like FS (Fig. 4c).

The frequency of main oncogenic driver alterations 
was not significantly different between NS-like and CS-
like tumors. The proportions of KRAS, EGFR, and ALK 
alterations were relatively similar among FS in TCGA 
and proportions of KRAS and TP53 alterations were also 
not significantly different between FS groups in MSKCC 
(Figure S5). Although the proportion of those with EGFR 
mutation was slightly higher in NS-like FS than that of 
CS-like FS, the significance of this difference does not 
hold after multiple testing correction.

SCNAs were reported in the TCGA dataset, which 
demonstrated that CS-like FS exhibit far more frequently 
altered regions of amplification and deletion compared to 
NS-like patients (Fig. 5a-b). In addition, compared to NS-
like FS tumors, CS-like tumors demonstrated greater rel-
ative copy number alterations in multiple regions across 

Fig. 5  Genomic analyses show greater somatic copy number alterations in CS-like than NS-like FS with lung adenocarcinoma, and genes with significant-
ly different mutation frequencies between FS from TCGA are shown. GISTIC 2.0 analysis of copy number amplifications (red) and deletions (blue) of (a) NS-
like (n = 85) and (b) CS-like (n = 213) FS with lung adenocarcinoma patients within TCGA. Significance is delineated by a green line at 0.05 representing the 
false discovery rate corrected p-value. The corresponding chromosome regions are labeled, and genes of interest are indicated. (c) Somatic copy number 
profiles of all FS in TCGA. Copy number amplifications (red) and losses (blue) are plotted as a heatmap with samples on the x-axis and chromosomes on 
the y-axis. (d) Genes with significantly different mutation frequencies between NS-like and CS-like FS in TCGA (Fisher’s exact test, n = 144, p < 0.01)
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the genome (Fig. 5c). This recapitulates the trend found 
in percentage of the genome altered between the two 
groups of FS. Regions that were significantly amplified in 
CS-like tumors held many genes known to be associated 
with cancer development, including KRAS, CDK4, and 
TERT. Comparing FS to true NS and CS, CS have compa-
rable SCNAs to CS-like FS. However, NS-like FS have the 
least somatic copy number deletions and amplifications, 
even compared to true NS (Figure S6).

Significantly different mutation frequency between NS-
like and CS-like FS was identified in 80 genes (p < 0.05), 
with the top 16 genes (p < 0.01) shown in Fig. 5d. CS-like 
tumors had significantly more highly mutated genes than 
NS-like samples, with the most significant genes being 
KEAP1, TSHZ3, and STK11. Genes that were signifi-
cantly more frequently mutated in NS-like samples were 
ITGA2, TEX101, SNCAIP, and LRRC2, which had muta-
tion frequencies ranging from 8.7 to 13.0% compared to 
0% in CS-like samples (Fig. 5d). Although multiple test-
ing adjustment did not retain any significant genes, the 

exploratory nature of this analysis highlights biological 
differences between subgroups of FS.

Tumors of CS-like patients NS-like tumors have different 
transcriptional and immune profiles
Upon investigating transcriptomic differences between 
NS-like and CS-like FS, the majority of significantly 
enriched GO terms relate to the cell cycle (Fig. 6a). This 
aligns with KEGG pathway analysis indicating the cell 
cycle as the most significantly enriched pathway, fol-
lowed by drug metabolism, metabolism of xenobiotics, 
and ECM-receptor interaction (Fig. 6b).

Tumor immune microenvironment was investigated 
within FS using CIBERSORTx, which revealed that het-
erogeneity exists within NS-like and CS-like FS (Fig. 6c). 
In addition, differences between these subgroups of FS 
exist in that CS-like FS have greater proportions of acti-
vated CD4 memory T cells while NS-like FS have greater 
proportions of resting CD4 memory T cells, monocytes, 
dendritic cells, and mast cells after Bonferroni correction 

Fig. 6  Gene expression differences between NS-like and CS-like FS with lung adenocarcinoma revolve functionally around the cell cycle and drug me-
tabolism and myeloid lineage immune cells are more abundant in NS-like FS. (a) Functional analysis displaying enriched Biological Process Gene Ontol-
ogy terms and (b) enriched KEGG pathways from the 1050 DEGs between NS-like and CS-like FS in TCGA. (c) Relative fraction of 22 immune cell types in 
NS-like (n = 86) and CS-like (n = 213) FS in TCGA and comparisons of tumor-infiltrating immune cells between NS-like and CS-like FS (Wilcoxon test and 
Bonferroni correction, n = 193, *p < 0.05, ****p < 0.0001). FDR = false discovery rate
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(Fig.  6c). Comparing true CS to NS, it is observed that 
myeloid lineage cells, specifically dendritic cells and mast 
cells, are present in higher proportions among NS. Con-
versely, lymphoid lineage plasma cells and T follicular 
helper cells levels are proportionally greater in CS (Figure 
S7).

CS-like patients who had formerly smoked tend to have 
LUAD in later pathological stage and worse overall survival
To assess how active smoking gene expression is related 
to tumor characteristics and clinical outcomes, RF-clas-
sified FS were then associated with variables related to 
tumor stage and overall survival. In the TCGA dataset, 
CS-like patients more frequently present with tumors 
at advanced pathological stages compared to NS-like 
patients. After multiple testing adjustment, CS-like FS 
patients are significantly more likely to have stage III 
tumors compared to NS-like patients, whereas those 
who are NS-like have a higher likelihood of being in 
stage I than CS-like patients (Fig. 7a). The TNM staging 
data further illustrate that CS-like patients have a trend 
towards larger tumor size and increased lymph node 
involvement compared to NS-like patients. Notably, this 
difference in proportion is significant between T1 and T2 
tumors as well as N0 and N2 tumors even after multiple 
testing correction. There were not enough metastatic 
events in the formerly smoking patient cohort to test for 
differences in proportion in metastasis (Fig. 7a).

Kaplan-Meier survival analysis of NS-like and CS-like 
FS followed by log rank test for statistical significance 
established that overall survival differs between the two 
subgroups of FS. Prognosis is 17.5 months longer in NS-
like FS than CS-like FS, with a median survival time of 
59.1 months compared to 41.6 months (Fig. 7b). This is 
consistent with CS-like patients demonstrating higher 
pathological stages of LUAD, which directly correlates 
to poorer survival outcomes (data not shown). In the 
MSKCC dataset, there is no significant difference in 
pathological stage between NS-like and CS-like groups 
(Fig.  7c). However, similarly to the TCGA dataset, NS-
like FS have significantly longer overall survival than CS-
like FS, with a median survival difference of 18.6 months 
(Fig. 7d). Importantly, other univariate survival analyses 
conducted demonstrated that NS-like FS are 49% less 
likely to die than CS-like FS (HR = 0.49, CI = 0.29, 0.81) 
and no other established clinical variables significantly 
affect overall survival in FS, including years since quit-
ting, pack years, age, and sex (Fig. 7e). This suggests that 
our active smoking classifier is a more effective indepen-
dent prognostic factor than any of these aforementioned 
clinical variables.

Discussion
A portion of the heterogeneity in the tumor biology of FS 
is due to the varied influence of smoking on lung carcino-
genesis. We demonstrate that the FS population can be 
meaningfully segregated by their smoking related gene 
expression. Our study allowed FS to be classified as CS-
like or NS-like based on the expression of a 123 gene 
signature that is associated with active smoking, defined 
through assessment of true NS and CS LUAD tumors.

Our work shows that despite lack of correlation with 
clinical characteristics, smoking related gene expression 
has relevance in predicting other aspects of LUAD tumor 
biology as well as overall survival in FS. The CS-like FS 
class had significantly greater genomic disturbances than 
NS-like FS even though it did not significantly correlate 
with smoking pack year history or years since quitting. 
RF-predicted FS classes also showed a divide in muta-
tional signature profiles, where CS-like FS had relatively 
greater levels of tobacco mutagen signature SBS4 and 
NS-like FS had relatively higher levels of endogenous sig-
natures SBS1, SBS6, and SBS2. These trends have been 
previously reported in true CS and NS patients with 
LUAD, respectively, supporting a clear and biologically 
relevant subdivision within FS [25].

Higher TMB is associated with greater sensitivity to 
immunotherapy in NSCLC [26]. Although FS have been 
shown to have significantly poorer response to immuno-
therapy than CS, [5] it is possible that a subset of FS iden-
tifiable as CS-like FS may confer great benefit since they 
have comparable TMB, fraction of genome altered, muta-
tion counts, and copy number alterations to CS. This 
supports previous findings that FS are separable by TMB 
based on years since quitting, indicating distinct biologi-
cal subgroups within the FS population [6]. In addition, 
tumors of CS-like FS have significantly higher propor-
tions of activated CD4 memory T cells, and high levels 
of tumor infiltrating lymphocytes are well documented to 
predict good response to PD-1 blockade [27]. A caveat is 
that CS-like FS harbor significantly higher mutation fre-
quencies in KEAP1 and STK11, both of which are asso-
ciated with poor response to immunotherapy even with 
high TMB [28, 29]. This further refines the subgroup that 
may exist within FS who would benefit from immuno-
therapy and warrants further exploration in responses to 
this treatment specifically in patients who had previously 
smoked.

Aside from differing immune profiles and genomic 
characteristics, DEGs between FS classes were function-
ally related to the cell cycle, whose dysregulation is a hall-
mark feature of cancer and has been observed to be more 
highly disrupted in true CS than NS [30]. Another highly 
enriched pathway from the DEGs between FS groups is 
metabolism of xenobiotics; genes from this pathway are 
more highly upregulated in NS-like than CS-like FS. 
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Fig. 7  CS-like FS with lung adenocarcinoma in TCGA have more advanced tumors and their overall survival is significantly worse than NS-like FS in both 
TCGA and MSKCC. Proportion of RF classified NS- and CS-like FS in different tumor stages and classifications in the (a) TCGA and (c) MSKCC cohort. (b) 
Kaplan Meier survival curve and number at risk table showing overall survival between NS- and CS-like FS. Median survival difference is 17.5 months in 
the TCGA cohort and (d) median survival difference is 18.6 months in the MSKCC cohort. (e) Univariate Cox regression of overall survival depending on 
RF-classified status in FS and other clinical characteristics in the TCGA cohort
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Impairment in the metabolism of foreign compounds 
aligns with the idea that FS are more CS-like if their lung 
biology is less adept to process the compounds in tobacco 
smoke. Genes related to toxin removal from the metabo-
lism of xenobiotics pathway including FMO3 [31] and 
CYP3A5 [32] are all down-regulated in CS-like tumors, 
potentially contributing to development of smoking 
induced tumors.

Although CS-like FS had significantly greater SCNAs 
as well as more chromosomal regions altered that belong 
to known tumor suppressors, some of these regions were 
also shared with NS-like FS, including CDKN2A. The 
overlap of these regions may suggest that these genes are 
consistently involved with LUAD of FS. Conversely, the 
abundance of other canonical cancer-related genes in 
CS-like FS may suggest distinct routes to tumorigenesis 
compared to NS-like tumors.

The subgroups of FS were also associated with tumor 
stage and overall survival. CS are more likely to be 
detected in advanced stage disease than FS, [33] and our 
findings follow this in that CS-like FS harbor a signifi-
cantly higher proportion of late stage tumors than NS-
like FS in the TCGA cohort. This may be a contributing 
factor to NS-like FS having a 17.5 month longer overall 
survival. However, it should be noted that there was no 
correlation between stage and FS classification in the 
MSKCC cohort, although it was also found that NS-like 
FS had significantly longer overall survival. In addition, 
no other clinical variable in univariate analyses was able 
to predict overall survival the way that the RF-classified 
FS class could. This may suggest that there are properties 
of certain tumors that are driven by smoking related gene 
expression that accelerate tumor progression, and that 
our gene signature may be able to identify these higher 
risk patients as candidates for more aggressive treatment 
regimens. The increased overall survival in NS-like FS is 
further supported by higher proportions of resting CD4 
T cells, monocytes, resting dendritic cells, and resting 
mast cells, all of which have been previously significantly 
correlated with higher overall survival in LUAD patients 
of all smoking statuses [34]. Thus, this gene signature 
may be able to predict prognosis in LUAD FS patients 
and is a step towards personalized medicine for FS.

In our study probing tumors of LUAD FS by smoking 
related gene expression, there is no significant associa-
tion between CS-like FS and patients who would have 
been considered at higher risk of developing lung cancer 
due to their age, pack year history, and years since quit-
ting. Lung cancer risk over time is unique to the indi-
vidual as some FS have been shown to remain at elevated 
risk despite quitting for more than 25 years [35]. Our 
work shows that CS-like tumors can present in FS who 
have quit for a long time, suggesting that persistently 
modified gene expression or genomic alterations may be 

a possible explanation for persistently high risk in some 
FS. This supports previous studies that have proposed a 
personalized approach to determining risk as being opti-
mal for FS [4, 35] and research on FS should continue to 
investigate refinements towards early detection, includ-
ing understanding genomic features of normal tissue in 
high risk populations.

Limitations
A limitation of this study is the lack of public databases 
separating current from FS with detailed smoking his-
tory, such as pack years and years since quitting. A pre-
vious retrospective study on lung cancer screening 
eligibility found that 36% of patients did not have smok-
ing history documented in their medical records system 
among nearly 500 patients assessed [36]. This translated 
to a limited sample size in our study and restricted the 
ability to bridge tumor transcriptomics and genomics 
with clinical characteristics of FS from several public 
datasets. Considering the heterogeneity within a tumor 
and the small part extracted for transcriptomic and 
genomic sequencing, not only a larger sample size but 
a standardized protocol for extracting tumor samples 
could be established in the future for more generalizable 
results. Another future direction would be to integrate 
methylation data in the analyses to determine if it con-
tributes to smoking related gene expression, but this data 
is not yet available. A further limitation is that all cohorts 
utilized in this study originated from North American 
centers and patients were primarily Caucasian. This calls 
for further investigation of FS with detailed smoking his-
tory in other geographical areas with more diverse racial 
backgrounds to understand if the results from this study 
are location- or race-specific.

There was also a lack of normal tissue and longitudinal 
datasets, which limit the direct applicability of these find-
ings for screening and early detection purposes. Instead, 
this work is able to indirectly show that the use of clinical 
characteristics in screening may not adequately capture 
people who are at the highest risk of aggressive smoking 
related cancer. Our study serves as a proof of concept of 
the heterogeneity within tumor biology of FS that can be 
leveraged in patient care. Future directions include repli-
cating this analysis in FS with more diverse geographical 
and racial backgrounds as well as in healthy patients lon-
gitudinally to determine the dynamics of smoking related 
gene expression over time.

Conclusions
FS are a diverse population not only due to variability 
of pack years and years since quitting, but due to differ-
ences in tumor biology. This study demonstrated the abil-
ity to stratify FS by smoking related gene expression that 
had weak correlations with clinical characteristics and 
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smoking history, but was associated with underlying fac-
tors including genomic alterations, immune infiltration 
and clinical factors including overall survival. This dem-
onstrates the potential of considering gene expression in 
the clinical care of FS as well as motivates future research 
that focuses on FS with lung cancer to offer them person-
alized care as this population continues to grow.
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